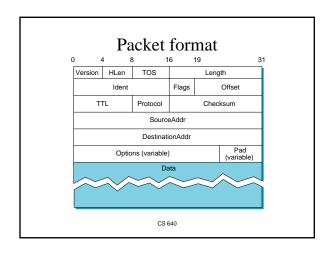
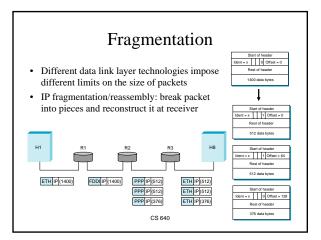
CS 640 Introduction to Computer Networks

Lecture 8

CS 640

Today's lecture


- IPv4
 - Packet format, fragmentation
 - Addressing and forwarding
 - NAT


CS 640

The Internet Protocol

- IP implements best effort end to end datagram delivery service
- All computers in the Internet use IP (version 4)
- Store and forward handling of packets
- Forwarding: routers decide which way to send a packet based on its destination IP address
 - Uses local database of networks called forwarding table
 - Forwarding tables configured statically or built dynamically by routing protocols

-			

Today's lecture

- IPv4
 - Packet format, fragmentation
 - Addressing and forwarding
 - NAT

Forwarding Tables

- Suppose there are *n* possible destinations, how many bits are needed to represent addresses in a forwarding table?
 - $-\log_2 n$
- So, we need to store and search $n * \log_2 n$ bits in forwarding tables?
 - We're smarter than that!

Addressing

- IP Address: 4byte-string that identifies a node
 - usually unique (some exceptions)
 - dotted decimal notation: 128.92.54.32
- Types of addresses
 - unicast: node specific
 - broadcast: all nodes on the network
 - multicast: some subset of nodes on the network

CS 640

Global Addresses

16

Host

Network

- Properties
 - globally unique
 - hierarchical: network + host
- Dotted Decimal Notation A: 0 Network
 - 12.3.218.4
 - 138.96.33.81
 - 195.12.69.77
- · Address classes
 - A, B, C (shown)
- Network respresented as Network Part / Num. Bits
 - E.g. 120.0.0/8 or 128.96.0.0/16

CS 640

Other Addresses

- Private address (RFC 1918):
 - 10.0.0.0 to 10.255.255.255 (10.0.0.0/8)
 - 172.16.0.0 to 172.16.255.255 (172.16.0.0/12)
 - 192.168.0.0 to 192.168.255.255 (192.168.0.0/16)
- Class D: multicast addresses: 224.0.0.0 to 224.255.255.255

1 1 1 0

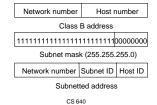
- Host part all 1's: broadcast in local network
- Host part all 0's: unspecified (not allowed)

Forwarding Network 1: 12/8 128.20.0.8 | 128.20.0.8 | 128.20.0.1 | 1

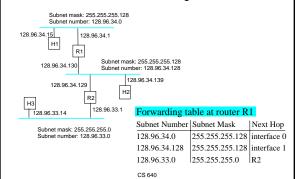
Datagram Forwarding

CS 640

- Strategy
 - every datagram contains destination's address
 - if directly connected to dest. network, forward to host
 - if not directly connected to destination network, then forward to some router
 - forwarding table maps network number to next hop
 - each router has forwarding table
 - each host has a default router


•	Example	Network	Next Hop
	for router R2	1	R3
	in previous figure	2	R1
		3	interface 0
		4	interface 1
		default	R3
	(CS 640	

Subnetting and Supernetting


- Fixed network sizes are wasteful
 - What happens if a site asks for 300 IP addresses?
 - Subnetting
- Too many entries at a router can be combined
 - Keep routing tables small
 - Supernetting
- Classless Inter-Domain Routing (CIDR)

Subnetting

- Add another level to address/routing hierarchy: subnet
- Subnet masks define variable partition of host part
- · Subnets visible only within site

Subnet Example

Forwarding Algorithm

D = destination IP address
for each entry(SubnetNum, SubnetMask, NextHop)
D1 = SubnetMask & D
if D1 = SubnetNum
 if NextHop is an interface
 deliver datagram directly to D
 else
 deliver datagram to NextHop

- Use a default router if nothing matches
- Can put multiple subnets on one physical network
- Subnets not visible from the rest of the Internet

Supernetting

- Assign block of contiguous network numbers to nearby networks
- Restrict block sizes to powers of 2
- Use a bit mask to identify block size
- CIDR: Classless Inter Domain Routing
 - Routers work with prefixes (subnets and supernets)
- · All routers must understand CIDR addressing

CS 640

Forwarding Table Lookup

- What if more than one prefix matches?
- Longest prefix match
 - Each entry in the forwarding table is:
 - < Network Number / Num. Bits> | interface id Suppose we have:

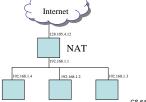
192.20.0.0/16 | i0 192.20.12.0/24 | i1

And destination address is: 192.20.12.7, choose i1

CS 640

Today's lecture

- IPv4
 - Packet format, fragmentation
 - Addressing and forwarding
 - NAT


Network Address Translation

- Multiple clients access network through NAT box using single IP address
- Advantages:
 - Fewer IP addresses used (clients have private RFC 1918 addresses)
 - Outside hosts cannot connect to NATed clients
- Disadvantages:
 - Breaks end to end reachability
 - Outside hosts cannot connect to NATed clients
- Works by rewriting IP, TCP, and UDP headers

CS 640

Network Address Translation

- Rewrites <hostaddr, port> to <extaddr, port> and back
- Source address, port of outgoing packet changed
- · Destination address, port of incoming packet changed

NAT box maintains table with translations

Internal	External		
192.168.1.4, 1336	128.105.4.12, 1330		
192.168.1.3, 1455	128.105.4.12, 1331		
192.168.1.2, 1336	128.105.4.12, 1332		
192.168.1.2, 1771	128.105.4.12, 1333		