CS 640 Introduction to Computer Networks

Lecture 23
Based on slides by Tim Griffin

CS 640

Today's lecture

- Inter-domain routing
 - Architecture and relationships between networks
 - -BGP
 - Introduction
 - Implementing peering relationships
 - Backups and multihoming
 - Hot potato/cold potato

CS 640

Internet Structure

Today

Autonomous Systems (ASes)

... the administration of an AS appears to other ASes to have a single coherent interior routing plan and presents a consistent picture of what networks are reachable through it. RFC 1930: Guidelines for creation, selection, and registration of an Autonomous System

CS 640

How Are Forwarding Tables Populated to implement Routing?

Statically

Dynamically

Administrator manually configures forwarding table entries

- + More control + Not restricted to
- destination-based forwarding
- Doesn't scale
- Slow to adapt to network failures

Routers exchange network reachability information using ROUTING PROTOCOLS. Routers use this to compute best routes

- + Can rapidly adapt to changes in network topology
 + Can be made to scale well
- Complex distributed algorithms
- Consume CPU, Bandwidth, Memory
- Debugging can be difficultCurrent protocols are destination-based

In practice: a mix of these. Static routing mostly at the "edge"

Architecture of Dynamic Routing **BGP** Metric based: OSPF, IS-IS, RIP, EIGRP (cisco) Policy based: BGP The Routing Domain of BGP is the entire Internet

2

Peering Wars

Peer

- · Reduces upstream transit costs
- Can increase end-to-end performance
- May be the only way to connect your customers to some part of the Internet ("Tier 1")

Don't Peer

- · You would rather have customers
- Peers are usually your competition
- Peering relationships may require periodic renegotiation

Peering struggles are by far the most contentious issues in the ISP world!

Peering agreements are often confidential

Today's lecture

- Inter-domain routing
 - Architecture and relationships between networks
 - BGP
 - Introduction
 - Implementing peering relationships
 - Backups and multihoming
 - Hot potato/cold potato

CS 640

BGP-4

- $\mathbf{BGP} = \mathbf{\underline{B}}$ order $\mathbf{\underline{G}}$ ateway $\mathbf{\underline{P}}$ rotocol
- Aims to ensure reachability between ASes
 - "Doesn't know" about internals of ASes
 - Not based on "shortest distance"
 - Based on business relationships
- It is a *path vector* protocol (trivial to avoid loops)
 - Advertisements carry all ASes on the path to originator
- Relatively simple protocol but
 - Configuration is complex (captures business relationships)
 - The entire world can be impacted by your mistakes

٠		

Today's lecture

- Inter-domain routing
 - Architecture and relationships between networks
 - BGP
 - Introduction
 - Implementing peering relationships
 - · Backups and multihoming
 - Hot potato/cold potato

CS 640

Implementing Customer/Provider and Peer/Peer relationships

- Enforce transit relationships
 - Outbound route filtering
- Enforce order of route preference
 - $-\ provider < peer < customer$

_				
_				
_				
_				
_				
_				
_				

Today's lecture

- Inter-domain routing
 - Architecture and relationships between networks
 - BGP
 - Introduction
 - Implementing peering relationships
 - Backups and multihoming
 - Hot potato/cold potato

Today's lecture

- Inter-domain routing
 - Architecture and relationships between networks
 - BGP
 - Introduction
 - Implementing peering relationships
 - Backups and multihoming
 - · Hot potato/cold potato

