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Abstract tacks with between 600,000 and 1,800,000 packets per
o ] ) second or more [22, 11, 31] and data volumes as high as 3
Distributed denial of service (DDoS) attacks are a gragjts/s [4]. These statistics are for attacks from 2003 and
threat to Internet SEervices ”and even to the network itselfyjier: today’s attacks are likely larger. (D)DoS attacks
Widely distributed “zombie” computers subverted by M3yaye disrupted large search engines, e-commerce sites,
licious hackers are used to orchestrate massive attacksys sites [12], and root DNS servers [31]. The threat
Any defense against such flooding attacks must solve §§1o0ds has been used repeatedly by various criminal or-
hard problem of distinguishing the packets that are partg;%{l

> ) nizations to extort “protection money” from businesses
the attack from legitimate traffic, so that the attack can h an online presence [26, 4, 6]. A disturbing develop-

filtered out without much collateral damage. We explofgent is that in the last few years malicious hackers have
one technique that can b_e usgd as part of DDoS defeng§$hched DDoS attacks using large networks of “zom-
using ACL rules that distinguish the attack packets frogjgg» computers taken over through a worm or through
the legitimate traffic based on source addresses in packgt$ne other automated method. The Code Red Il worm
One advantage of this technique is that the ACL rules cfiected 359,000 computers [21] and an earlier version of
be dep_loyed in routers deep inside the network_ where &t worm has been programmed to perform a DDoS at-
attack isn't large enough to cause loss of legitimate trafey against www1.whitehouse.gov. The sheer size of ob-
fic due to congestion. The most important disadvantaggeq zombie networks together with the fact that many
is that the ACL rules can also cause collateral damage §¥ine zombie computers have high speed Internet con-

discarding some legitimate traffic. We use simulations fp.ions gives us reason to fear that future attacks could
study this damage how it is influenced by various factof$s more vicious than what we have witnessed so far and
Our technique is much better than uninformed droppiRgeir effects even more crippling.

due to congestion, t_)ut i_t prodL_Jces larger collateral damagey, this paper we investigate a light-weight approach to
than more processing-intensive approaches. For examplgring attack traffic based on the historic distribution
it can reduce the attack size by a factor of 3 while algg 5 ket source addresses arriving at a given IP address
dropping between 2% and 10% of the legitimate traffigy service port. We hypothesize that the distribution of
We recommend the use of source address prefix basedifilyrce addresses is relatively stable over a period of days
tering in combination with other techniques, for examplg, some services and weeks for other services. The re-
as a coarse pre-filter that ensures that devices performifigs of our measurements are consistent with this hypoth-
the processing-intensive filtering are not overwhelmed.qgjs  Furthermore, the distribution of source addresses in
: the flood can differ significantly from the historic distri-
1 Introduction bution of clients for the server under attack. We then
Distributed denial of service (DoS) attacks are a majose these distributions combined with examples of cur-
threat to the reliable functioning of Internet services amdnt traffic to generate prefix filtering rules that allow as
current measures against them, while effective in sommeich traffic through as possible so as to nearly fill the ca-
instances, have not been sufficient to eradicate this threaitcity of the link. An even stronger defense would com-
Moore et al.[22] identified more than 4,000 attacks peine source address prefix filtering (SAPF) with a “traf-
week using a conservative method that underestimatesfibescrubbing” solution that performs more complex pro-
number of attacks. While most attacks are short and taessing to distinguish between legitimate and illegitenat
get small sites, large well-provisioned sites are far frotraffic. The goal is to avoid congesting the bottleneck link
immune from this threat. There are reports of large dbr overwhelming the traffic scrubbing device) and at the



same time allow as much legitimate traffic through as pas-vulnerabilities inimplementations. SYN floods exhaust
sible. We refer to any legitimate traffic that is filtered ouhe memory of servers that allocate per connection state
as collateral damage. in response to SYN packets. Other attacks exploit (no
The main advantage of our technique is that it can ksger common) bugs in Windows that causes the victim
applied against the largest floods as ACLs are supportechang or reboot when it receives certain malformed IP
by even the highest speed routers, and they can be “pustiagdments. Defenses against such attacks work by rec-
out” deep enough into the network where the attack is megnizing and discarding the packets or packet sequences
large enough to cause congestion. The computationaletafted to cause damage. The focus of this paper is not on
guirements to derive the ACL rules are small, and a relaich attacks but on brute force attacks that cause damage
tively small number of rules is required, 20 to 50 in oupy producing severe congestion on the links connecting
experiments. These computations are based on widtlg victim to the Internet.
supported traffic data such as sampled NetFlow that carFloods can cause damage irrespective of the contents
be collected without slowing the routers down. The IS&hd the headers of their packets. Yet, packets that are
can deploy SAPF against multiple simultaneous attagkart of the flood can be easy to distinguish. Starting with
targetting different clients, as the ACL rules also contathe earliest DDoS tools, floods of ICMP and UDP packets
the address of the victim in the destination prefix fielthave been a popular weapon [19]. It is relatively easy to
The main disadvantage of SAPF is that it can produdefend against such attacks if they are directed at a web
significant collateral damage. Therefore it is best used mail server if one can install a few ACL rules at un-
as a pre-filter to more processing-intensive defenses, ocangested high speed routers instructing them to drop the

combination with other techniques. attack traffic. When the flood packets are not that easily
distinguishable (a flood of TCP packets with destination
2 Related work port 80 against a web server), filtering them out is harder.

