Today’s lecture
• Network layer multicast
• Transport layer – UDP

One to many communication
• Application level one to many communication
• Multiple unicasts
• IP multicast
Types of Multicast

- At network-layer
 - Topic of this lecture
- Sequence of unicasts
 - Separate streams of unicast traffic for each destination from the source
 - Does not require support at network-layer
- Application-layer multicast
 - Based on unicasts
 - Constructs an overlay structure
 - Source unicasts to a subset of receives, these receivers unicast to another subset, which unicast to another subset and so on to reach the whole multicast group

Why Multicast

- When sending same data to multiple receivers
 - Better bandwidth utilization
 - Less host/router processing
 - Quicker to join
- Application
 - Video/Audio broadcast (One sender)
 - Video conferencing (Many senders)
 - Real time news distribution
 - Interactive gaming

IP multicast service model

- Invented by Steve Deering (PhD. 1991)
 - It’s a different way of routing datagrams
- RFC1112 : Host Extensions for IP Multicasting - 1989
- Senders transmit IP datagrams to a "host group"
- "Host group" identified by a class D IP address
- Members of host group can be anywhere in the Internet
- Members join and leave the group and indicate this to the routers
- Senders and receivers distinct (a sender need not be a receiver)
- Routers listen to all multicast addresses and use multicast routing protocols to manage groups
IP multicast group address

- Things are a little tricky in multicast since receivers can be anywhere.
- Class D address space:
 - high-order three 3 bits are set
 - 224.0.0.0 ~ 239.255.255.255
- Allocation is essentially random – any class D can be used
 - Nothing prevents an app from sending to any multicast address
 - Customers end hosts and ISPs are the ones who suffer
- Some well-known addresses have been designated
 - RFC1700
 - 224.0.0.0 ~ 224.0.0.25
- Standards are evolving

Getting Packets to End Hosts

- Packets from remote sources will be forwarded by IP routers onto a local network only if they know there is at least one receiver for that group on that network.
- Internet Group Management Protocol (IGMP, RFC2236):
 - Used by end hosts to signal that they want to join a specific multicast group.
 - Used by routers to discover what groups have interested member hosts on each network to which they are attached.
 - Implemented directly over IP.

IGMP – Joining a group

Example: R joins to Group 224.2.0.1

- R sends IGMP Membership-Report to 224.2.0.1
- DR receives it. DR will start forwarding packets for 224.2.0.1 to Network A.
- DR periodically sends IGMP Membership-Query to 224.0.0.1 (ALL-SYSTEMS.MCAST.NET)
- R answers IGMP Membership-Report to 224.2.0.1.
IGMP – Leaving a group

Example: R leaves from a Group 224.2.0.1
- R sends IGMP Leave-Group
 - DR receives it.
 - DR stops forwarding packets for 224.2.0.1 to Network A if no more 224.2.0.1 group members on Network A.

Challenges in the multicast model

- How can a sender restrict who can receive?
 - need authentication, authorization
 - encryption of data
 - key distribution
 - still an active area of research

IP multicast routing

- Purpose: share group information among routers, to implement better routing for data distribution
- Distribution tree structure
 - Source tree vs. shared tree
- Data distribution policy
 - Opt in (ACK) type vs. opt out (NACK) type
- Routing protocols used together with IGMP
Source distribution tree

Notation: (S, G)
S = Source
G = Group

Shared distribution tree

Notation: (*, G)
* = all sources
G = Group

Source tree characteristics

• Source tree
 – More memory O (G x S) in routers
 – Optimal path from source to receiver, minimizes delay
 – Good for small number of senders, many receivers (e.g. Radio broadcasting application)

CS 640
Shared tree

Characteristics
- Less memory $O(G)$ in routers
- Sub-optimal path from source to receiver, may introduce extra delay (source to root)
- May have duplicate data transfer (possible duplication of a path from source to root and a path from root to receivers)

Good for
- Environments where most of the shared tree is the same as the source tree
- Many senders with low bandwidth (e.g. shared whiteboard)

Data distribution policy

Opt out (NACK) type
- Start with "broadcasting" then prune branches with no receivers, to create a distribution tree
- Lots of wasted traffic when there are only a few receivers and they are spread over wide area

Opt in (ACK) type
- Forward only to the hosts which explicitly joined to the group
- Latency of join propagation

Protocol types

Dense mode protocols
- Assumes dense group membership
- Source distribution tree and NACK type
- DVMRP (Distance Vector Multicast Routing Protocol)
- PIM-DM (Protocol Independent Multicast, Dense Mode)
- Example: Company-wide announcement

Sparse mode protocol
- Assumes sparse group membership
- Shared distribution tree and ACK type
- PIM-SM (Protocol Independent Multicast, Sparse Mode)
- Examples: Space Shuttle Launch in the '90s
RPF (reverse path forwarding)

- RPF algorithm takes advantage of the IP routing table to compute a multicast tree for each source.
- RPF check
 1. When a multicast packet is received, note its source (S) and interface (I)
 2. If I belongs to the shortest path from S, forward to all interfaces except I
 3. If test in step 2 is false, drop the packet
- Packet is never forwarded back out the RPF interface!

