Achieving good end-to-end service using Bill-Pay

Cristian Estan, Aditya Akella, Suman Banerjee
Univ. of Wisconsin - Madison
QoS today

- ISPs offer SLAs to customers
- SLAs do not apply for multi-ISP paths
- Core problem: end users cannot pay intermediate ISPs
- Bill-Pay allows such payments
Overview

- What is the Bill-Pay mechanism?
- What can we build on top of it?
- What were they thinking?
Bill-Pay example
Core ideas

- Nanopayments associated with packets
 - Sender sets initial nanopayment
- Easy-to-enforce **local bilateral** contract
 - Upstream must pay (at the end of month)
 - Downstream has no contractual obligation
- Downstream has **incentive** to provide good service, pay next ISP
 - Sender has some control over path
Protocol mechanics

- ISPs offer a few “opaque alternatives”
 - Can mean: next hop, diffserv class, internal route
- Sender OAD = desired treatment by an ISP

<table>
<thead>
<tr>
<th>ISP identifier (AS number)</th>
<th>Available alternatives</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanopayment amount</td>
<td>Pathlen</td>
<td>OADcnt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISP identifier (AS number)</th>
<th>Undesirable alternatives</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISP identifier (AS number)</td>
<td>Undesirable alternatives</td>
<td>Choice</td>
</tr>
</tbody>
</table>

Diagram:
- ISP OAD
- User OAD
- OADcnt
- Pathlen
Overview

- What is the Bill-Pay mechanism?
- What can we build on top of it?
- What were they thinking?
Solutions using Bill-Pay

- Better e2e delay, throughput, loss rate
- Handling floods and flash crowds
 - The users valuing the service the most get through, the other traffic is dropped
- Micropayments (between any 2 hosts)
 - Requiring micropayments with emails will kill the spammers’ business model
Overview

- What is the Bill-Pay mechanism?
- What can we build on top of it?
- What were they thinking?
ISPs will jack up prices!

- Justifiable fees
 - Fixed per byte/per packet
 - Congestion pricing
- Avoiding “unjustifiable” fees
 - If there is path diversity, users will direct traffic through cheaper paths
 - With chokepoints/unregulated monopolies, users pay a lot even with flat prices
Too costly for ISPs to deploy!

- Potential benefits are huge
 - Users in industrialized countries spend on average extra $10/year → $10 billion/year
 - Backbones running at higher link utilization → savings of ?? billions/year
 - Skimming 1% of all micropayments (<$5) in the U.S. → $10 billion/year
Mapping is expensive!

- Can share information w/ other hosts on the same campus (or p2p network)
- Can use non-critical traffic (instead of probes) to measure new paths
- Typical AS path length is 3
- Sender does not need full information
 - One good path is enough
Hackers will steal the money!

- Hijack computer, leak nanopayments, get money at the end of the month
- Solution: “digital secretary” running on trusted hardware must certify packets
 - Network verifies signatures at edge
 - Limited functionality → unhackable
 - Increases cost of solution
Hard to judge a packet’s worth!

- Can talk to the user directly
- Trade-off between intrusiveness and cost of guessing wrong
- If user (or digital secretary) cannot tell apart important traffic from excessive junk, he cannot expect quality service!
Open questions

- Optimal behavior for rational ISP?
- How to “modulate” nanopayments?
- Interactions with congestion control?
- Effect on network topology?
- Path selection and stability?
The end

Fire at will!
We hate usage-based pricing!

1. Not if we get a good deal!
2. User can refuse to add nanopayments
Load-aware routes = instability

- IP routing: all packets to a destination take the same path \rightarrow flapping
- Bill-Pay: senders make desynchronized decisions \rightarrow load balancing