Routing – the big picture

- Internet divided into Autonomous Systems (ASes)
 - corresponds to an administrative domain
 - examples: University, company, backbone network
 - assign each AS a 16-bit number
- Two-level route propagation hierarchy
 - interior gateway protocol (RIP, OSPF)
 - exterior gateway protocol (Internet-wide standard)

Overview

- Forwarding vs Routing
 - forwarding: to select an output port based on destination address and routing table
 - routing: process by which routing table is built
- Network as a Graph
- Problem: Find best path between two nodes
- Factors
 - static: topology
 - dynamic: load
Families of routing algorithms

- Distance vector
 - Tell your neighbors about everybody you know of
 - Lower memory
 - RIP: Route Information Protocol
 - based on hop-count
- Link state
 - Tell everybody about your neighbors
 - Most used today
 - OSPF: Open Shortest Path First

Distance Vector

- Each node maintains a set of triples
 - \((\text{Destination, Cost, NextHop})\)
- Neighbors exchange updates
 - periodically (on the order of several seconds)
 - whenever table changes (called triggered update)
- Each update is a list of pairs: \((\text{Dest, Cost})\)
- Update local table if receive a “better” route
 - smaller cost
 - came from next-hop
- Refresh existing routes; delete if they time out

Example

Find the 4 bugs in this picture!!!
Link failure example

Count to infinity example

Count to infinity example
Loop-Breaking Heuristics

- Set infinity to 16
- Split horizon
 - Don’t advertise route to neighbor you heard it from
- Split horizon with poison reverse
 - Advertise it with ∞ cost
Link State

- **Strategy**
 - send to all nodes (not just neighbors) information about directly connected links (not entire routing table)
- **Link State Packet (LSP)**
 - id of the node that created the LSP
 - cost of link to each immediate neighbor
 - sequence number (SEQNO)
 - time-to-live (TTL) for this packet

--

Link State (cont)

- **Reliable flooding**
 - store most recent LSP from each node
 - forward new LSPs to all neighbors (except the one that sent it)
 - generate new LSP periodically
 - increment SEQNO
 - start SEQNO at 0 when reboot
 - decrement TTL of each stored LSP
 - discard when TTL=0

--

Route Calculation

- **Dijkstra’s shortest path algorithm**
 - s denotes node performing calculation
 - (i,j) denotes non-negative cost (weight) for edge (i,j)
 - $C(n)$ denotes cost of the path from s to node n
 - N denotes set of all nodes in the graph
 - M denotes set of nodes incorporated so far
 - $M = \{s\}$
 - for each n in $N - \{s\}$
 - $C(n) = l(s,n)$
 - while $|M| < |N|$
 - $w(\{w\})$ such that $C(w)$ is the min for all w in $N - M$
 - for each n in $N - M$
 - $C(n) = \min(C(n), C(w) + l(w,n))$
 - **Invariant of Dijkstra’s algorithm**
 - We have shortest path for nodes from M to s
 - For nodes outside M we have shortest path that goes to s only using nodes in M as next hop