Today’s lecture

- Virtual networks
 - VLANs (layer 2)
 - VPNs (layer 3)
- Mobile IP

Why restrict reachability?

- Security – multiple defenses
 - Sometimes you don’t want some computers to communicate with the outside world
- Performance
 - Protect the performance of virtual networks from the effects of the rest of the traffic
 - VLANs cut down on broadcast traffic
- But sharing infrastructure reduces costs!!!
VLANs

- Bridges never forward frames from one VLAN to the other
- Each port is assigned to one VLAN
- Some ports assigned to many VLANs
 - Must add VLAN ID to frames

VPNs

- Internal traffic between offices needs "more security" than traffic to the Internet
- Using same physical links cheaper because of statistical multiplexing

Tunneling

<table>
<thead>
<tr>
<th>Forwarding table for R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network 1</td>
</tr>
<tr>
<td>Network 1</td>
</tr>
<tr>
<td>Network 2</td>
</tr>
<tr>
<td>Default</td>
</tr>
</tbody>
</table>
MPLS (MultiProtocol Label Switching)

• Circuit switching technology developed to work with IP
 – Can use IP control plane (routing)
 – Can control paths explicitly
 – Convert ATM switches with software update
• Uses 32 bit “shim header” between layer 2 and 3 headers
 – 20 bit link-local labels

MPLS (contd.)

• Label Switching Routers (LSRs) inside the network forward packets based on exact lookups of MPLS labels
• Label Edge Routers (LERs) still need to perform longest matching prefix lookup to determine first label
• MPLS used for
 – VPNs
 – Traffic engineering

Today’s lecture

• Virtual networks
 – VLANs (layer 2)
 – VPNs (layer 3)
• Mobile IP
Portable Networking Technology

• Cellular systems
 – Cellular Digital Packet Data (CDPD)
 – 3G
• Bluetooth
 – Cheap, short range radio links for mobile devices
• Wireless Ethernet (802.11)
 – Widely used wireless MAC layer technology

Mobility and IP Routing

• IP assumes end hosts in fixed physical locations
 – What happens if we move a host between networks?
• IP addresses allow IP routing algorithms to get packets to the correct network
 – Each IP address has network part and host part
 • This keeps host specific information out of routers
 – DHCP is used to give IP addresses to hosts
 • This still assumes a fixed end host
• What if a user wants to roam between networks?
 – Users don’t want to notice moving between networks
 – Why can’t mobile users change IP when running an application?

Mobile IP

• Mobile IP was developed for transparently dealing with problems of mobile users
 – Hosts can connect to Internet regardless of location
 – Hosts can accept connections w/o changing IP addr.
 – Requires no changes for non-mobile hosts/routers
 – Requires addition of some infrastructure
 – Has no geographical limitations
 – Requires no modifications to IP address format
 – Supports security
 • Could be even more important than physically connected routing
• IETF standardization process is still underway
Mobile IP Entities

- **Mobile Node (MN)**
 - The entity that may change its point of attachment from network to network in the Internet
 - Detects it has moved and registers with “best” FA
 - Assigned a permanent IP called its home address to which other hosts send packets regardless of MN’s location
 - Can be used by long-lived applications as MN’s location changes

- **Home Agent (HA)**
 - This is router with additional functionality
 - Located on home network of MN
 - Does mobility binding of MN’s IP with its COA
 - Forwards packets to appropriate network when MN is away

Mobile IP Entities contd.

- **Foreign Agent (FA)**
 - Another router with enhanced functionality
 - If MN is away it uses an FA to send/receive data to/from HA
 - Advertises itself periodically
 - Forward’s MN’s registration request

- **Care-of-address (COA)**
 - Address which identifies MN’s current location
 - Sent by FA to HA when MN attaches
 - Usually the IP address of the FA

- **Correspondent Node (CN)**
 - End host to which MN is corresponding (e.g., a web server)

Mobile IP Support Services

- **Agent Discovery**
 - HAs and FAs broadcast their presence on their networks
 - Beacon messages via ICMP Router Discovery Protocol (IRDP)
 - MN’s listen for advertisement and then initiate registration

- **Registration**
 - When MN is away, it registers its COA with its HA
 - Typically through the FA with strongest signal
 - Registration control messages are sent to well known UDP port

- **Tunneling between HA and FA**
Mobile IP Operation

- MN listens for agent advertisement and initiates registration
 - If responding agent is the HA, mobile IP is not necessary
- After receiving the registration request from a MN, the HA acknowledges and registration is complete
 - Registration happens as often as MN changes networks
- HA intercepts all packets destined for MN
 - Simple unless sender is on same network as HA
 - HA masquerades as MN
 - After some time, MN must re-register

Registration Process

- MN sends a registration request to its HA
- HA intercepts all packets destined for MN
- HA masquerades as MN
- After some time, MN must re-register

Tables maintained on routers

- Mobility Binding Table
 - Maintained on HA of MN
 - Maps MN’s home address with its current COA

- Visitor List
 - Maintained on FA
 - Maps MN’s home address to its MAC address and HA
Mobile IP Operation contd.

- HA encapsulates all packets addressed to MN and forwards them to FA
 - IP tunneling
- FA decapsulates all packets addressed to MN and forwards them via hardware address (learned as part of registration process)
 - MN can perform FA functions if it acquires an IP address eg. via DHCP
- Bidirectional communications require tunneling in each direction

Mobile IP Tunneling

Security in Mobile IP

- Authentication can be performed by all parties
 - Only authentication between MN and HA required
- Replay protection
 - Timestamps are mandatory
 - Random numbers on request reply packets are optional
- HA and FA do not have to share any security information.
Problems with Mobile IP

- Suboptimal “triangle” routing
 - What if MN is in same subnet as the CN and HA is on the other side of the world?
 - Would be nice if we could directly route packets
 - Solution: Let the CN know the COA of MN
 - CN can create its own tunnel to MN
 - CN must have software to enable it to learn the COA
 - Initiated by HA who notifies CN via “binding update”
 - Binding table can become stale
- Alternatives handle mobility at session layer

Other Mobile IP Problems

- Single HA model is fragile
 - Possible solution – have multiple HA
- Security
 - Connection hijacking, snooping…
- What if MN moves out of reach
 - Applications must handle disconnection
- Many open research questions