. . _—_ . , “Blackholing” the IP address of the victim using the rout-
Defending against distributed denial of service attacks. IS . :
. . ing protocol to instruct all routers to drop traffic sent te th
an important problem that has the attention of the aca< . :
victim promptly stops the attack. The problem with this

demic community and industry alike. We divide the re; roach is that the routers also drop all the legitimate
lated work into three distinct categories: detection of Dq@p. L P 9

o . o raffic to the victint. Often the attackers spoof the source
floods, tests to distinguish attack traffic from legitimate

traffic, and complete solutions to the DoS problem. qudresses of the packets in the flood to make it harder to
1l

difference between the second category and the first is fgr the attack. Many defenses rely on identifying and

g . o
focus on filtering out the attack traffic. The difference be- ering out the spoofed packets. Egress filtering [17] of-

en implemented using uURPF BGP source filtering uses

tween the second and the third category is less well dée-

. . ; . owledge of the network topology to drop many of the

fined. But we consider a piece of work to be in the secon
s ) LT spoofed packets close to the sources of the attack. Park

category if its main contribution is to propose a good te

for differentiating attack traffic from legitimate traffiand and_Lee sh_ow [27] that filtering based on rou_‘ung mfpr-
) . . . mation available to routers can be very effective against
in the third if it proposes a comprehensive solution to the

o spoofed traffic in Internet-like topologies if deployed by
DDoS problem. Our work fits into the second category.as few as 20% of ISPs. The Spoofer project [5] estimates

2.1 Detecting DoS attacks that despite such measures, one quarter of the comput-

ers in the Internet can still spoof source addresses. Close

A first step in defending against a flood is to detect that?cpthe victim, TTL based filtering proposed by Jin et al.

attack is in progress and to identify the victim(s). MUL: : .
- . [13] can be applied to detect spoofed packets. This ap-
TOPS [10] allows routers to detect the victims of ﬂOOd'gbroach can filter out up to 90% of the flood without much

attacks by tracking inbalances between the two directi llateral damage, but it requires custom equipment since

of traffic using a data structure that adapts to the currer\nt
L N t IS not supported by current routers. Peng et al. [28
distribution of destination addresses. Jung et al. use mgﬁ bp y 9 [28]

. >~ " Broposed distinguishing between attackers and legitimate
Egasegﬁr;l]ols dailggraetf:(?lfstz'r?g,f?;srﬂt():(recr)\s/v[;‘s] to distingui ients based on source IP addresses, but they do not use

H inti 1Recently Steven Bellovin proposed an extension to the |Bopob
2.2 leferentlatlng between the attack and known as the “evil” bit[3]. Filtering on this bit could reguh a ma-

the Iegitimate traffic jor reduction of collateral damage, but since this extemssonot (yet)

. . . . widely supported by routers and operating systems, andnitetives
Some denial of service attacks achieve their goals Wfﬂ? its adoption by malicious software have not (yet) beemvawingly

relatively little traffic by exploiting protocol weaknessearticulated, we do not consider it in this paper.




prefixes, but store individual IP addresses in a Bloom filtee protected and the rest of the Internet. Individual traffic
requiring custom hardware. Based on their evaluationsdfrubbing appliances can be overwhelmed by very large
the effectiveness of their technique it is hard to compareitacks. Agarwal et al. propose building regional centers
with the one we propose here. with many such appliances within the ISP [1] and redi-
Since early 2005 floods that are harder to filter havecting the traffic of servers under attack through these
been reported. As large zombie networks have at leasthters. Prolexic [29] uses a similar approach based on
tens of thousands of computers, attackers started usingréfdirection to a high bandwidth data center that performs
real IP addresses of the zombies to initiate “legitimat&’affic cleaning using custom tools. Public material de-
sessions that overload the server with large volumessafibes the architecture that allows traffic scrubbing de-
traffic [30]. Tests that rely on detecting spoofing canneices to handle relatively high volumes of traffic by using
defend against such attacks. Kandula et al. [15] propagecialized hardware, but there aren’t many details about
using CAPTCHAs (challenging clients to type a worthe tests used to distinguish between attacks and legiti-
shown in an image) to distinguish humans sending maate traffic. We found no indication that any of these
guests to a web server from automated programs floodgajutions do source prefix based filtering as proposed in
it with requests. This solution can defend against DDdlis paper, and we believe that these solutions might be
attacks with little collateral damage, and it is especialijnproved through the use of the technique we present.
effective against “uplink” attacks that try to congest the ) )
path packets take from the server to the Internet. This so- Source address prefix based filter-
lution does not generalize to non-interactive servicel suc ing of DDoS floods
as DNS and email and it cannot protect the server from

