
1

CS 640

CS 640 Introduction to Computer
Networks

Lecture30

CS 640

Today’s lecture

• Peer to peer applications
– Napster
– Gnutella
– KaZaA
– Chord

CS 640

What is P2P?

• Significant autonomy from central servers
• Exploits resources at the edges of Internet

– Bandwidth
– Storage
– Processing

• Resources at edge have intermittent connectivity
• Dynamic joins and leaves

2

CS 640

Applications

• P2P file sharing
– Napster, Gnutella, KaZaA, etc.

• Storage and lookup
– Chord, CAN, etc.

• P2P communication
– Instant messaging

• P2P computation
– seti@home

CS 640

P2P file sharing software

• Allows Alice to open up
a directory in her file
system
– Anyone can retrieve a

file from directory
– Like a Web server

• Allows Alice to copy
files from other users’
open directories:
– Like a Web client

• Allows users to search
the peers for content
based on keyword
matches:
– Like Google

CS 640

Napster
• The most (in)famous file sharing program

– 5/99: Shawn Fanning (freshman, Northeasten U.) founds
Napster Online music service

– 12/99: First lawsuit
– 3/00: 25% UW traffic Napster
– 2/01: US Circuit Court of

Appeals: Napster knew users
violating copyright laws

– 7/01: Simultaneous online:
Napster 160K, Gnutella: 40K,

Morpheus (KaZaA): 300K

3

CS 640

Napster

• Judge orders Napster to
pull plug in July ‘01

• Other file sharing apps
take over!

gnutella
napster
fastrack (KaZaA)

8M

6M

4M

2M

0.0

bi
ts

 p
er

 s
ec

CS 640

How Napster works

File list
and IP
address is
uploaded

1.
napster.com
centralized directory

CS 640

How Napster works
napster.com
centralized directory

Query
and

results

User
requests
search at
server.

2.

4

CS 640

How Napster works

pings
pings

User pings
hosts that
apparently
have data.

Looks for
best transfer
rate.

3.
napster.com
centralized directory

CS 640

How Napster works
napster.com
centralized directory

Retrieves
file

User chooses
server

4.

Napster’s
centralized
server farm had
difficult time
keeping
up with traffic

CS 640

2. Unstructured P2P File Sharing

• Napster
• Gnutella
• KaZaA
• Chord

5

CS 640

Distributed Search/Flooding

Query

CS 640

Distributed Search/Flooding

Response

CS 640

Gnutella

• Focus: decentralize search for files
– Central directory server no longer the bottleneck
– More difficult to “pull plug”

• Each application instance serves to:
– Store selected files
– Route queries from and to its neighboring peers
– Respond to queries if file stored locally
– Serve files

6

CS 640

Gnutella

• Gnutella history:
– 3/14/00: release by AOL, almost immediately withdrawn
– Became open source
– Many iterations to fix poor initial design (poor design

turned many people off)

• Issues:
– How much traffic does one query generate?
– How many hosts can it support at once?
– What is the latency associated with querying?
– Is there a bottleneck?

CS 640

Gnutella: limited scope query
Searching by flooding:
• If you don’t have the file you want, query 7

of your neighbors.
• If they don’t have it, they contact 7 of their

neighbors, for a maximum hop count of 10.
• Reverse path forwarding for responses (not

files)

CS 640

Gnutella overlay management

• New node uses bootstrap node to get IP
addresses of existing Gnutella nodes

• New node establishes neighboring relations by
sending join messages

join

7

CS 640

Gnutella in practice

• Gnutella traffic << KaZaA traffic
• KaZaA:

– hierarchy, queue management, parallel
download,…

CS 640

Gnutella Discussion:

• researchers like it because it’s open source
– but is it truly representative?

