
1

CS 640

CS 640 Introduction to Computer
Networks

Lecture25

CS 640

Today’s lecture

• Transport layer
– UDP
– TCP (except congestion control)

CS 640

Layering and Encapsulation Revisited
• Each layer relies on layers below to provide services in

black box fashion
– Layering makes complex systems easier to understand & specify
– Makes implementation more flexible
– Can make implementation bigger and less efficient
– Layers are implemented by protocols – rules for communication

• Data from applications moves up and down protocol stack
– Application level data is chopped into packets (segments)
– Encapsulation deals with attaching headers at layers 2, 3, 4

2

CS 640

End-to-End Protocols
• Underlying network is best-effort so it can:

– drop messages
– re-orders messages
– delivers duplicate copies of a given message
– deliver messages after an arbitrarily long delay

• Common end-to-end services do:
– guarantee message delivery
– deliver messages in the same order they are sent
– deliver at most one copy of each message
– support synchronization
– allow the receiver to flow control the sender
– support multiple application processes on each host

CS 640

Basic function of transport layer
• How can processes on different systems get the right

messages?
• Ports are numeric locators which enable messages to be

demultiplexed to proper process.
– Ports are addresses on individual hosts, not across the Internet

• Ports are established using well-know values first
– Port 80 = http, port 53 = DNS

• Ports are typically implemented as message queues
• Simplest function of the transport layer is multiplexing/

demultiplexing of messages

CS 640

Other transport layer functions
• Connection control

– Setting up and tearing down communication between processes

• Error detection within packets
– Checksums

• Reliable, in order delivery of packets
– Acknowledgement schemes

• Flow control
– Matching sending and receiving rates between end hosts

• Congestion control
– Managing congestion in the network

3

CS 640

Today’s lecture

• Transport layer
– UDP
– TCP (except congestion control)

CS 640

User Datagram Protocol (UDP)
• Unreliable and unordered datagram service
• Adds multiplexing/demultiplexing
• Adds reliability through optional checksum
• No flow or congestion control
• Endpoints identified by ports

– servers have well-known ports
– see /etc/services on Unix

• Header format

• Optional checksum
– Computed over pseudo header + UDP header + data

SrcPort DstPort

Checksum Length

Data

0 16 31

CS 640

UDP Checksums
• Optional in current Internet
• Covers payload + pseudoheader
• Pseudoheader consists of 3 fields from IP

header: protocol number (TCP or UDP), IP src,
IP dst and UDP length field
– Pseudoheader enables verification that message was

delivered between correct source and destination.
– IP dest address was changed during delivery,

checksum would reflect this
• UDP uses the same checksum algorithm as IP

4

CS 640

UDP in practice
• Minimal requirements make UDP very flexible

– Any end-to-end protocol can be implemented
• Remote Procedure Calls (RPC)
• TCP can be implemented using UDP

• Examples
– Most commonly used in multimedia applications

• These are frequently more robust to loss

– RPCs
– Many others…

CS 640

Today’s lecture

• Transport layer
– UDP
– TCP (except congestion control)

CS 640

TCP Overview

• TCP is the most widely used transport protocol
– Web, Peer-to-peer, FTP, telnet, …
– A focus of intense study for many years

• A two way, reliable, byte stream oriented end-to-
end protocol

• Closely tied to the Internet Protocol (IP)
• Our goal is to understand the RENO version of

TCP (most widely used TCP today)
– mainly specifies mechanisms for dealing with

congestion

5

CS 640

TCP Features
• Connection-oriented
• Byte-stream

– app writes bytes
– TCP sends segments
– app reads bytes

• Reliable data transfer
Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

• Full duplex
• Flow control: keep sender

from overrunning receiver
• Congestion control: keep

sender from overrunning
network

CS 640

Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

CS 640

Segment Format (cont)
• Each connection identified with 4-tuple:

– (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

• Sliding window + flow control
– Ack., SequenceNum, AdvertisedWindow

• Flags
– SYN, FIN, RESET, PUSH, URG, ACK

• Checksum is the same as UDP
– pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

6

CS 640

Sequence Numbers
• 32 bit sequence numbers

– Wrap around supported
• TCP breaks byte stream from application into

packets (limited by Max. Segment Size)
• Each byte in the data stream is considered
• Each packet has a sequence number

– Initial number selected at connection time
– Subsequent numbers give first data byte in packet

