Today’s lecture

- Implementing routers/switches
- Network address translation
- IPv6

Workstation-based router

- Aggregate throughput (bandwidth)
 - 1/2 of the I/O bus bandwidth
 - capacity shared among all hosts connected to switch
 - ex: 1Gbps bus can support 5 x 100Mbps (in theory)

- Packets per second
 - must be able to switch small packets
 - 300,000 packets-per-second is achievable
 - e.g., 64-byte packets implies 155Mbps
Serious routers and switches

- Design Goals
 - throughput
 - scalability (a function of n)

- Ports
 - forwarding decision (route lookup)
 - buffering (input and/or output)

- Fabric
 - as simple as possible
 - sometimes do buffering (internal)

Buffering

- Wherever contention is possible
 - input port (content for fabric)
 - internal (content for output port)
 - output port (content for link)

- Head-of-Line Blocking (input buffering)

Fabric example: crossbar switches
Today’s lecture

• Implementing routers/switches
• Network address translation
• IPv6

Network Address Translation

• Multiple clients access network through NAT box using single IP address
• **Advantages:**
 – Fewer IP addresses used (clients have private RFC 1918 addresses)
 – Outside hosts cannot connect to NATed clients
• **Disadvantages:**
 – Breaks end to end reachability
 – Outside hosts cannot connect to NATed clients
• Works by rewriting IP, TCP, and UDP headers

NAT box maintains table with translations

<table>
<thead>
<tr>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.1</td>
<td>128.105.4.12, 1330</td>
</tr>
<tr>
<td>192.168.1.2, 1331</td>
<td></td>
</tr>
<tr>
<td>192.168.1.3, 1332</td>
<td></td>
</tr>
<tr>
<td>192.168.1.4, 1333</td>
<td></td>
</tr>
</tbody>
</table>
Today’s lecture

- Implementing routers/switches
- Network address translation
- IPv6

IP version 6

- Proposed successor of IPv4
- Uses 128 bit addresses
 - IP address includes 48 bit MAC address
 - Renumbering still necessary when network moves to different provider
- Simplifies header to allow more efficient packet processing at routers

IPv6 header