• architectural lessons learned?
• good source for technical info/open questions:

http://www.limewire.com/index.jsp/tech_papers

CS 640

2. Unstructured P2P File Sharing

• Napster
• Gnutella
• KaZaA
• Chord

8

CS 640

KaZaA: The service

• More than 3 million up peers sharing over
3,000 terabytes of content

• More popular than Napster ever was
• More than 50% of Internet traffic?
• MP3s & entire albums, videos, games
• Optional parallel downloading of files
• Automatically switch to new download server

when current server becomes unavailable
• Provides estimated download times

CS 640

KaZaA: The service (2)

• User can configure max number of simultaneous
uploads and max number of simultaneous downloads

• Queue management at server and client
– Frequent uploaders can get priority in server queue

• Keyword search
– User can configure “up to x” responses to keywords

• Responses to keyword queries come in waves; stops
when x responses are found

• To user, service resembles Google, but provides links
to MP3s and videos, not Web pages

CS 640

KaZaA: Technology

Software
• Proprietary, files and control data encrypted
• Hints:

– KaZaA Web site gives a few
– Reverse engineering attempts described on Web

• Everything is HTTP requests and responses
Architecture
• Hierarchical
• Cross between Napster and Gnutella

9

CS 640

KaZaA: Architecture

• Each peer is either a
supernode or is
assigned to a
supernode

• Each supernode
knows about many
other supernodes
(almost mesh overlay)

supernodes

CS 640

KaZaA: Architecture (2)

• Nodes with more bandwidth and more
available are designated as supernodes

• Each supernode acts as a mini-Napster hub,
tracking the content and IP addresses of its
descendants

• Guess: supernode has (on average) 200-500
descendants; roughly 10,000 supernodes

• There is also dedicated user authentication
server and supernode list server

CS 640

KaZaA: Overlay maintenance

• List of potential supernodes included within
software download

• New peer goes through list until it finds
operational supernode
– Connects, obtains more up- to- date list
– Node then pings 5 nodes on list and connects with

the one with smallest RTT
• If supernode goes down, node obtains updated

list and chooses new supernode

10

CS 640

KaZaA Queries

• Node first sends query to supernode
– Supernode responds with matches
– If x matches found, done.

• Otherwise, supernode forwards query to subset
of supernodes
– If total of x matches found, done.

• Otherwise, query further forwarded
– Probably by original supernode

CS 640

Parallel Downloading; Recovery

• If file is found in multiple nodes, user can
select parallel downloading

• Most likely HTTP byte-range header used to
request different portions of the file from
different nodes

• Automatic recovery when server peer stops
sending file

CS 640

3. Structured P2P: DHT Approaches

• Want a storage and lookup service with better
service guarantees and more efficient

• A Distributed Hash Table (DHT)
– Chord
– CAN
– Pastry
– Tapestry

11

CS 640

Challenge: Locating Content

• Simplest strategy: expanding ring search
– If K of N nodes have copy, expected search cost at least

N/K, i.e., O(N)
– Need many cached copies to keep search overhead small

Here you go!
Here you go!

I’m looking for
CS640 Notes

CS 640

Directed Searches
• Idea:

– Assign particular nodes to hold particular content (or
pointers to it, like an information booth)

– When a node wants that content, go to the node that is
supposed to have or know about it

• Challenges:
– Distributed: want to distribute responsibilities among

existing nodes in the overlay
– Adaptive: nodes join and leave the P2P overlay

• distribute knowledge responsibility to joining nodes
• redistribute knowledge responsibility from those leaving

CS 640

DHT Step 1: The Hash
• Introduce a hash function to map the object being searched

for to a unique identifier:
– e.g., h(“CS640 Class notes”) → 8045

• Distribute the range of the hash function among all nodes
in the network

• Each node must “know about” at least one copy of each
object that hashes within its range (when one exists)

0-999
9500-9999

1000-1999
1500-4999

9000-9500

4500-6999

8000-8999 7000-8500

8045

12

CS 640

DHT Step 2: Routing

• For each object, node(s) whose range(s) cover
that object must be reachable via a “short” path
by any querying node

• Different approaches for routing requests
– (CAN,Chord,Pastry,Tapestry) differ fundamentally

only in the routing approach
– They all rely on hash functions to map objects

CS 640

DHT API

• each data item (e.g., file or metadata with
pointers) has a key in some ID space

• In each node, DHT software provides API:
– Application gives API key k
– API returns IP address of node responsible for k

• API is implemented with an underlying DHT
overlay and distributed algorithms

CS 640

DHT API
application

DHT substrate
API

application

DHT substrate
API

ap
pl

ic
at

io
n

D
H

T
su

bs
tra

te
A

PI

applicati on

D
H

T sub strate
A

PI

overlay
network

key
responsible
node

13

CS 640

DHT Layered Architecture

TCP/IP

DHT

Network
storage

Event
notification

Internet

P2P substrate
(self- organizing
overlay network)

P2P application layer?

