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CS 640 Introduction to Computer 
Networks

Lecture30
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Today’s lecture

• Peer to peer applications
– Napster
– Gnutella
– KaZaA
– Chord

CS 640

What is P2P?

• Significant autonomy from central servers
• Exploits resources at the edges of Internet

– Bandwidth
– Storage
– Processing

• Resources at edge have intermittent connectivity
• Dynamic joins and leaves
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Applications

• P2P file sharing
– Napster, Gnutella,  KaZaA, etc.

• Storage and lookup
– Chord, CAN, etc.

• P2P communication
– Instant messaging

• P2P computation
– seti@home

CS 640

P2P file sharing software

• Allows Alice to open up 
a directory in her file 
system
– Anyone can retrieve a 

file from directory
– Like a Web server

• Allows Alice to copy 
files from other users’ 
open directories:
– Like a Web client

• Allows users to search 
the peers for content 
based on keyword 
matches:
– Like Google
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Napster
• The most (in)famous file sharing program

– 5/99: Shawn Fanning (freshman, Northeasten U.) founds 
Napster Online music service

– 12/99: First lawsuit
– 3/00: 25%  UW traffic Napster
– 2/01: US Circuit Court of 

Appeals: Napster knew users 
violating copyright laws

– 7/01: Simultaneous online:
Napster 160K, Gnutella: 40K,                              

Morpheus (KaZaA): 300K
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Napster

• Judge orders Napster to 
pull plug in July ‘01 

• Other file sharing apps 
take over!

gnutella
napster
fastrack (KaZaA)
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How Napster works

File list 
and IP 
address is 
uploaded

1.
napster.com
centralized directory
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How Napster works
napster.com
centralized directory

Query
and

results

User   
requests 
search at 
server.

2.
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How Napster works

pings
pings

User pings 
hosts that 
apparently 
have data.

Looks for 
best transfer 
rate.

3.
napster.com
centralized directory
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How Napster works
napster.com
centralized directory

Retrieves
file

User chooses
server

4.

Napster’s 
centralized 
server farm had 
difficult time 
keeping 
up with traffic
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2. Unstructured P2P File Sharing

• Napster
• Gnutella
• KaZaA
• Chord
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Distributed Search/Flooding

Query

CS 640

Distributed Search/Flooding

Response
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Gnutella

• Focus: decentralize search for files
– Central directory server no longer the bottleneck
– More difficult to “pull plug”

• Each application instance serves to:
– Store selected files
– Route queries from and to its neighboring peers
– Respond to queries if file stored locally
– Serve files
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Gnutella

• Gnutella history:
– 3/14/00: release by AOL, almost immediately withdrawn
– Became open source
– Many iterations to fix poor initial design (poor design 

turned many people off)

• Issues:
– How much traffic does one query generate?
– How many hosts can it support at once?
– What is the latency associated with querying?
– Is there a bottleneck?
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Gnutella: limited scope query
Searching by flooding:
• If you don’t have the file you want, query 7 

of your neighbors.
• If they don’t have it, they contact 7 of their 

neighbors, for a maximum hop count of 10.
• Reverse path forwarding for responses (not 

files)
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Gnutella overlay management

• New node uses bootstrap node to get IP 
addresses of existing Gnutella nodes

• New node establishes neighboring relations by 
sending join messages

join
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Gnutella in practice

• Gnutella traffic << KaZaA traffic
• KaZaA:

– hierarchy, queue management, parallel 
download,…
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Gnutella Discussion:

• researchers like it because it’s open source
– but is it truly representative?

