Network security (continued)

- Network perimeter defenses
 - Firewalls
 - Network intrusion detection/prevention
- Denial of service attacks

Firewalls – overview

- Firewalls restrict communication between an organization’s computers and the outside world
 - Keep the bad guys on the outside from exploiting vulnerabilities on the inside
 - Without restricting legitimate traffic
- NAT boxes implement a popular firewall policy
 - Allow internal clients to connect to outside servers
 - Do not allow inbound connections
- Two types of firewalls
 - Filter based (layer 4)
 - Proxy based (application layer)
Defense in depth

- Separate large network into smaller networks
 - Different parts of the organization have different protection needs / exposure / tolerance to lost functionality
 - E.g. laptops bring in trojans/viruses they catch while on the road
 - Different departments run different software packages with different vulnerabilities
 - Users in different departments need access to different servers / data sources
- Use multiple layers of firewalls (and other defenses)
 - Attacker must bypass multiple defenses

Firewalls

- Filtered Solution
 - Apply a set of rules to packets (based on headers)
 - Example of rules
action	source	dest	source port	dest port	comment
allow	OURG W	BLASTER	25	2	We don’t want this account.
- Default: forward or not forward?
- Filtering on TCP flags can block connection from outside
- How dynamic?
- Access control rules (ACLs) also available in highest speed routers (but used differently)
Proxy-Based Firewalls

- Problem: complex policy
- Example: web server
- Solution: proxy
- Design: transparent vs. classical
- Limitations: attacks from within

Intrusion detection/prevention systems

- Main role: inspect packet payloads to detect attacks (e.g. buffer overflow) based on attack signatures
 - When match found, IDS logs alert, IPS drops packet
 - Thousands of signatures catch thousands of attacks against hundreds of applications for dozens of protocols
 - Needs defragmentation, stream reassembly, some L7 parsing
 - Legitimate traffic largely unaffected
 - IPS transparent to protocol endpoints
- Other roles: detect/block scans and various anomalies

Many IPSes out there

- Snort – most widely used, open source, developed by Sourcefire (makes money by selling GUI & services)
- Cisco IPS (formerly NetRanger)
 - IPS/IDS functionality present in many Cisco devices
- TippingPoint (now 3Com)

Signature with simplified Snort syntax describing fictitious vulnerability
Network security (continued)

- Network perimeter defenses
 - Firewalls
 - Network intrusion detection/prevention
- Denial of service attacks

Denial of Service (DoS) Attacks

- A general form of attacking inter-networked systems
 - Based on overloading end systems (or network)
 - Result is severe reduction in performance or complete shutdown of target systems
- Focus of attack can be links, routers (CPU) or end hosts
- Flooding attacks pretty common nowadays
- Other most general form of attack is a break in
 - Port scans
 - Buffer overflows
 - Password cracking…

Overloading a System

- The goal of DoS is to drown legitimate traffic in a sea of garbage traffic
 - Clients experience delays due to congestion
 - Dropped packets lead to exponential backoff in timeouts
 - Routers can become overloaded
- Servers become overloaded by increased number of connect requests
 - TCP connection setup requires state on server
 - Server is required to respond to SYN from clients
 - Clients don’t respond to server’s response
IP Spoofing
- Insert a different source IP address in TCP and IP headers
 - DoS attackers spoof for two reasons
 - They don’t want to be discovered
 - Spoofing can add additional load
- If attacker spoofs a legitimate IP address
 - Reset can be triggered by either attacked host or actual IP host
 - Frees resources immediately on server
 - Carefully chosen sequence #s block new connections from host
- Attackers spoof with random IP addresses
 - Server response to client SYN will be lost
 - Server will not free resources for 75 seconds (typically)
 - SYN cookies on allow server kernel not to keep state

Key Elements of DoS Attack
- Expansion in required work
 - Easy for me, harder for you
 - Expansion in IP spoofing
 - Me: generate SYNs as fast as possible (microseconds)
 - You: Timeout a SYN open every 75 seconds
- Best effort protocols
 - Drop tail queues
 - No source specificity
 - Clients can be starved or slowed to crawl

DoS Attack Characteristics
- Expansion makes a only a few systems necessary
 - DDoS: attack from as many places as possible
 - Enables better utilization of network resources
 - Helps to prevent countermeasures
 - Helps to obscure attackers
- DoS software readily available
 - Most found in IRC chat rooms
- DoS attacks frequently preceded by break-ins to install DoS software onto “zombies”
 - Enables even more anonymity for attacker
Things making DoS Attacks easy

• Lots of systems
• Large networks
• Naïve users with high speed Internet access
• Savvy bad guys
• Lots of free DoS software
• Poor operating and management policies
• Hugely complex software (on endhosts) with lots of well publicized holes
• Lack of means for stopping attacks

Dealing with DoS Attacks

• Don’t reserve state until receipt of client ACK
 – DOS attackers using spoofing don’t send these
 • Otherwise they would have to keep state
 – Use of crypto to avoid saving state
 • Send one-use key with server response to SYN
 • Response ACK must return key
• IP traceback methods were popular research topic
• Use intrusion detection/prevention tools
 – Traffic to victim redirected through “traffic scrubbing” centers
 – There are lots of companies in this space!

Example of (D)DoS

• Code Red Worm
 – Released and identified on July 19, 2001
 • Infected over 250k systems in 9 hours
 – Takes advantage of hole in IIS on Win NT or Win 2k
 • And the fact that most people don’t know IIS ON is default
 – Infected systems are completely compromised
 – Code Red installs itself in OS kernel
 • Small and efficient
 • V1 could be eliminated by reboot
 – Spends half its time trying to infect other systems, and half its time DoS’ing the White House and Pentagon