Today’s lecture

- Introduction to communication networks
 - Purpose
 - History
 - Underlying technologies
- Fundamental problems
 - Reliability
 - Resource sharing, cooperation and competition
 - Structure, growth and evolution

Purpose of communication networks

- Carrying messages from sender to receiver
- Supporting conversations between people
- Enabling access to sources of information
- Dissemination of information
- Simulating user’s presence at remote locations
- Remote monitoring

- The list keeps evolving
A brief history of the Internet

• Leonard Kleinrock published work in ‘61
 – Showed packet switching effective for bursty traffic
• DARPA contract for BBN to build switches
 – First network had four nodes in ’69
• Email first application – Ray Tomlinson, ’72
• In ’74 Vint Cerf and Robert Kahn developed open architecture for Internet
 – TCP and IP

History of the Internet (cont.)

• By ’79 the 200 nodes and by ’89 over 100K!
 – Much growth fueled by connecting universities
 – Larry Landweber from UW had important role
• In ’89 Van Jacobson made MAJOR improvements to TCP
• In ’91 Tim Berners-Lee invented the Web
• In ’93 Marc Andreesen invented Mosaic
• The rest should be pretty familiar…

Building Blocks

• Nodes: PC, special-purpose hardware…
 – hosts (PCs, cell phones, toasters, etc.)
 – routers (and switches, bridges, hubs, etc.)
• Links: coax cable, optical fiber, wireless …
 – point-to-point
 – multiple access
Nodes and links form networks

- A network can be defined recursively as...
 - two or more nodes connected by a link,
 - two or more networks connected by nodes

Reliability

- Links corrupt transmissions, nodes fail
- Information transmitted over the network usually has to arrive unaltered
- Basic techniques against data corruption
 - Error detection
 - Error correction
- Basic technique against equipment failures
 - Dynamic reconfiguration

Error detection

- Underlying technology can sometimes indicate failure (e.g. signal too weak)
- Bits are grouped into packets (a.k.a. frames)
- Checksum added to the packet by sender
- Receiver verifies the checksum
 - If it matches, bits in packet assumed correct
 - Otherwise receiver assumes some bits corrupted
Error correction

• Sender can retransmit corrupted packets
• Network discards some packets without notice
 – Timeouts at sender trigger retransmission
• Forward error correction: encode data redundantly – can recover from a few errors

• Some applications (voice) can tolerate loss or corruption of a few packets

Dynamic reconfiguration

• Nodes keep gossiping about state of network
• Handle packets based on map learned this way
• When nodes or links fail, packets take detour

• Such dynamic reconfiguration is implemented by routing protocols and learning bridges
 – It’s more complicated in practice

Today’s lecture

• Introduction to communication networks
 – Purpose
 – History
 – Underlying technologies
• Fundamental problems
 – Reliability
 – Resource sharing, cooperation and competition
 – Structure, growth and evolution
Sharing, cooperation and competition

• Multiplexing (methods for sharing)
• Medium access control (who’s turn is it?)
• Congestion control (can have too much traffic)
• Quality of service (I want good service)
• Denial of service (you don’t get any service)
• Cryptography – privacy, authentication
• Pricing, accounting, incentives

Multiplexing

• Frequency Division Multiplexing (FDM)
 – Each radio station uses a different frequency
• Synchronous Time Division Multiplexing
 – Each “user” gets a small time slot periodically
 – Works for phone calls (steady data)
 – Data communication very bursty

Statistical multiplexing

• Whoever has data to send, sends
• Like CPU sharing among processes in OS
Who’s turn is it to send?

- Scheduling at routers decide which packets to send, which ones to buffer, which ones to drop
- Medium access control
 - If many hosts send at the same time, it gets garbled
 - Pick which host sends onto multiple-access link

Congestion

- There is more traffic than the network can take
- Solution 1: senders all slow down (TCP)
- Solution 2: drop packets of biggest senders
- Solution 3: build a faster network
- Solution 4: use pricing incentives

- What if the bad guys are congesting your network on purpose (a.k.a. DDoS)?

Today’s lecture

- Introduction to communication networks
 - Purpose
 - History
 - Underlying technologies
- Fundamental problems
 - Reliability
 - Resource sharing, cooperation and competition
 - Structure, growth and evolution
Structure, growth and evolution

• Protocols – clear rules for interaction
• Modularization – layered architecture
• Encapsulation
• Addressing and naming (IP, MAC, DNS)
• Caching – better response times, lower traffic
• New/changing protocols and applications
 – Incremental deployment
 – Interoperability/backward compatibility

Protocols

• Building blocks of a network architecture
• Each protocol object has two different interfaces
 – service interface: operations on this protocol
 – peer-to-peer interface: messages exchanged with peer (format of messages and behavior)

Modularization: layering

• Use abstractions to hide complexity
• Abstraction naturally lead to layering
• Alternative abstractions at each layer
Internet Architecture

- Defined by Internet Engineering Task Force (IETF)
 1. Application: interacts with user to initiate data transfers (browser, media player, command line)
 2. Transport: TCP reliable, in-order delivery of data; UDP
 3. Network: addressing and routing (IP)
 4. Data Link: how hosts access physical media (Ethernet)
 5. Physical: how bits are represented on wire (Manchester)

- Information passed between layers – encapsulation
 - Header information attached to data passed down layers

- Layers access other layers via API’s (e.g. sockets)
- Communication at specific layer enabled by a proto.

Hourglass Design

- Single protocol at network level ensures packets will get from source to destination while allowing for flexibility

![Hourglass Design Diagram]