CS 640 Introduction to Computer Networks Lecture 17 CS 640 Today's lecture • Ethernet CS 640 **Ethernet History** • Developed by Bob Metcalfe and others at Xerox PARC in mid-1970s • Roots in Aloha packet-radio network • Standardized by Xerox, DEC & Intel in 1978

• LAN standards define layer 1 and 2

originally 2Mbps

- IEEE 802.3 (CSMA/CD- Ethernet) standard -

IEEE 802.3u standard for 100Mbps Ethernet
IEEE 802.3z standard for 1,000Mbps Ethernet

Ethernet Overview

- Most popular LAN technology
- Bandwidths: 10Mbps, 100Mbps, 1Gbps
- Max bus length: 2500m
 - 500m segments with 4 repeaters
- Bus and Star topologies are used to connect hosts
 - Hosts attach via Ethernet transceiver or hub or switch
 - · Detects line state and sends/receives signals
 - All hosts on an Ethernet compete for access to the medium
 - · Switches break this model

CS 640

Ethernet framing and error detection

- Preamble is a sequence of 7 bytes, each set to "10101010"
 - Used to synchronize receiver before actual data is sent
 - Body can contain up to 1500 bytes of data
- CRC is used to detect errors

64	48	48	16	32
Preamble	Dest addr	Src addr	Туре	Body CRC

CS 640

Ethernet multiplexing

- Addresses
 - unique, 48-bit unicast address assigned to each adapter
 - Example: 08:00:20:b1:25:d2
 - Each manufacturer gets their own address range
 - broadcast: all 1s
 - multicast: first bit is 1
- Type field is a demultiplexing key used to determine which higher level protocol the frame should be delivered to

Multiple Access Methods

- Centralized master slave protocols
 - Master decides who sends when
- · Fixed assignment
 - Partition channel so each node gets a slice of the bandwidth
 - Inefficient for bursty data
- · Distributed token- based
 - Take turns using the channel (Token ring)
- · Contention based
 - Nodes contend equally for bandwidth and recover from collisions (Aloha, Ethernet)

CS 640

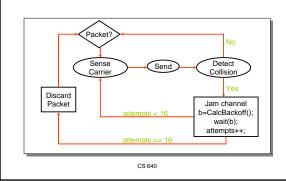
Aloha

- Developed in late 60's by Norm Abramson at Univ. of Hawaii for use with packet radio systems
 - Any station can send data at any time
 - Receiver sends an ACK for data
 - Timeout for ACK signals that there was a collision
 - What happens if timeout is poorly timed?
 - If there is a collision, resend data after random backoff
- · Utilization was pretty bad
 - Max utilization = 18%
- Slotted Aloha (send only when slot starts) helped
 - Max utilization = 36%

CS 640

Ethernet Media Access Control

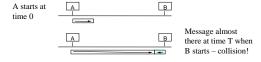
- CSMA/CD
 - CS = carrier sense
 - Send only if medium is idle
 - MA = multiple access
 - CD = collision detection
 - Stop sending immediately if collision is detected


_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					

Ethernet's MAC Algorithm

- If line is idle (no carrier sensed)
 - send packet immediately
 - upper bound message size of 1500 bytes
 - must wait 9.6us between back-to-back frames
- If line is busy (carrier sensed)
 - wait until idle and transmit packet immediately
- called 1-persistent sending
- If collision detected
 - Stop sending and jam signal
 - Try again later

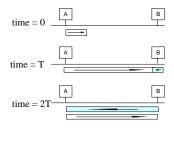
CS 640


State Diagram for CSMA/CD

Collisions

Collisions happen when two adaptors transmit at the same time (adaptors sense collision based on voltage differences)

- Both found line to be idle
- Both had been waiting to for a busy line to become idle


How can we be sure A knows about the collision?

Collision Detection

- · How can A know that a collision has taken place?
 - There must be a mechanism to ensure retransmission on collision
 - A's message reaches B at time T
 - B's message reaches A at time 2T
 - So, A must still be transmitting at 2T
- IEEE 802.3 specifies max value of 2T to be 51.2us
 - This relates to maximum distance of 2500m between hosts
 - At 10Mbps it takes 0.1us to transmit one bit so 512 bits (64B) take 51.2us to send
 - So, Ethernet frames must be at least 64B long
 - 14B header, 46B data, 4B CRC
 - Padding is used if data is less than 46B
- · Send jamming signal after detecting collision so all hosts see it

CS 640

Collision Detection contd.

CS 640

Exponential Backoff

- If a collision is detected, delay and try again
- Delay time is selected using binary exponential backoff
 - 1st time: choose K from $\{0,1\}$ then delay = K * 51.2us
 - 2nd time: choose K from $\{0,1,2,3\}$ then delay = K * 51.2us
 - *nth* time: delay = $K \times 51.2$ us, for $K=0..2^n 1$
 - give up after 16 tries and report error
- If delay were not random, could get continual collisions
- Why not just choose from small set for K?
 - This works fine for a small number of hosts
 - Large number of nodes would result in more collisions

	_	

MAC Algorithm for Receiver Side

- · Senders handle all access control
- Receivers simply read frames with acceptable address
 - Address to host
 - Address to broadcast
 - Address to multicast to which host belongs
 - All frames if host is in promiscuous mode

CS 640

Experiences with Ethernet

- · Ethernets work best under light loads
 - Utilization over 30% is considered heavy
 - Network capacity is wasted by collisions
- Most networks are limited to about 200 hosts
 - Specification allows for up to 1024
- Transport level flow control helps reduce load (number of back to back packets)
- Ethernet is inexpensive, fast and easy to administer!

CS 640

Why did Ethernet Win?

- There are LOTS of LAN protocols
- Price
- Performance
- Availability
- Ease of use
- Scalability

•			
•			
•			
•			
-			
•			
•			
•			
•			