• ACKs indicate next byte expected

CS 640

Sequence Number Wrap Around

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours
Ethernet (10 Mbps) 57 minutes
T3 (45 Mbps) 13 minutes
FDDI (100 Mbps) 6 minutes
STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) 55 seconds
STS-24 (1.2 Gbps) 28 seconds

• Protect against this by adding a 32-bit timestamp to TCP header

CS 640

Connection Establishment

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

7

CS 640

Connection Termination
Active participant

(server)
Passive participant

(client)
FIN, SequenceNum = x

Acknowledgment = y + 1

Acknowledgment = x + 1

FIN, SequenceNum= y

CS 640

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

CS 640

Reliability in TCP
• Checksum used to detect bit level errors
• Sequence numbers help detect sequencing errors

– Duplicates are ignored
– Out of order packets are reordered (or dropped)
– Lost packets are retransmitted

• Timeouts used to detect lost packets
– Requires RTO calculation
– Requires sender to maintain data until it is ACKed

8

CS 640

Sliding Window Revisited

• Sending side
– LastByteAcked < =
LastByteSent

– LastByteSent < =
LastByteWritten

– buffer bytes between
LastByteAcked and
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

• Receiving side
– LastByteRead <
NextByteExpected

– NextByteExpected <
= LastByteRcvd +1

– buffer bytes between
NextByteRead and
LastByteRcvd

CS 640

Flow Control in TCP
• Send buffer size: MaxSendBuffer
• Receive buffer size: MaxRcvBuffer
• Receiving side

– LastByteRcvd - LastByteRead < = MaxRcvBuffer
– AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -1

- LastByteRead)
• Sending side

– LastByteWritten - LastByteAcked < = MaxSendBuffer
– block sender if (LastByteWritten - LastByteAcked) + y >
MaxSenderBuffer

– LastByteSent - LastByteAcked < = AdvertisedWindow
– EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)

• Always send ACK in response to arriving data segment
• Persist sending one byte seg. when AdvertisedWindow = 0

CS 640

Keeping the Pipe Full
• 16-bit AdvertisedWindow controls amount of pipelining
• Assume RTT of 100ms
• Add scaling factor extension to header to enable larger windows

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
OC-3 (155 Mbps) 1.8MB
OC-12 (622 Mbps) 7.4MB
OC-24 (1.2 Gbps) 14.8MB

9

CS 640

Making TCP More Efficient
• Delayed acknowledgements

– Try to piggyback ACKs with data
– Try not to send small packets, sender sends only

when it has enough data to fill MSS
• See Nagle’s algorithm

• Acknowledge every other packet
– Many instances in transmission sequence which

require an ACK

CS 640

Basic RTT estimation

• Using exponentially weighted moving average
– EstRTT=EstRTT+ (1-α)·(SampleRTT-EstRTT)

– α set to between 0.8 and 0.9
• Retransmission timeout set conservatively

– RTO=2 · EstRTT

CS 640

Karn/Partridge Algorithm for RTO

• Degenerate cases with for RTT measurements
– Solution: Do not sample RTT when retransmitting

• After each retransmission, set next RTO to be double
the value of the last
– Exponential backoff is well known control theory method
– Loss is most likely caused by congestion so be careful

Sender Receiver

Original transmission

ACKS
am

pl
eR

TT Retransmission

Sender Receiver

Original transmission

ACK

S
am

pl
eR

TT

Retransmission

10

CS 640

Jacobson/ Karels Algorithm
• In late ’80s, Internet was suffering from congestion collapse
• New Calculations for average RTT – Jacobson ’88
• Variance is not considered when setting timeout value

– If variance is small, we could set RTO = EstRTT
– If variance is large, we may need to set RTO > 2 x EstRTT

• New algorithm calculates both variance and mean for RTT
• Diff = sampleRTT - EstRTT
• EstRTT = EstRTT + δ x Diff
• Dev = Dev + δ (|Diff| - Dev)

– Initially settings for EstRTT and Dev given
– δ is a factor between 0 and 1 (typical value is 0.125)

CS 640

Jacobson/ Karels contd.
• TimeOut = µ x EstRTT + φ x Dev

– where µ = 1 and φ = 4
• When variance is small, TimeOut is close to EstRTT
• When variance is large Dev dominates the calculation
• Another benefit of this mechanism is that it is very efficient

to implement in code (does not require floating point)
• Notes

– algorithm only as good as granularity of clock (500ms on Unix)
– accurate timeout mechanism important to congestion control (later)

• These issues have been studied and dealt with in new RFC’s
for RTO calculation.

• TCP RENO uses Jacobson/Karels

