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Today’s lecture

• Transport layer
– UDP
– TCP (except congestion control)
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Layering and Encapsulation Revisited
• Each layer relies on layers below to provide services in 

black box fashion
– Layering makes complex systems easier to understand & specify
– Makes implementation more flexible
– Can make implementation bigger and less efficient
– Layers are implemented by protocols – rules for communication

• Data from applications moves up and down protocol stack
– Application level data is chopped into packets (segments)
– Encapsulation deals with attaching headers at layers 2, 3, 4
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End-to-End Protocols
• Underlying network is best-effort so it can:

– drop messages
– re-orders messages
– delivers duplicate copies of a given message
– deliver messages after an arbitrarily long delay

• Common end-to-end services do:
– guarantee message delivery
– deliver messages in the same order they are sent
– deliver at most one copy of each message
– support synchronization
– allow the receiver to flow control the sender
– support multiple application processes on each host
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Basic function of transport layer
• How can processes on different systems get the right 

messages?
• Ports are numeric locators which enable messages to be 

demultiplexed to proper process.
– Ports are addresses on individual hosts, not across the Internet

• Ports are established using well-know values first
– Port 80 = http, port 53 = DNS

• Ports are typically implemented as message queues
• Simplest function of the transport layer is  multiplexing/ 

demultiplexing of messages
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Other transport layer functions
• Connection control

– Setting up and tearing down communication between processes

• Error detection within packets
– Checksums

• Reliable, in order delivery of packets
– Acknowledgement schemes

• Flow control
– Matching sending and receiving rates between end hosts

• Congestion control
– Managing congestion in the network
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Today’s lecture

• Transport layer
– UDP
– TCP (except congestion control)
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User Datagram Protocol (UDP)
• Unreliable and unordered datagram service
• Adds multiplexing/demultiplexing
• Adds reliability through optional checksum
• No flow or congestion control
• Endpoints identified by ports

– servers have well-known ports
– see /etc/services on Unix

• Header format

• Optional checksum
– Computed over pseudo header + UDP header + data

SrcPort DstPort

Checksum Length

Data

0 16 31
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UDP Checksums
• Optional in current Internet
• Covers payload + pseudoheader
• Pseudoheader consists of 3 fields from IP 

header:  protocol number (TCP or UDP), IP src, 
IP dst and UDP length field
– Pseudoheader enables verification that message was 

delivered between correct source and destination.
– IP dest address was changed during delivery, 

checksum would reflect this
• UDP uses the same checksum algorithm as IP
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UDP in practice
• Minimal requirements make UDP very flexible

– Any end-to-end protocol can be implemented
• Remote Procedure Calls (RPC)
• TCP can be implemented using UDP

• Examples
– Most commonly used in multimedia applications

• These are frequently more robust to loss

– RPCs
– Many others…

CS 640

Today’s lecture

• Transport layer
– UDP
– TCP (except congestion control)
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TCP Overview

• TCP is the most widely used transport protocol
– Web, Peer-to-peer, FTP, telnet, …
– A focus of intense study for many years

• A two way, reliable, byte stream oriented end-to-
end protocol

• Closely tied to the Internet Protocol (IP)
• Our goal is to understand the RENO version of 

TCP (most widely used TCP today)
– mainly specifies mechanisms for dealing with 

congestion 
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TCP Features
• Connection-oriented
• Byte-stream

– app writes bytes
– TCP sends segments
– app reads bytes

• Reliable data transfer
Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

• Full duplex
• Flow control: keep sender 

from overrunning receiver
• Congestion control: keep 

sender from overrunning 
network
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Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31
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Segment Format (cont)
• Each connection identified with 4-tuple:

– (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

• Sliding window + flow control
– Ack., SequenceNum, AdvertisedWindow

• Flags
– SYN, FIN, RESET, PUSH, URG, ACK

• Checksum is the same as UDP
– pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver
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Sequence Numbers
• 32 bit sequence numbers

– Wrap around supported
• TCP breaks byte stream from application into 

packets (limited by Max. Segment Size)
• Each byte in the data stream is considered
• Each packet has a sequence number

– Initial number selected at connection time
– Subsequent numbers give first data byte in packet

• ACKs indicate next byte expected
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Sequence Number Wrap Around

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours
Ethernet (10 Mbps) 57 minutes
T3 (45 Mbps) 13 minutes
FDDI (100 Mbps) 6 minutes
STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) 55 seconds
STS-24 (1.2 Gbps) 28 seconds