“downlink” attacks that congest the links bringing clienf he goal of SAPF is to apply ACL rules at routers that
requests to the server. drop enough traffic to keep the remaining traffic volume

. within a target rate. To compute these ACL rules we
2.3 Complete DDoS solutions start with two sets of sampled flow records. The first has
Some of the proposed DDoS defenses take more radit& entire traffic of the victim during a non-attack period
steps to provide a definitive solution. Extending the Interhich we use as a “baseline” description. The other set
net architecture with capabilities [32, 33] makes it imposf records has the traffic sent to the victim during an on-
sible for the attackers to send large floods because routgsg attack. The filtering algorithm generates a list of
check the capabilities in the packets and drop all traffic €L rules for routers at the victim’s ISP that filttre traf-
authorized by the receiver. The SOS proposal [16] takgssent to the victinbased on source IP prefixes. The fil-
a different approach: hiding the server behind an overl®yring algorithm tries to limit the collateral damage (tegi
network so that the attacker cannot find out the actual aahate traffic dropped) and the number of rules kept within
dress of the server and thus cannot direct a flood at it. a pre-specified budget. ACL rules are recomputed repeat-
Some proposals for filtering out DDoS attacks advedly throughout the attack so that the filtering can adapt
cate filtering close to the sources [20, 2]. These soluticieschanges in traffic.
can achieve good filtering with small collateral damage, Our measure of the effectiveness of a set of ACL rules
but deployment of such solutions is hindered by a mitsthe amount of legitimate traffic dropped, measured in
alignment of incentives: the networks with the zombidg/tes. We could use other metrics such as the number
spend on defenses and the potential victims benefit. Pushblocked IP addresses that send legitimate traffic, or
back [18] is an architecture for defending against DDa&®mething that differentiates between important clients
attacks, but it does not address the problem of differerdird unimportant ones. Ideally we should minimize the
ating between flood packets and legitimate packets. Tihenetaryloss due to collateral damage. While the number
technique we propose is complementary and it could bEbytes of legitimate traffic discarded is not an exact mea-
integrated into a pushback-type architecture. sure of monetary loss, we consider it a better approxima-
There are numerous commercial solutions implemetitn than the number of legitimate IP addresses blocked.
ing DDoS filtering at the victim or the victim's ISPFor example there can be many clients behind a large web
[24, 23, 7, 9] (see Appendix B of [19] for a survey of comproxy and thus blocking that proxy inflicts more damage
mercial DoS Defenses). These solutions use one or btithn blocking a single user not using a proxy.
of the following approaches: filtering the traffic at high We impose two limitations on the sets of ACL rules
speed routers using ACL rules derived from measumge consider: the traffic that passes should not exceed the
ments of the attack traffic, and running the traffic throughrget rate and the number of rules should be below a pre-
“traffic scrubbing” devices placed between the server $pecified threshold. The number of ACL rules routers can



support is limited by hardware resources (e.g. the sithe client populations of the two servers and this is influ-
of the TCAM used to implement packet classificationgnced not just by the type of server (web, DNS, email,
Furthermore, these rules are used for purposes other tetm) but also by the type of information the two servers
incident response [8], so the number of rules we can we hosting and how much overlap there is between the
for filtering out DDoS attacks is significantly smaller tharets of users interested in it. Section 4.4 has the full ldetai
hardware limits. And if there are multiple attacks active af the experimental setup and a discussion of our results.
the same time, the hardware has to support separate .
rules for each attack because each ruﬁs will th);lve in ?T%eb SAPF as part of broader solutions
destination field the IP address (or prefix) of the victim We do not consider source address prefix based flood fil-
protects. In Section 4 we show that, while a larger nurtering a complete solution, but an imperfect test for dis-
ber of ACL rules can potentially improve protection, totinguishing legitimate traffic from some types of attack
many rules can cause overfitting in the algorithm compuaffic. SAPF is best used in combination with other tech-
ing the ACL and thus increase collateral damage. In duigues as part of broader DDoS defenses (see Figure 1).
experiments we typically limit the number of rules to 10@ne possibility is to use SAPF in combination with traf-
. fic scrubbing approaches when the attack is larger than