• architectural lessons learned?
• good source for technical info/open questions:

http://www.limewire.com/index.jsp/tech_papers
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2. Unstructured P2P File Sharing

• Napster
• Gnutella
• KaZaA
• Chord
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KaZaA: The service

• More than 3 million up peers sharing over 
3,000 terabytes of content

• More popular than Napster ever was
• More than 50% of Internet traffic?
• MP3s & entire albums, videos, games
• Optional parallel downloading of files
• Automatically switch to new download server 

when current server becomes unavailable
• Provides estimated download times
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KaZaA: The service (2)

• User can configure max number of simultaneous 
uploads and max number of simultaneous downloads

• Queue management at server and client
– Frequent uploaders can get priority in server queue

• Keyword search
– User can configure “up to x” responses to keywords

• Responses to keyword queries come in waves; stops 
when x responses are found

• To user, service resembles Google, but provides links 
to MP3s and videos, not Web pages
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KaZaA: Technology

Software
• Proprietary, files and control data encrypted
• Hints:

– KaZaA Web site gives a few
– Reverse engineering attempts described on Web

• Everything is HTTP requests and responses
Architecture
• Hierarchical
• Cross between Napster and Gnutella
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KaZaA: Architecture

• Each peer is either a 
supernode or is 
assigned to a 
supernode

• Each supernode
knows about many 
other supernodes
(almost mesh overlay)

supernodes
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KaZaA: Architecture (2)

• Nodes with more bandwidth and more 
available are designated as supernodes

• Each supernode acts as a mini-Napster hub, 
tracking the content and IP addresses of its 
descendants

• Guess: supernode has (on average) 200-500 
descendants; roughly 10,000 supernodes

• There is also dedicated user authentication 
server and supernode list server
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KaZaA: Overlay maintenance

• List of potential supernodes included within 
software download

• New peer goes through list until it finds 
operational supernode
– Connects, obtains more up- to- date list
– Node then pings 5 nodes on list and connects with 

the one with smallest RTT
• If supernode goes down, node obtains updated 

list and chooses new supernode
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KaZaA Queries

• Node first sends query to supernode
– Supernode responds with matches
– If x matches found, done.

• Otherwise, supernode forwards query to subset 
of supernodes
– If total of x matches found, done.

• Otherwise, query further forwarded
– Probably by original supernode
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Parallel Downloading; Recovery

• If file is found in multiple nodes, user can 
select parallel downloading

• Most likely HTTP byte-range header used to 
request different portions of the file from 
different nodes

• Automatic recovery when server peer stops 
sending file
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3. Structured P2P: DHT Approaches

• Want a storage and lookup service with better 
service guarantees and more efficient

• A Distributed Hash Table (DHT)
– Chord
– CAN
– Pastry
– Tapestry
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Challenge: Locating Content

• Simplest strategy: expanding ring search 
– If K of N nodes have copy, expected search cost at least

N/K, i.e., O(N)
– Need many cached copies to keep search overhead small

Here you go!
Here you go!

I’m looking for
CS640 Notes
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Directed Searches
• Idea: 

– Assign particular nodes to hold particular content (or 
pointers to it, like an information booth)

– When a node wants that content, go to the node that is 
supposed to have or know about it

• Challenges:
– Distributed: want to distribute responsibilities among 

existing nodes in the overlay
– Adaptive: nodes join and leave the P2P overlay

• distribute knowledge responsibility to joining nodes
• redistribute knowledge responsibility from those leaving 
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DHT Step 1: The Hash
• Introduce a hash function to map the object being searched 

for to a unique identifier:
– e.g., h(“CS640 Class notes”) → 8045

• Distribute the range of the hash function among all nodes 
in the network

• Each node must “know about” at least one copy of each 
object that hashes within its range (when one exists)

0-999
9500-9999

1000-1999
1500-4999

9000-9500

4500-6999

8000-8999 7000-8500

8045
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DHT Step 2: Routing

• For each object, node(s) whose range(s) cover 
that object must be reachable via a “short” path 
by any querying node

• Different approaches for routing requests
– (CAN,Chord,Pastry,Tapestry) differ fundamentally 

only in the routing approach
– They all rely on hash functions to map objects
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DHT API

• each data item (e.g., file or metadata with 
pointers) has a key in some ID space

• In each node, DHT software provides API:
– Application gives API key k
– API returns IP address of node responsible for k

• API is implemented with an underlying DHT 
overlay and distributed algorithms 
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DHT API
application

DHT substrate
API

application

DHT substrate
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DHT Layered Architecture

TCP/IP

DHT

Network 
storage

Event 
notification

Internet

P2P substrate 
(self- organizing
overlay network)

P2P application layer?
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Consistent hashing (1)