• Protect against this by adding a 32-bit timestamp to TCP header
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Connection Establishment

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1
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Connection Termination
Active participant

(server)
Passive participant

(client)
FIN, SequenceNum = x

Acknowledgment = y + 1

Acknowledgment = x + 1

FIN, SequenceNum= y
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State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open   Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK Timeout after two 
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN
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Reliability in TCP
• Checksum used to detect bit level errors
• Sequence numbers help detect sequencing errors

– Duplicates are ignored
– Out of order packets are reordered (or dropped)
– Lost packets are retransmitted

• Timeouts used to detect lost packets
– Requires RTO calculation
– Requires sender to maintain data until it is ACKed
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Sliding Window Revisited

• Sending side
– LastByteAcked < =
LastByteSent

– LastByteSent < =
LastByteWritten

– buffer bytes between 
LastByteAcked and 
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

• Receiving side
– LastByteRead < 
NextByteExpected

– NextByteExpected < 
= LastByteRcvd +1

– buffer bytes between 
NextByteRead and 
LastByteRcvd
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Flow Control in TCP
• Send buffer size: MaxSendBuffer
• Receive buffer size: MaxRcvBuffer
• Receiving side

– LastByteRcvd - LastByteRead < = MaxRcvBuffer
– AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -1 

- LastByteRead)
• Sending side

– LastByteWritten - LastByteAcked < = MaxSendBuffer
– block sender if (LastByteWritten - LastByteAcked) + y > 
MaxSenderBuffer

– LastByteSent - LastByteAcked < = AdvertisedWindow
– EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)

• Always send ACK in response to arriving data segment
• Persist sending one byte seg. when AdvertisedWindow = 0

CS 640

Keeping the Pipe Full
• 16-bit AdvertisedWindow controls amount of pipelining
• Assume RTT of 100ms
• Add scaling factor extension to header to enable larger windows

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
OC-3 (155 Mbps) 1.8MB
OC-12 (622 Mbps) 7.4MB
OC-24 (1.2 Gbps) 14.8MB
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Making TCP More Efficient
• Delayed acknowledgements

– Try to piggyback ACKs with data
– Try not to send small packets, sender sends only 

when it has enough data to fill MSS
• See Nagle’s algorithm

• Acknowledge every other packet
– Many instances in transmission sequence which 

require an ACK
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Basic RTT estimation

• Using exponentially weighted moving average
– EstRTT=EstRTT+ (1-α)·(SampleRTT-EstRTT)

– α set to between 0.8 and 0.9
• Retransmission timeout set conservatively

– RTO=2 · EstRTT
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Karn/Partridge Algorithm for RTO

• Degenerate cases with for RTT measurements
– Solution:  Do not sample RTT when retransmitting 

• After each retransmission, set next RTO to be double 
the value of the last 
– Exponential backoff is well known control theory method 
– Loss is most likely caused by congestion so be careful

Sender Receiver

Original transmission

ACKS
am

pl
eR

TT Retransmission

Sender Receiver

Original transmission

ACK

S
am

pl
eR

TT

Retransmission
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Jacobson/ Karels Algorithm
• In late ’80s, Internet was suffering from congestion collapse
• New Calculations for average RTT – Jacobson ’88
• Variance is not considered when setting timeout value

– If variance is small, we could set RTO = EstRTT
– If variance is large, we may need to set RTO > 2 x EstRTT

• New algorithm calculates both variance and mean for RTT
• Diff = sampleRTT - EstRTT
• EstRTT = EstRTT + δ x Diff
• Dev = Dev + δ ( |Diff| - Dev)

– Initially settings for EstRTT and Dev given 
– δ is a factor between 0 and 1 (typical value is 0.125)
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Jacobson/ Karels contd.
• TimeOut = µ x EstRTT + φ x Dev

– where µ = 1 and φ = 4
• When variance is small, TimeOut is close to EstRTT
• When variance is large Dev dominates the calculation
• Another benefit of this mechanism is that it is very efficient 

to implement in code (does not require floating point)
• Notes

– algorithm only as good as granularity of clock (500ms on Unix)
– accurate timeout mechanism important to congestion control (later)

• These issues have been studied and dealt with in new RFC’s
for RTO calculation.

• TCP RENO uses Jacobson/Karels


