CS 640 Introduction to Computer Networks

Lecture29

CS 640

Network security (continued)

- Network perimeter defenses
 - Firewalls
 - Network intrusion detection/prevention
- Denial of service attacks

CS 640

Firewalls - overview

- Firewalls restrict communication between an organization's computers and the outside world
 - Keep the bad guys on the outside from exploiting vulnerabilities on the inside
 - Without restricting legitimate traffic
- NAT boxes implement a popular firewall policy
 - Allow internal clients to connect to outside servers
 - Do not allow inbound connections
- Two types of firewalls
 - Filter based (layer 4)
 - Proxy based (application layer)

Defense in depth

- · Separate large network into smaller networks
 - Different parts of the organization have different protection needs / exposure / tolerance to lost functionality
 E.g. laptops bring in trojans/viruses they catch while on the road
 - Different departments run different software packages with different vulnerabilities
 - Users in different departments need access to different servers / data sources
- Use multiple layers of firewalls (and other defenses)
 Attacker must bypass multiple defenses

CS 640

Firewalls

- Filter Beed Solution
 - Apply a set of rules to packets (based on headers)
 - Example of rules

 action
 ourhost
 port
 theirhost
 port
 comment

 block
 *
 *
 BLASTER
 *
 We don't trust this system

 allow
 OUR_GW
 25
 *
 *
 Connects to our SMTP srvr

- Default: forward or not forward?
- Filtering on TCP flags can block connection from outside
 How dynamic?
- Access control rules (ACLs) also available in highest speed routers (but used differently)

Intrusion detection/prevention systems

- Main role: inspect packet payloads to detect attacks (e.g. buffer overflow) based on attack signatures
 - When match found, IDS logs alert, IPS drops packet
 - Thousands of signatures catch thousands of attacks against hundreds of applications for dozens of protocols
 Needs defragmentation, stream reassembly, some L7 parsing
 - Legitimate traffic largely unaffected
 - IPS transparent to protocol endpoints
- Other roles: detect/block scans and various anomalies

CS 640

Many IPSes out there

- Snort most widely used, open source, developed by Sourcefire (makes money by selling GUI & services)
- Cisco IPS (formerly NetRanger)
 IPS/IDS functionality present in many Cisco devices
- TippingPoint (now 3Com)

Signature with simplified Snort syntax describing fictitious vulnerability	alert tcp \$EXT NET any -> \$HOME NET 99 (msg:*AudioPlayer jukebox exploit"; content:"mn="; pcre:"/(msjlogg)/Ri"; content:"player="; pcre:*/.exel.com/"; distance:5; sid:5678)
---	--

Network security (continued)

- Network perimeter defenses
 - Firewalls
 - Network intrusion detection/prevention
- Denial of service attacks

CS 640

Denial of Service (DoS) Attacks

• A general form of attacking inter networked systems

- Based on overloading end systems (or network)
- Result is sever reduction in performance or complete shutdown of target systems
- Focus of attack can be links, routers (CPU) or end hosts
- Flooding attacks pretty common nowadays
- Other most general form of attack is a break in
 - Port scans
 - Buffer overflows
 - Password cracking...

CS 640

Overloading a System

- The goal of DoS is to drown legitimate traffic in a sea of garbage traffic
 - Clients experience delays due to congestion
 - Dropped packets lead to exponential backoff in timeouts – Routers can become overloaded
- Servers become overloaded by increased number of connect requests
 - TCP connection setup requires state on server
 - Server is required to respond to SYN from clients
 - Clients don't respond to server's response

IP Spoofing

• Insert a different source IP address in TCP and IP headers

- DoS attackers spoof for two reasons
 - · They don't want to be discovered · Spoofing can add additional load
- If attacker spoofs a legitimate IP address
 - Reset can be triggered by either attacked host or actual IP host · Frees resources immediately on server - Carefully chosen sequence #s block new connections from host
- · Attackers spoof with random IP addresses

 - Server response to client SYN will be lost
 - Server will not free resources for 75 seconds (typically)
 - SYN cookies on allow server kernel not to keep state

CS 640

Key Elements of DoS Attack

- Expansion in required work
 - Easy for me, harder for you
 - Expansion in IP spoofing
 - Me: generate SYNs as fast as possible (microseconds)
 - You: Timeout a SYN open every 75 seconds
- Best effort protocols
 - Drop tail queues
 - No source specificity
 - Clients can be starved or slowed to crawl

CS 640

DoS Attack Characteristics

- Expansion makes a only a few systems necessary
 - DDoS: attack from as many places as possible
 - · Enables better utilization of network resources
 - · Helps to prevent countermeasures
 - · Helps to obscure attackers
- DoS software readily available
- Most found in IRC chat rooms
- DoS attacks frequently preceded by break-ins to install DoS software onto "zombies"
 - Enables even more anonymity for attacker CS 640

Things making DoS Attacks easy

- Lots of systems
- Large networks
- Naïve users with high speed Internet access
- Savvy bad guys
- Lots of free DoS software
- · Poor operating and management policies
- Hugely complex software (on endhosts) with lots of well publicized holes
- Lack of means for stopping attacks

CS 640

Dealing with DoS Attacks

- Don't reserve state until receipt of client ACK
 - DOS attackers using spoofing don't send theseOtherwise they would have to keep state
 - Use of crypto to avoid saving state
 - Send one-use key with server response to SYN
 - Response ACK must return key
- IP traceback methods were popular research topic
- Use intrusion detection/prevention tools
 - Traffic to victim redirected through "traffic scrubbing" centers
 - There are lots of companies in this space!

CS 640

Example of (D)DoS

- Code Red Worm
 - Released and identified on July 19, 2001
 Infected over 250k systems in 9 hours
 - Takes advantage of hole in IIS on Win NT or Win 2k
 And the fact that most people don't know IIS ON is default
 - Infected systems are completely compromised
 - Code Red installs itself in OS kernel
 - Small and efficient
 - · V1 could be eliminated by reboot
 - Spends half its time trying to infect other systems, and half its time DoS'ing the White House and Pentagon