DVMRP

- If not all routers in the network support DVMRP, then unicast tunnels are used to connect multicast enabled networks
- Each router maintains a 'multicast routing table' by exchanging distance vector information among routers
 - First multicast routing protocol ever deployed in the Internet
 - Similar to RIP
 - Constructs source trees for each group using reverse path forwarding
 - Each tree provides a shortest path between source and each receiver
- There is a "designated forwarder" in each subnet
 - Multiple routers on the same LAN select designated forwarder by lower metric or lower IP address (discover when exchanging metric info.)
- Once tree is created, it is used to forward messages from source to receivers

DVMRP

- Broadcast & prune
- Flood multicast packets based on RPF (Reverse path forwarding) rule to all routers.
- Leaf routers check and send prune message to upstream router when no group member is on their network
- Upstream router prunes the interface with no dependent downstream router.
- Graft message to create a new branch for late participants
- Restart forwarding after prune lifetime (standard: 720 minutes)
- draft-ietf-idmr-dvmrp-v3-09.txt (September 1999)
DVMRP (1) form a source tree by exchanging metric

DVMRP (2) broadcast

DVMRP (3) prune
DVMRP (4)
X and Y pruned

Source
DFS
X
Y
R1
R2
Receiver 1
Receiver 2

DVMRP (4)
New member

Source
DFS
X
Y
R1
R2
Receiver 1
Receiver 2

DVMRP (4)
New branch

Source
DFS
X
Y
R1
R2
Receiver 1
Receiver 2
Today’s lecture

- Network layer multicast
- Transport layer – UDP

Layering and Encapsulation Revisited

- Each layer relies on layers below to provide services in black box fashion
 - Layering makes complex systems easier to understand & specify
 - Makes implementation more flexible
 - Can make implementation bigger and less efficient
 - Layers are implemented by protocols – rules for communication
- Data from applications moves up and down protocol stack
 - Application level data is chopped into packets (segments)
 - Encapsulation deals with attaching headers at layers 2, 3, 4

End-to-End Protocols

- Underlying network is best-effort so it can:
 - drop messages
 - re-orders messages
 - delivers duplicate copies of a given message
 - deliver messages after an arbitrarily long delay
- Common end-to-end services do:
 - guarantee message delivery
 - deliver messages in the same order they are sent
 - deliver at most one copy of each message
 - support synchronization
 - allow the receiver to flow control the sender
 - support multiple application processes on each host
Basic function of transport layer

- How can processes on different systems get the right messages?
- *Ports* are numeric locators which enable messages to be demultiplexed to proper process.
 - Ports are addresses on individual hosts, not across the Internet
- Ports are established using *well-known* values first
 - Port 80 = http, port 53 = DNS
- Ports are typically implemented as message queues
- Simplest function of the transport layer is multiplexing/demultiplexing of messages

Other transport layer functions

- Connection control
 - Setting up and tearing down communication between processes
- Error detection within packets
 - Checksums
- Reliable, in order delivery of packets
 - Acknowledgement schemes
- Flow control
 - Matching sending and receiving rates between end hosts
- Congestion control
 - Managing congestion in the network

User Datagram Protocol (UDP)

- Unreliable and unordered *datagram* service
- Adds multiplexing/demultiplexing
- Adds reliability through optional checksum
- No flow or congestion control
- Endpoints identified by ports
 - Servers have *well-known* ports
 - See `/etc/services` on Unix
- Header format
- Optional checksum
 - Computed over pseudo header + UDP header + data
UDP Checksums

- Optional in current Internet
- Covers payload + pseudoheader
- Pseudoheader consists of 3 fields from IP header: protocol number (TCP or UDP), IP src, IP dst and UDP length field
 - Pseudoheader enables verification that message was delivered between correct source and destination.
 - IP dest address was changed during delivery, checksum would reflect this
- UDP uses the same checksum algorithm as IP

UDP in practice

- Minimal requirements make UDP very flexible
 - Any end-to-end protocol can be implemented
 - Remote Procedure Calls (RPC)
 - TCP can be implemented using UDP
- Examples
 - Most commonly used in multimedia applications
 - These are frequently more robust to loss
 - RPC’s
 - Many others…