3.1 Evading SAPF the capacity of the available traffic scrubbing appliance:
Source address prefix filtering (SAPF) can only be effelsigh speed routers inside the ISP could filter out some
tive if the addresses that most legitimate traffic comes$ the traffic directed at the victim, while the appliance
from do not appear often as source addresses in atta@uld apply its filtering to the remaining traffic. For at-
traffic. Since attackers can spoof source addresses, wheks large enough to congest the ISP’s links close to the
keeps them from exactly matching the distribution afictim SAPF can be applied at multiple routers, deeper in
source addresses in legitimate traffic? There are two mgie network. Another possibility is to combine the source
reasons why SAPF can be helpful despite attackers tryimgfix tests with other techniques to arrive at a better filter
to mimic the distribution of the sources address of legitag solution. For example imagine a DDoS protection so-
imate clients. First, the attackers are not likely to hawgtion that does flow reassembly to detect floods based on
an accurate description of the typical legitimate traffic fapplication-level clues that needs to time out connection
the server; second, spoofing sources to mimic the legi#cords to avoid running out of memory. When combined
imate traffic exposes the attackers to other countermedth SAPF, such a solution could be more aggressive in
sures such as TTL based filtering [13]. For the attackéming out and eventually blocking connections that come
to get the exact distribution of clients, she would hafgom suspicious prefixes. We do not evaluate SAPF in
to break into the server itself or into another computeombination with other methods in this paper. Our goal
used for storing its logs or the flow records collected hiy to give a quantitative answer to the question of how
the first-hop router. SAPF cannot protect against such gbod source prefix information is at separating flood traf-
tackers, but if the attacker can break into the victim, sffie from legitimate traffic.
can probably cause significant damage without resortingWwhen deployed as part of DDoS defenses, SAPF would
to a flooding attack. In some sense the distribution of the extended with various tuning knobs. For example the
source address of legitimate clients is the secret key thatwork administrator might forbid the algorithm from fil-
allows SAPF to protect the victim to some extent from thering out some important, low volume customers whom
attackers. the algorithm could discriminate against. He might also

In our experimental evaluation of collateral damagsssign weights to different prefixes of client addresses,
we consider the two strategies widely employed by cut bias our algorithms towards protecting more important
rent tools: spoofing source addresses at random from ¢fients. Another possibility is to allow the network admin-
routable unicast address space, and using the actualis@ator to manually modify or override the ACLs gener-
dresses of the zombies. We also consider attacks thatdted by SAPF. In this paper we only evaluate SAPF as a
to mimic the legitimate traffic. For these attacks we agefense operating on its own through ACL rules installed
sume that the attacker has the logs of servers other tiraa single high speed router.
the victim and uses them as a model for the distribution gf . .
source addresses in the flood: each source address pre% t Algorithms generating ACL rules
in the legitimate traffic of the model server will appear iim this section we briefly discuss the algorithms we pro-
the attack traffic, and it will represent the same percentaguyese for generating the ACL rules. The technical report
of both types of traffic. The collateral damage caused lgrsion of this paper [25] gives a more detailed descrip-
filtering such attacks depends on the similarity betwe&an. Our algorithms generate the filtering rules based on
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Figure 1: Source address prefix filtering is a technique be=tl @s part of broader DDoS defenses. The example of
the left uses SAPF to do a coarse filtering of a massive floodagmacessing-intensive traffic scrubbing device to
separate the remaining attack traffic from the legitimaaéfit. The example on the right shows how SAPF can be
used in combination with other tests to separate the fload fie legitimate traffic.

a comparative analysis of the traffic at the time of the dixes to allow and which to deny, the algorithms make sim-
tack with regular traffic during an earlier “baseline” peple greedy choices: prefixes that send much traffic during
riod. There ar&3? — 1 possible prefixes, and the numthe flood but not much in the baseline period are denied,
ber of combinations of prefixes we could use is many and prefixes that send much traffic in the baseline but are a
ders of magnitude larger. We do not advocate performiagaller percentage of the traffic during attack are allowed.
an exhaustive search in this space for the optimal list of . .

ACL rules, butthe use of simpler, faster, greedy heuristid  EXperimental evaluation

We experiment with three types of algorithms, produci
three types of outputs: the “positive” algorithm denies gl
traffic going to the victim with the last (default) rule in

e usefulness of SAPF depends on the extent of the col-
eral damage it inflicts. As discussed in Section 3, we

: ) measure collateral damage as the percentage of the legiti-
the list and the other rules specify non-overlapping SOUlGRte traffic (in bytes) that is filtered out. We use actual

prefixes that are allowed to pass; th_e negative algorithifhriow records to reconstruct the legitimate traffic of
allows all traffic by default and the list contains rules fo\; r

o . _ - ious servers traffic and we mix in controlled synthetic
specific non-overlapping prefixes that should be f'ltemﬁ%os floods to evaluate the amount of collateral damage
out; the “mixed” algorithm gives a list with a mix of “ac-

» and “denv” rul ith iol 20D f in various scenarios. We look at how the following factors
cept’an eny” rules with possibly overlapping pre X€3ffect collateral damage: the size of the attack, the strat-

arranged so that the more specific prefixes come bef@ﬁﬁ/ the attackers use to mimic legitimate traffic, the de-

the more general ones. gree of overprovisioning, the number of ACL rules used,
To simplify the choice of prefixes in the output, althe choice of filtering algorithm and the choice of “base-

three algorithms cluster the traffic. Once we have cluge” period used as description of the legitimate traffic.

tered the traffic, the algorithms choose prefix lengths and .

