CS 640 Introduction to Computer Networks

Lecture 21

CS 640

Today's lecture

- IPv6
- Source routing
- Connection oriented networks
 - -ATM

CS 640

IP version 6

- Proposed successor of IPv4
- Uses 128 bit addresses

3	m	n	0	р ′	125- m- n- o- p
010	RegistryID	ProviderID	SubscriberID	SubnetID	InterfaceID

- IP address includes 48 bit MAC address
- Renumbering still necessary when network moves to different provider
- Simplifies header to allow more efficient packet processing at routers

CS 640

Today's lecture

- IPv6
- Source routing
- Connection oriented networks
 - ATM

CS 640

Source routing

- Source puts in each packet all routers on the path to destination
 - Much control for source
 - Source needs to know topology
 - Forwarding is simple
- Loose source routing
 - Only specify some routers the packet has to go through
- Part of IP protocol
 - Implemented with options
 - Usually turned off at routers easily misused

CS 640

Forwarding architectures

- Datagram
 - Based on globally unique destination address
 - · Longest prefix match
- Source routing
 - Source specifies full path in each packet
- · Virtual circuits
 - Based on locally unique (link local) virtual circuit identifier
 - Exact match

CS 640

Sharing in data networks

Network	Internet	Phone network	
Network service	IP datagrams	Calls	
Multiplexing ex.	Statistical multiplexing	TDM	
Good for voice	Yes	Yes	
Good for data	Yes	No	
Forwarding	Complex	Simple	

CS 640

Control plane versus data plane

- · Datagram model
 - Data plane forwarding
 - Control plane routing
- Virtual circuits
 - Data plane switching
 - Control plane circuit setup (and teardown)
- Control and data plane present in higher layers also (e.g. TCP)

Data	Control	
plane	plane	

Data link layer

Physical layer

CS 640

3

•		
•		
•		
•		
•		
•		

Virtual circuit forwarding

- Very simple (in hardware)
- Virtual circuit identifier smaller than globally unique endhost addresses
- If any switch on the path fails, circuit is gone
 - Can "reboot" control plane only
- Easier to provide *quality of* service (QoS)

Forwarding table for switch 1

Incomi	ng	Outgoing		
Interface	VCI	Interface	VCI	
2	5	1	19	

CS 640

ATM (Asynchronous Transfer Mode)

- Technology used since late 80s for telephony
 - Used for data (layer 2 for IP backbones)
- Uses small fixed size "cells" 48 bytes of payload
- Identifier divided into two:
 - Virtual path identifier (a path bundles many circuits)
 - Virtual circuit identifier
 - Some switches only look at VPI
- Segmentation and reassembly done at ends of VCI
- ATM switches were faster and cheaper than IP routers

CS 640