• Overlay network is a circle
• Each node has randomly chosen id

– Keys in same id space
• Node’s successor in circle is node with next 

largest id
– Each node knows IP address of its successor

• Key is stored in closest successor
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Consistent hashing (2)
0001

0011

0100

0101

1000
1010

1100

1111

file 1110 
stored here

Who’s resp
for file 1110

I am

O(N) messages
on avg to resolve
query

Note: no locality
among neighbors
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Consistent hashing (3)

Node departures
• Each node must track s ≥ 2 

successors
• If your successor leaves, 

take next one
• Ask your new successor for 

list of its successors; update 
your s successors

Node joins
• You’re new, node id k
• Ask any node n to find the 

node n’ that is the successor 
for id k

• Get successor list from n’
• Tell your predecessors to 

update their successor lists
• Thus, each node must track 

its predecessor  
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Consistent hashing (4)

• Overlay is actually a circle with small chords 
for tracking predecessor and k successors

• # of neighbors = s+1: O(1)
– The ids of your neighbors along with their IP 

addresses is your “routing table”
• Average # of messages to find key is O(N)

Can we do better?
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Chord
• Nodes assigned 1- dimensional IDs in hash space at 

random (e.g., hash on IP address)
• Consistent hashing: Range covered by node is from 

previous ID up to its own ID (modulo the ID space)
124

874

3267

6783

8723
8723

874

3267

6783

8654

124
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Chord Routing
• A node s’s ith neighbor has the ID that is 

equal to  s+2i or is the next largest ID (mod 
ID space), i≥0

• To reach the node handling ID t, send the 
message to neighbor #log2(t-s)

• Requirement: each node s must know about 
the next node that exists clockwise on the 
Chord (0th neighbor)

• Set of known neighbors called a finger table
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Chord Routing (cont’d)
• A node s is node t’s neighbor if s is the closest node to t+2i mod 

H for some i.  Thus,
– each node has at most log2 N neighbors
– for any object, the node whose range contains the object is reachable from 

any node in no more than log2 N overlay hops 

• Given K objects, with high probability each node has at most
(1 + log2 N) K / N in its range

• When a new node joins or leaves the overlay,                    
O(K / N) objects move between nodes

326

15

864

863

722

721

720

Finger 
table for 
node 67

i

1

8

32

87
86

72
67

Closest 
node 
clockwise 
to 

67+2i mod 
100
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Chord Node Insertion
• One protocol addition: each node knows its closest counter-

clockwise neighbor
• A node selects its unique (pseudo-random) ID and uses a 

bootstrapping process to find some node in the Chord
• Using Chord, the node identifies its successor
• A new node’s predecessor is                                     

its successor’s former                                          
predecessor

82 1

8

32

67

87
86

72

pred(86)=72

Example: Insert 82



16

CS 640

Chord Node Insertion (cont’d)

1

8

32

67

87
86

72

82

• First: set added node s’s fingers correctly
– s’s predecessor t does the lookup for each distance of 2i

from s

676

325

14

13

862

861

860

Finger 
table for 
node 82

i

Lookup(86) = 86

Lookup(90) = 1

Lookup(98) = 1

Lookup(14) = 32

Lookup(46) = 67

Lookup(84) = 86

Lookup(83) = 86
Lookups from node 72
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Chord Node Insertion (cont’d)
• Next, update other nodes’ fingers 

about the entrance of s (when 
relevant).  For each i:
– Locate the closest node to s (counter-

clockwise) whose 2i-finger can point 
to s: largest possible is     s - 2i

– Use Chord to go (clockwise) to 
largest node t before or at s - 2i

• route to s - 2i, if arrived at a larger 
node, select its predecessor as t

– If t’s 2i-finger routes to a node larger 
than s

• change t’s 2i-finger to s
• set t = predecessor of t and repeat

– Else i++, repeat from top
• O(log2 N)

1

8

32

67

87
86

72

82 82-23

23-finger=86
82 23-finger=86

82

23-finger=67X
X

e.g., for i=3
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Chord Node Deletion

• Similar process can perform deletion
1

8

32

67

87
86

72

82-23

86 23-finger=82
86

23-finger=67X
X

e.g., for i=3

23-finger=82