determine which prefixes to add to the output list an%l Methodology and description of data

which not to (and the mixed algorithm also needs to dé/e use two sets of NetFlow data for our experiments. The

cide whether to allow or deny the prefixes it adds to tliest set has traffic coming from the Internet into our uni-

output). This stage ensures that the number of rulesvessity’s campus over two one-week periods separated by

within the budget and that the total traffic that passes thenonth in the first half of 2005. The second data set rep-

filter does not exceed the target rate. In picking which pnesents the traffic for June 2005 on an OC12 peering link



of a regional ISP. The Campus data was collected with a Collateral damage
sampling rate of 1 in 256 packets and the ISP data wjtlictim server 5th percentile/avg./95th percentile
1in 10 packets. We simulate an 8 hour attack during the Src. addr. filtering] Uninformed filt.
busiest time of a Thursday, from 9:00 AM to 5:00 PM. |SP Mail 0.4/2.6/12.7% | 62.8/64.0/65.7%
For each server type we pick the one with the most traflSP Web 2.4/8.3/17.0% | 64.6/66.1/67.3%
fic in its trace as a victim of the simulated DDoS attack/SP NS 7.0/9.6/12.8% | 66.9/67.7/68.3%
For the ISP data we use the largest SMTP server (pesg@mPusMail | 0.9/4.1/14.5% | 62.7/64.3/66.2%
traffic 74.4 MB/5 minute bin), the largest HTTP serve pcampus HTTPS 0'0/1'9/6'8? 62'8/63'9/65'72/0
(peak traffic 4.67MB/5 minute bid)and the largest DNSLE3MPUSDNS | 0.0 /8.6/16.9% | 64.4/65.8/67.4%

server (peak traffic 1.36 MB/5 minute bin). For the Cam-

pus data set we use the largest SMTP server (peak traffifle 1: Collateral damage with the default parameters.
95.6 MB/5 minute bin), the largest HTTPS server (pediositive and uninformed.

traffic 40.7 MB/5 minute bin), and the largest DNS server

(peak traffic 1.28 MB/5 minute bin). We do not COnSIde\/rolume of the attack by controlling the amount of traffic
the largest web server from the Campus data set becaus

it experienced an apparent outage during the period of ﬁ]eer% by individual source addresses.

simulated attack. 4.2 Afirstlook at collateral damage

During the attack, we re-run the algorithms for gener-

ating the ACL rules every 5 minutes. In an actual gén subsequent experiments we look at the effect of vari-

ployment the available measurement data about an att3HR factors on the size of the collateral damage. The first

would be a few minutes old. To capture this disadvanta eriment discussed here uses the default values for the
in our experiments, we evaluate the collateral damage rious factors. We assume a link capacity (or target rate)

flicted by the filtering rules on theext5 minutes’ traffic, of 2 times the peak traffic of the victim, a flood volume of

not on the traffic the rules were computed for. For eaént'mes the peak traffic of the V'Ct.'m’ an_at_tack that uses
H’be actual addresses of the zombies, a limit of 100 on the

setup, we have 95 data points for the 5 minute bins in t . :
b P umber of ACL rules, and we use the positive algorithm

8 hour period of the attack when filtering of the attack
takesuplra)lcel W ering with the previous 3 days’ traffic as baseline.

For the attack traffic we use three methods for gener_We can quantify the reduction in collateral damage we

ating the distribution of source addresses correspondgigieve by_ using filtering r_u_les that di_scriminate a_gainst
to the three strategies discussed in Section 3.1. For‘at- ck traffic and favor legitimate traffic. ' To do this we

tacks with source addresses spoofed at random we fagpare against a .s_|mple “uninformed flltermg” algq-
a uniform distribution of 100,000 random IP address& m that drops legitimate and attack connections with

from the unicast address space (except unroutable > same probability. For the default configuration the

fixes 0.0.0.0/8, 10.0.0.0/8, 127.0.0.0/8, 172.16.0.Giad, @ ;Laﬁil‘_’ Ii(s 6 “m‘?ts _thez Ft’.eak 'egit"k“‘l"‘te.tt.raﬁic* t""';f‘?'
192.168.0.0/16). For attacks where zombies use their o> e liNK capacily Is = limes peak fegitimate trafiic,

IP addresses we need to model the distribution of aif VO thi_rds .Of the traffic is dropped. Note that un-
[ (Eormed filtering is better than the behavior of routers

dresses for the zombies. We do not have data that '8 o .
lows us to measure directly such distribution, so we us&l ich drop packets indiscriminately because their queues
’ 8 full: under the current behavior of routers, congestion

an indirect method instead. Zombies are often subverfd . . . >
gware TCP compliant legitimate clients reduce their send-

through worms, and computers infected by worms co| e wh the attackers don't and th d )
tinue to scan. By logging scans to unused address spI gfate whereas the attackers dontand they end up using
entire bandwidth.

