CS 640 Introduction to Computer Networks Lecture 19

Today's lecture

CS 640

- Ethernet bridging
 - The learning bridge
 - Spanning tree algorithm for bridges
 - VLANs (Virtual LANs)
- Auxiliary protocols between layers 2 and 3
 - ARP
 - DHCP

CS 640

Why use Ethernet bridges?

- Larger networks
- More concurrent communication
- Extend Ethernet without changing computers

Collision!!!			
А	В	С	D
		CS 640	

Learning bridges

- Initially forward frames onto all ports
- Learn where hosts are based on **source** address
- · For known addresses only forward to right port
- Multicast/broadcast go to all ports
- Terminology
 - For twisted pair based Ethernet
 - Repeaters are called hubs
 - · Bridges are called switches
 - A segment or collision domain has wires and hubs
 - LAN vs. extended LAN

Solution: eliminate cycles

- On power up Ethernet bridges run a distributed spanning tree algorithm
 - Node with lowest ID is root
 - Spanning tree is the tree of shortest paths to root
 - Break ties based on bridge IDs
- Ports that are not part of the spanning tree are turned off to data traffic
 - All cycles eliminated

CS 640

Spanning tree algorithm details

- Message format: (root, distance, bridgeID)
- Each bridge stores best message for each port
- Each bridge picks port closest to root
- Best message is flooded with distance incremented
- Each segment "elects" a designated bridge
- The root repeats message
- Messages are timed out

CS 640

Ethernet today

- Limits to growth of bridged LANs
 - Traffic due to broadcast/multicast frames still goes to all segments
 - Throughput at root switch becomes bottleneck
 - Can have faster switches towards the middle
- Bonus for switched Ethernet: better security
 - Hosts cannot snoop on others' traffic
 - Today switches have advanced features (VLANs)

Today's lecture

- Ethernet bridging
 - The learning bridge
 - Spanning tree algorithm for bridges
 - VLANs (Virtual LANs)
- Auxiliary protocols between layers 2 and 3
 - ARP
 - DHCP

CS 640

Why restrict reachability?

- Security multiple defenses
 - Sometimes you don't want some computers to communicate with the outside world
- Performance
 - Protect the performance of virtual networks from the effects of the rest of the traffic
 - VLANs cut down on broadcast traffic
- And sharing infrastructure reduces costs!!!

CS 640

VLANs

- Bridges never forward frames from one VLAN to the other
- Each port is assigned to one VLAN
- Some ports assigned to many VLANs
 - Must add VLAN ID to frames

Today's lecture

- Ethernet bridging
 - The learning bridge
 - Spanning tree algorithm for bridges
 - VLANs (Virtual LANs)
- Auxiliary protocols between layers 2 and 3
 - ARP
 - DHCP

CS 640

Address Translation

- To build Ethernet frame carrying IP packet, sender needs to find out Ethernet address of destination
- Cannot encode it in 32 bit IP address
- ARP (Address Resolution Protocol)
 - Table of IP to MAC address bindings
 - Broadcast request if IP address not in table
 - Target machine responds with its MAC address
 - Table entries are discarded if not refreshed

CS 640

ARP Details

- · Request Format
 - HardwareType: type of physical network (e.g., Ethernet)
 - ProtocolType: type of higher layer protocol (e.g., IP)
 - HLEN & PLEN: length of physical and protocol addresses
 - Operation: request or response
 - Source/Target-Physical/Protocol addresses
- · Other details
 - Table entries timeout in about 10 minutes
 - Add entry to table with source of packets you receive
 - If entry exists, update/reset timer
 - Do not refresh table entries upon reference

	_	

ARP Packet Format

0		В 1	6 31
	Hardware type = 1		ProtocolType = 0x0800
	HLen = 48	PLen = 32	Operation
	SourceHardwareAddr (bytes 0 -3)		
İ	SourceHardwareAddr (bytes 4 - 5) SourceProtocolAddr (bytes 0 - 1)		
	SourceProtocolAddr (bytes 2 - 3) TargetHardwareAddr (bytes 0 -		
İ	TargetHardwareAddr (bytes 2 -5)		
ĺ	TargetProtocolAddr (bytes 0 -3)		

CS 640

Today's lecture

- Ethernet bridging
 - The learning bridge
 - Spanning tree algorithm for bridges
 - VLANs (Virtual LANs)
- Auxiliary protocols between layers 2 and 3
 - ARP
 - DHCP

CS 640

Dynamic Configuration

- Computers running IP needs some network configuration information (own address, router's addr.)
- Can store information in per host configuration file
 - Hard to manage
 - Does not help with laptops moving between WLANs
- Dynamic configuration is the primary method for IP address allocation used today
 - IP address management centralized in DHCP server
 - No persistent configuration information stored on computers

Dynamic Host Configuration Protocol

- Server keeps pool of available IPs for use on demand
 - Computers request address when booting
 - IP addresses *leased* (may renew to keep same IP address)
- Administrator may assign permanent IP addresses to given hosts (as identified by Ethernet address)
- DHCP also manages other IP-related configuration
- The protocol relies on broadcast to find DHCP server