CS 640

Consistent hashing (1)

• Overlay network is a circle
• Each node has randomly chosen id

– Keys in same id space
• Node’s successor in circle is node with next

largest id
– Each node knows IP address of its successor

• Key is stored in closest successor

CS 640

Consistent hashing (2)
0001

0011

0100

0101

1000
1010

1100

1111

file 1110
stored here

Who’s resp
for file 1110

I am

O(N) messages
on avg to resolve
query

Note: no locality
among neighbors

14

CS 640

Consistent hashing (3)

Node departures
• Each node must track s ≥ 2

successors
• If your successor leaves,

take next one
• Ask your new successor for

list of its successors; update
your s successors

Node joins
• You’re new, node id k
• Ask any node n to find the

node n’ that is the successor
for id k

• Get successor list from n’
• Tell your predecessors to

update their successor lists
• Thus, each node must track

its predecessor

CS 640

Consistent hashing (4)

• Overlay is actually a circle with small chords
for tracking predecessor and k successors

• # of neighbors = s+1: O(1)
– The ids of your neighbors along with their IP

addresses is your “routing table”
• Average # of messages to find key is O(N)

Can we do better?

CS 640

Chord
• Nodes assigned 1- dimensional IDs in hash space at

random (e.g., hash on IP address)
• Consistent hashing: Range covered by node is from

previous ID up to its own ID (modulo the ID space)
124

874

3267

6783

8723
8723

874

3267

6783

8654

124

15

CS 640

Chord Routing
• A node s’s ith neighbor has the ID that is

equal to s+2i or is the next largest ID (mod
ID space), i≥0

• To reach the node handling ID t, send the
message to neighbor #log2(t-s)

• Requirement: each node s must know about
the next node that exists clockwise on the
Chord (0th neighbor)

• Set of known neighbors called a finger table

CS 640

Chord Routing (cont’d)
• A node s is node t’s neighbor if s is the closest node to t+2i mod

H for some i. Thus,
– each node has at most log2 N neighbors
– for any object, the node whose range contains the object is reachable from

any node in no more than log2 N overlay hops

• Given K objects, with high probability each node has at most
(1 + log2 N) K / N in its range

• When a new node joins or leaves the overlay,
O(K / N) objects move between nodes

326

15

864

863

722

721

720

Finger
table for
node 67

i

1

8

32

87
86

72
67

Closest
node
clockwise
to

67+2i mod
100

CS 640

Chord Node Insertion
• One protocol addition: each node knows its closest counter-

clockwise neighbor
• A node selects its unique (pseudo-random) ID and uses a

bootstrapping process to find some node in the Chord
• Using Chord, the node identifies its successor
• A new node’s predecessor is

its successor’s former
predecessor

82 1

8

32

67

87
86

72

pred(86)=72

Example: Insert 82

16

CS 640

Chord Node Insertion (cont’d)

1

8

32

67

87
86

72

82

• First: set added node s’s fingers correctly
– s’s predecessor t does the lookup for each distance of 2i

from s

676

325

14

13

862

861

860

Finger
table for
node 82

i

Lookup(86) = 86

Lookup(90) = 1

Lookup(98) = 1

Lookup(14) = 32

Lookup(46) = 67

Lookup(84) = 86

Lookup(83) = 86
Lookups from node 72

CS 640

Chord Node Insertion (cont’d)
• Next, update other nodes’ fingers

about the entrance of s (when
relevant). For each i:
– Locate the closest node to s (counter-

clockwise) whose 2i-finger can point
to s: largest possible is s - 2i

– Use Chord to go (clockwise) to
largest node t before or at s - 2i

• route to s - 2i, if arrived at a larger
node, select its predecessor as t

– If t’s 2i-finger routes to a node larger
than s

• change t’s 2i-finger to s
• set t = predecessor of t and repeat

– Else i++, repeat from top
• O(log2 N)

1

8

32

67

87
86

72

82 82-23

23-finger=86
82 23-finger=86

82

23-finger=67X
X

e.g., for i=3

CS 640

Chord Node Deletion

• Similar process can perform deletion
1

8

32

67

87
86

72

82-23

86 23-finger=82
86

23-finger=67X
X

e.g., for i=3

23-finger=82