we can get an approximate distribution of the computé o -
infected by worms and we use it to model the distribu- 1@P1e 1 and 2 show that for all victims, SAPF positive
tion of zombies. We used a one week trace of scans capd Mixed algorithms have around an order of magnitude

tured by two unused /19 campus networks. The third lower collateral damage than uninformed filtering. SAPF
tack strategy we consider tries to mimic the distributidii more effective protecting SMTP and HTTPS servers
of legitimate clients of the victim by using the traffic ofhan HTTP and DNS servers which incur larger collateral

another server as a model. We use as models other Serg@pgage. The reason is that the distribution of legitimate

from our data sets. For all types of attacks we control tAients for HTTP and DNS servers is more similar to dis-
tribution of zombies. We note that the HTTPS server had

2Note that this is the direction of traffic going towards théxserver, DY far the fewe.St distinct client IP addresses of all servers
traffic in the opposite direction is much larger. (149 per week in the campus NetFlow data sampled 1/256
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Victim Algorithm 100 Intensity of Attack(1x Link Capacity)
server Mixed | Negative —e— Uninformed filtering ‘
: ool L* Source address filtering i
ISP Mail 0.2/3.0/17.4% | 1.2/15.1/35.6%
ISP Web 9.3/17.5/29.0%| 4.6/12.6/22.9% U 1
ISP DNS 6.9/10.0/13.9%| 22.1/36.2/48.4%) §707 ]
Campus Mail 0.2/6.0/25.4% | 3.7/16.3/36.8% g
Campus HTTPS 0.1/6.7/26.6% | 2.3/7.2/23.8% 8 60r 1
Campus DNS 1.2/6.8/15.4% | 16.1/33.0/57.8%) g 50} 1
%
o

Table 2: The collateral damage with mixed and negative
algorithms for default parameters.

20 1

ol |
compared to 21,384 for DNS and 59,017 for SMTP), anc
it was easier to protect such a small client population. i X ame 2% 100x

For bins where the legitimate traffic is lower than its 100 Degree of Overprovisioning(lO?x Attack Size) ‘

peak, the collateral damage of uninformed filtering is ®\é\e\
slightly below 66.7%. For other bins it is slightly higher. % 1
The reason is that we rounded down the peak traffic ti_so- .
the next megabyte when computing the link capacity an< 20l

attack size. g
Our most important conclusions are as follows. 8% } i
< |
e SAPF is an order of magnitude more effective tharg >
uninformed filtering. 8 40 1
e Some types of servers (SMTP) are significantly easie °; 7
to protect than others (web, DNS). 200 1

—e— Uninformed filtering

4.3 Intensity of attack and degree of over-  *%[—y ng
. . * - Source address filtering
provisioning 0 ix 2% BX 10x

QOverprovisioning

The intensity of the attack and the size of the link connect-

ing the server to the Internet influence how aggressive thigure 2: The effect of increased attack sizes and in-
filtering has to be to keep the link uncongested. Here weeased overprovisioning for the ISP web server.

present experiments evaluating the effect of those two fac-

tors on the collateral damage. Figures 2 and 3 show result

for attacks against the ISP web server and the Campagitimate traffic to pass for the mail server and 32.6% for
mail server. The first plot in each figure shows how thge web server.

collateral damage increases as we increase the attack sizlehe higher the ratio between flood size and link size
from 1 times the peak legitimate traffic to 100 times, Wia'f/:e larger the collateral damage. But even when we keep
a tlghtly provisioned I|_nk of capacity eq-ual to the P€3ihis ratio constant, the collateral damage depends on the
trafﬁc.- In second plqt in each flgur_g We Increase .the l'r}htack size. Table 3 has in its first column the collateral
capacity to up to 20 times peak legitimate traffic with COQfamage of an attack 20 times larger than the peak traffic
stant attack size of 100 times peak traffic. Collateral da@gainst a link only 2 times the peak traffic and in the sec-
age decrifasgs a?_lwe Imcrease the_“nl'k capa_cnyh beCYRE column an attack 100 times the peak traffic against a
we can afford to filter less aggressively. As in the preqy 10 times the peak traffic. For all servers the collateral
vious section, the collateral damage is consistently Iov‘f%mage is significantly lower for the second scenario. We

for the mail server thgn for the _vvet_) SErver. The a‘dv""l’?énclude that SAPF could be a good pre-filter in systems
tage of SAPF over uninformed filtering is even larger f(?fsing multiple filters against very large attacks.
the more challenging scenarios with large attacks agains

small links. Whereas uninformed filtering would allow
1% of the legitimate traffic through when the attack size SAPF improves its advantage over uninformed filter-
is 100 times the link capacity, SAPF allows 49.4% of the ing for large attacks.

ur most important conclusions are as follows.



