Role of data link layer

- Service offered by layer 1: a stream of bits
- Service to layer 3: sending & receiving frames
- To achieve this layer 2 does
 - Framing
 - Error detection (rarely error correction)
 - Multiplexing
 - Media access control
 - Addressing (multiple access links)

Today’s lecture

- Framing
- Error detection
- Reliability through retransmission
Framing 1 – sentinel approach

- Used by Point-to-Point-Protocol (PPP)
- Special characters for start and end of frame
- Use “byte stuffing” if they appear in body

Framing 2 – byte counting approach

- Used by DECNET’s DDCMP
- Instead of “end of frame” character uses frame length field

Framing 3 – bit oriented

- Frames delimited by special bit patterns
- HDLC uses “01111110”
- If “011111” occurs in body, sender inserts “0”
Framing 4 – clock based framing

• Used by protocols from the phone network
• Fixed size frames
• No escape codes

Today’s lecture

• Framing
• Error detection
• Reliability through retransmission

Error detection

• Typical errors important to protect against
 – Random bits flipped
 – Bursts of corrupted bits
• Aim of error detection schemes
 – Catch most common errors
 – No solution can catch all errors
 – Strengths depends on algorithm and size increase
• Example: parity bit
Two dimensional parity

- Stronger than parity bit
 - Catches 1, 2, 3 bit errors
 - Catches most 4 bit errors
- Easy to compute

<table>
<thead>
<tr>
<th>Data</th>
<th>Parity bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101001</td>
<td>1</td>
</tr>
<tr>
<td>1101001</td>
<td>0</td>
</tr>
<tr>
<td>1011110</td>
<td>1</td>
</tr>
<tr>
<td>0001110</td>
<td>1</td>
</tr>
<tr>
<td>0110110</td>
<td>1</td>
</tr>
<tr>
<td>1011111</td>
<td>0</td>
</tr>
</tbody>
</table>

Parity byte: 1110111 0

Internet checksum

- Sum of 16 bit words in message
- When result exceeds 2^{16} drop 17th bit, add 1
- Uses 1’s complement arithmetic
- Easy to compute in software (even in the ’70s)
- Weaker error detection than CRC

Cyclic redundancy check

- Message is a polynomial
- Coefficients modulo 2
 - Values can be 0 or 1
 - +,- same as XOR
- Checksum is remainder of division msg. / generator

Generator: 1101 11111001 10011010000
Message: 1101 1001 1101 1000 1101 1011 1101 1011 1101 1000 1101 1011 1101 1000 1101 101

Remainder: 101

CS 640
CRC – contd.

- Size of remainder depends on size of generator
- Error detection properties depend on generator
- Standards specify generator
- Easy to implement in hardware and software

Today’s lecture

- Framing
- Error detection
- Reliability through retransmission

Reliable transmission

- Frames/packets can be lost, corrupted
- Retransmit to ensure reliability (error correction)
 - Most common at transport layer (layer 4)
 - Done in some data link layers too (layer 2)
- How does sender know when to retransmit?
 - Use acknowledgements and timeouts
Acknowledgements & Timeouts

• An acknowledgement (ACK) is a packet sent by one host in response to a packet it has received
 – Making a packet an ACK is simply a matter of changing a field in the transport header
 – Data can be piggybacked in ACKs

• A timeout is a signal that an ACK to a packet that was sent has not yet been received within a specified time
 – A timeout triggers a retransmission of the original packet from the sender
 – How are timers set?

Finding the right length for timeout

• Propagation delay: delay between transmission and receipt of packets between hosts
• Propagation delay can be used to estimate timeout period
• How can propagation delay be measured?
• What else must be considered in the measurement?
 – Harder for transport layer than for data link layer
Stop-and-Wait Process

- Sender won’t send next packet until sure receiver has last one.
- The packet/Ack sequence enables reliability and flow control.
- Sequence numbers help avoid problem of duplicate packets.
- Problem: keeping the pipe full.
- Example:
 - 1.5Mbps link \times 45ms RTT = 67.5Kb (8KB)
 - 1KB frames implies 1/8th link utilization.

Solution: Pipeline via Sliding Window

- Allow multiple outstanding (un-ACKed) frames.
- Upper bound on un-ACKed frames, called window (flow control).

Buffering on Sender and Receiver

- Sender buffers data so that if data lost, it can resend.
- Receiver buffers data so that if data is received out of order, it can be held until all packets are received.
- How can we prevent the sender overflowing receiver’s buffer (flow control)?
 - Receiver tells sender its buffer size during connection setup.
- How can we ensure reliability?
 - Go-Back-N:
 - Send all N un-ACKed packets when a loss is signaled (inefficient).
 - Selective retransmit:
 - Only send un-ACKed packets (a bit trickier to implement).
Sliding Window: Sender
- Assign sequence number to each frame (**SeqNum**)
- Maintain three state variables:
 - send window size (**SWS**)
 - last acknowledgment received (**LAR**)
 - last frame sent (**LFS**)
- Maintain invariant: **LFS** - **LAR** <\= **SWS**
- Advance **LAR** when ACK arrives
- Buffer up to **SWS** frames

Sliding Window: Receiver
- Maintain three state variables
 - receive window size (**RWS**)
 - largest frame acceptable (**LFA**)
 - last frame received (**LFR**)
- Maintain invariant: **LFA** - **LFR** <\= **RWS**
- Frame **SeqNum** arrives:
 - if **LFR** < **SeqNum** <\= **LFA** then accept
 - if **SeqNum** <\= **LFR** or **SeqNum** > **LFA** then discard
- Send cumulative ACKs – send ACK for largest frame such that all frames less than this have been received

Sequence Number Space
- **SeqNum** field is finite; sequence numbers wrap around
- Sequence number space must be larger than number of outstanding frames
- **SWS** <\= \(\text{MaxSeqNum} - 1 \) is not sufficient
 - suppose 3-bit **SeqNum** field (0..7)
 - **SWS**=**RWS**=7
 - sender transmit frames 0..6 which arrive, but ACKs lost
 - sender retransmits 0..6
 - receiver expecting 7, 0..5, but receives the original 0..5
- **SWS** < \((\text{MaxSeqNum}+1)/2 \) is correct rule
- Intuitively, **SeqNum** “slides” between two halves of sequence number space
Stop & wait sequence numbers

- Simple sequence numbers enable the receiver to discard duplicate copies of the same frame
- Stop & wait allows one outstanding frame, requires two distinct sequence numbers

Another Pipelining Possibility: Concurrent Logical Channels

- Multiplex 8 logical channels over a single link
- Run stop and wait on each logical channel
- Maintain three state bits per channel
 - channel busy
 - current sequence number out
 - next sequence number in
- Header: 3-bit channel num, 1-bit sequence num
 - 4-bits total, same as sliding window protocol
- Separates reliability from order

Sliding Window Summary

- Sliding window is best known algorithm in networking
- First role is to enable reliable delivery of packets
 - Timeouts and acknowledgements
- Second role is to enable in order delivery of packets
 - Receiver doesn’t pass data up to next layer until it has packets in order
- Third role is to enable flow control
 - Prevents server from overflowing receiver’s buffer
Sliding Window Example

Sender

Receiver

CS 640