Intensity of Attack(1x Link Capacity) Collateral damage

—o— Uninformed filtering Victim server 5th percentile/avg./95th percentile
* - Source address filtering - -
90F 1 Flood 20x link 2x | Flood 100x, link 10x
80} 1 ISP Mail 2.6/12.1/29.9% 1.7/18.3/24.2%
701 | ISP Web 18.6/29.8/41.3% 10.3/18.5/28.7%
ISP DNS 27.3/30.6/34.1% 14.8/17.0/20.1%

Campus Mail | 4.6/14.0/29.0% 2.3/9.5/26.7%
1 Cmps. HTTPS| 1.6/5.8/13.6% 1.4/4.2/9.0%
Campus DNS | 22.0/34.7/46.2%| 14.7/25.8/36.3%

u
o
T

Collateral Damage(%)
[o2]
=

Table 3: Overprovisioning has a stronger effect than at-

20r 1 tack size.
10t 7
o | | | | Port number (service nam¢)Distinct addresse$

> > attack Size ¢ 100x 445 (SMB) 339,047
100 Degree of Overprovisioning(100x Attack Size) 135 (DCOM) 9,642
N T 80 (Web) 4,333
I 1 6129 (Dameware) 2,318
80 1 [1433(Msft. SQL) 886

Table 4: Number of scanners.

We model the distribution of zombies after the IP ad-
dresses of computers scanning unused IP address space

Collateral Damage(%)
[o2]
=
.

30r ] because these computers are often infected by worms, and
200 | thuslikely to be turned into zombies. In practice there are
10l . | many networks of zombies_(botnets) cor_1tro|led by dif-
?Sg'uf}fggggg,gggfmg,mg ferent groups. We model different zombie networks by
0 ix 2x BX 10x grouping scanners based on the port number they scan on,

O ionin . . [, .
verprovisioning because computers with different vulnerabilities areljike

59 be infected by different worms (and subsequently con-
troIIed by the writers of those worms). Table 4 gives the

sizes of the 5 networks of zombies used in this section.
For all other experiments we used a sample of 100,000 IP

e Overprovisioning has a stronger effect on collater@fidresses from those scanning on port 445.
damage than the size of the attack.

Figure 3: The effect of increased attack sizes and
creased overprovisioning for the Campus mail server.

4.4 Attack strategy 18]
5 [']1sP DNS

SAPF relies on finding differences between the distrib 1o Il Camp. DNS

. X 8 14L [ 1sP web

tion of source addresses of regular traffic and the flood, g B Camp. Mai

the strategy the attacker uses to set the source addre & 12y [ 1sP Mail

influences the effectiveness of filtering. We first compa T *f B Camp. HTTPS

two strategies implemented by existing tools: spoofit & 8 ||

source addresses at random and using the actual so L:) 6r ||

addresses of the zombies. Next we evaluate the effecti = 4f

ness of trying to mimic the source address distribution 2r H || ‘ I ‘I i
0 B I Il Fillmlla 8 i

the victim’s legitimate clients by modeling attacks afte Zomb,e Zomb,e Zombie zombie Zzombie uniform
445 135 80 129 1433

other servers’ traffic. All attacks have the same volun__
(5 times the peak traffic of the victim). We do not model

the effects of egress filtering on attacks that spoof soufdgure 4: Attacks with different zombie networks using
addresses. their own addresses or spoofing uniformly at random.



Figure 4 shows a comparison of the collateral dam 80
inflicted by attacks using the IP addresses of the 5 zon
networks and uniformly spoofed source addresses or
6 servers we consider. We draw a number of surpris
conclusions from these results. Contrary to our expe
tion, spoofing source addresses uniformly inflicts coll
eral damage similar to the most effective zombie netw
distribution. We would have expected that uniform spo
ing will use more IP addresses from ranges where n
of the servers have legitimate clients and thus be et 101
to filter with little collateral damage. It was not surpri 0
. . R . ISP ISP ISP CMP CMP CMP CMP
ing to see that the address distributions of some zon Web DNS Mail Web Https DNS Mail
networks were able to inflict more damage than oth
But the amount of damage is not related to the size of

ISP Web Self
[ Other ISP Web

~
o
T

% Collateral Damage
w b al [)]
[=] o o o

N
o
T

80

zombie network. Ports 445 and 135 expose vulnerabili or Eg?hné??amﬁssﬂgn

in desktop clients and the zombies and inflict simila §60*

high collateral damage despite the fact that the nun ‘;:fsof

of distinct IP addresses in the port 445 zombie netw & 4,

is one order of magnitude higher. The next most darr 3 s0l

ing zombie network is that built by exploiting Microso =

SQL, an application that typically runs on servers loca 20;

close to the clients. It is more damaging than the lar 10- M IIHH
zombie network based on exploiting web server vulne 0

bilities and significantly more damaging than the zom Web DNS Mail Web Htps OGNS M

network built by exploiting vulnerabilities in remote com-

puter management software which are closely clusteredsgure 5: Attacks with source address distributions mod-
a few networks (566 distinct /16s for Microsoft SQL vereled after the traffic of servers of the same type as the
sus 649 /16s for Dameware). victim can be very damaging.

Figure 5 shows the effects of attacks where the distri-
bution of source addresses is modeled after the trafic of
another server. The top plot shows attacks against faethe DNS servers is a combination of the distribution
largest ISP web server and the bottom graph shows @fithe clients of all other services (more exactly their lo-
tacks against the largest Campus mail server. Each clu§@DNS servers), but it does not give a good indication of
of bars represents attacks based on traffic derived from H@ amount of traffic each legitimate client sends.

four examples of each server type indicated on the hori-Our most important conclusions from comparing diffe-

zontal axis. We also included the results for attacks maént strategies faattacks with identical amounts of traffic
eled after the victim’s own traffic from an earlier weekeaching the victinare as follows.

and not surprisingly, the collateral damage inflicted by
SAPF matched the damage of uninformed filtering. Othe?
servers of the same type often proved to be damaging
models (typically less damaging if from the other orga-
nization). Note that for attacks against the largest Came For all victims studied, the most damaging zombie
pus mail server, two servers from the same campus provednetworks are those that result from exploiting vulner-
poor models and the collateral damage of attacks modeledabilities in desktop clients, or servers close to them.
after t.hef“ is. similar to_ t_hat of at.tacks not trying to mimic, The application exploited to build the zombie network
the distribution of legitimate clients. The DNS servers is more important than the number of zombies.
proved the most dangerous models other than servers of

the same type as the victim, with DNS servers from the The damage caused by using SAPF on attacks mod-
same organization slightly more damaging. A possible ex- eled after other servers can be as high as the collat-
planation is that clients to all services go through the DNS €ral damage with uninformed filtering, but the effect
servers for address lookups, so the distribution of clients is highly dependent on the choice of model server.

Spoofing source addresses at random is as damaging
as using the actual addresses in the most damaging of
our simulated zombie networks.



60 Effect of increased ACL rules

4 fcgmgﬂg Hes o ‘ ‘ Positive Algorithm
o Campus DNS
50p, = ISF mai 1 ] prev. hour
N - - -ISPDNS 50 Il prev. day same hour
- [ I prev. 1day
S o Il prev. 3days
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e %40
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Figure 6: Typically collateral damage decreases as we ir 1 prev. hour
crease the number of rules. sol Il prev. day same hour
[ prev. 1day
. o Il prev. 3days
The number of ACL rules affects how exact our filter- g [ prev. 1week

Eaol
ing of the traffic can be. With few rules we can do onlyg40

coarse filtering, with more rules the granularity improves £
Figure 6 plots the average collateral damage for the ‘%3"’
servers considered when using the mixed algorithm t§
generate the filtering rules. For some servers the decrea 2}
in collateral damage is more pronounced as the number (
rules increases. Surprisingly, for the ISP web server th o/
collateral damage increases after we increase the numkt

of rules above 50. By looking at the actual ACL rules gen-

erated we found the explanation of this apparent anomaly.

W'th a Ia_rger budget for the number of rules, the f|_|te “igure 7: The effect of different baselines for the positive
ing algorithm generates many ACL rules that deny indj-

vidual IP addresses of legitimate clients which do not a[aatld mixed algorithm.
pear in the baseline, but for which there are other clients
in the same /16 that do appear. Having only few AClie hour before the attack) does not capture the full diver-

rules forces the algorithm to make decisions about fes\f‘f¥ of legitimate clients. Using older baselines (an earli

Igrge aggrggat_es. The_se larger aggregates do have %ék) can miss shifts in the client population yet in most
fic in the historic baseline, and are consequently not fil...~ - < these older baselines also work well

tered out. But when the decision is made on individuaIWe also compared our three algorithms “positive”
IP addresses, the legitimate client address that is not, in P 9 P '

. o ixed” and “negative” (see Section 3.3 for a description
the baseline seems to be an attacker and it is filtered QUL & 4 orithms) with many values for the parameters
Improvements to the algorithms generating the ACL rul 9 y P :

could eliminate this overfitting of the baseline data. For .brevity we omit the ql_etailed regults (see Table 2 for
partial results). The positive and mixed algorithms have

4.6 Baseline and filtering algorithm similar results for most configurations, but positive has a
. ) ) ] . slight overall advantage. The negative algorithm results

We experimented with using various portions of the traffig significantly higher collateral damage than either of the

log of the victim as baselines for the filtering algorithmg,iher algorithms and we do recommend against its use.
For most servers and most algorithms for generating ACL

rules, the choice of the baseline period had a small g Conclusions

fect on the collateral damage. Figure 7 shows that the 3

days prior to the attack worked well for all configuration®istributed denial of service attacks are an on-going con-
Using shorter baselines, closer to the time of the attaoérn for ISPs and companies with an online presence. De-

ISP Mail ISP Web ISP DNS Camp. Mail Camp. HTTPS Camp. DN
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fending against flooding attacks is the subject of signiffass. We have also demonstrated a relative insensitivity of
cant academic research efforts and there are many c@APF to baseline choice. From the experimental results
mercial solutions implementing DDoS defenses. A hawvge conclude that source address prefix based filtering can
problem that all these defenses need to solve is distimprove DDoS defenses.

guishing the attack traffic which should be filtered out
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