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Abstract
Distributed denial of service (DDoS) attacks are a grave
threat to Internet services and even to the network itself.
Widely distributed “zombie” computers subverted by ma-
licious hackers are used to orchestrate massive attacks.
Any defense against such flooding attacks must solve the
hard problem of distinguishing the packets that are part of
the attack from legitimate traffic, so that the attack can be
filtered out without much collateral damage. We explore
one technique that can be used as part of DDoS defenses:
using ACL rules that distinguish the attack packets from
the legitimate traffic based on source addresses in packets.
One advantage of this technique is that the ACL rules can
be deployed in routers deep inside the network where the
attack isn’t large enough to cause loss of legitimate traf-
fic due to congestion. The most important disadvantage
is that the ACL rules can also cause collateral damage by
discarding some legitimate traffic. We use simulations to
study this damage how it is influenced by various factors.
Our technique is much better than uninformed dropping
due to congestion, but it produces larger collateral damage
than more processing-intensive approaches. For example
it can reduce the attack size by a factor of 3 while also
dropping between 2% and 10% of the legitimate traffic.
We recommend the use of source address prefix based fil-
tering in combination with other techniques, for example
as a coarse pre-filter that ensures that devices performing
the processing-intensive filtering are not overwhelmed.

1 Introduction
Distributed denial of service (DoS) attacks are a major
threat to the reliable functioning of Internet services and
current measures against them, while effective in some
instances, have not been sufficient to eradicate this threat.
Moore et al.[22] identified more than 4,000 attacks per
week using a conservative method that underestimates the
number of attacks. While most attacks are short and tar-
get small sites, large well-provisioned sites are far from
immune from this threat. There are reports of large at-

tacks with between 600,000 and 1,800,000 packets per
second or more [22, 11, 31] and data volumes as high as 3
Gbits/s [4]. These statistics are for attacks from 2003 and
earlier; today’s attacks are likely larger. (D)DoS attacks
have disrupted large search engines, e-commerce sites,
news sites [12], and root DNS servers [31]. The threat
of floods has been used repeatedly by various criminal or-
ganizations to extort “protection money” from businesses
with an online presence [26, 4, 6]. A disturbing develop-
ment is that in the last few years malicious hackers have
launched DDoS attacks using large networks of “zom-
bies”: computers taken over through a worm or through
some other automated method. The Code Red II worm
infected 359,000 computers [21] and an earlier version of
that worm has been programmed to perform a DDoS at-
tack against www1.whitehouse.gov. The sheer size of ob-
served zombie networks together with the fact that many
of the zombie computers have high speed Internet con-
nections gives us reason to fear that future attacks could
be more vicious than what we have witnessed so far and
their effects even more crippling.

In this paper we investigate a light-weight approach to
filtering attack traffic based on the historic distribution
of packet source addresses arriving at a given IP address
and service port. We hypothesize that the distribution of
source addresses is relatively stable over a period of days
for some services and weeks for other services. The re-
sults of our measurements are consistent with this hypoth-
esis. Furthermore, the distribution of source addresses in
the flood can differ significantly from the historic distri-
bution of clients for the server under attack. We then
use these distributions combined with examples of cur-
rent traffic to generate prefix filtering rules that allow as
much traffic through as possible so as to nearly fill the ca-
pacity of the link. An even stronger defense would com-
bine source address prefix filtering (SAPF) with a “traf-
fic scrubbing” solution that performs more complex pro-
cessing to distinguish between legitimate and illegitimate
traffic. The goal is to avoid congesting the bottleneck link
(or overwhelming the traffic scrubbing device) and at the
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same time allow as much legitimate traffic through as pos-
sible. We refer to any legitimate traffic that is filtered out
as collateral damage.

The main advantage of our technique is that it can be
applied against the largest floods as ACLs are supported
by even the highest speed routers, and they can be “pushed
out” deep enough into the network where the attack is not
large enough to cause congestion. The computational re-
quirements to derive the ACL rules are small, and a rela-
tively small number of rules is required, 20 to 50 in our
experiments. These computations are based on widely
supported traffic data such as sampled NetFlow that can
be collected without slowing the routers down. The ISP
can deploy SAPF against multiple simultaneous attacks
targetting different clients, as the ACL rules also contain
the address of the victim in the destination prefix field.
The main disadvantage of SAPF is that it can produce
significant collateral damage. Therefore it is best used
as a pre-filter to more processing-intensive defenses, or in
combination with other techniques.

2 Related work
Defending against distributed denial of service attacks is
an important problem that has the attention of the aca-
demic community and industry alike. We divide the re-
lated work into three distinct categories: detection of DoS
floods, tests to distinguish attack traffic from legitimate
traffic, and complete solutions to the DoS problem. The
difference between the second category and the first is the
focus on filtering out the attack traffic. The difference be-
tween the second and the third category is less well de-
fined. But we consider a piece of work to be in the second
category if its main contribution is to propose a good test
for differentiating attack traffic from legitimate traffic,and
in the third if it proposes a comprehensive solution to the
DDoS problem. Our work fits into the second category.

2.1 Detecting DoS attacks
A first step in defending against a flood is to detect that an
attack is in progress and to identify the victim(s). MUL-
TOPS [10] allows routers to detect the victims of flooding
attacks by tracking inbalances between the two directions
of traffic using a data structure that adapts to the current
distribution of destination addresses. Jung et al. use map-
pings from IP addresses to AS numbers [14] to distinguish
between flooding attacks and flash crowds.

2.2 Differentiating between the attack and
the legitimate traffic

Some denial of service attacks achieve their goals with
relatively little traffic by exploiting protocol weaknesses

or vulnerabilities in implementations. SYN floods exhaust
the memory of servers that allocate per connection state
in response to SYN packets. Other attacks exploit (no
longer common) bugs in Windows that causes the victim
to hang or reboot when it receives certain malformed IP
fragments. Defenses against such attacks work by rec-
ognizing and discarding the packets or packet sequences
crafted to cause damage. The focus of this paper is not on
such attacks but on brute force attacks that cause damage
by producing severe congestion on the links connecting
the victim to the Internet.

Floods can cause damage irrespective of the contents
and the headers of their packets. Yet, packets that are
part of the flood can be easy to distinguish. Starting with
the earliest DDoS tools, floods of ICMP and UDP packets
have been a popular weapon [19]. It is relatively easy to
defend against such attacks if they are directed at a web
or mail server if one can install a few ACL rules at un-
congested high speed routers instructing them to drop the
attack traffic. When the flood packets are not that easily
distinguishable (a flood of TCP packets with destination
port 80 against a web server), filtering them out is harder.
“Blackholing” the IP address of the victim using the rout-
ing protocol to instruct all routers to drop traffic sent to the
victim promptly stops the attack. The problem with this
approach is that the routers also drop all the legitimate
traffic to the victim1. Often the attackers spoof the source
addresses of the packets in the flood to make it harder to
filter the attack. Many defenses rely on identifying and
filtering out the spoofed packets. Egress filtering [17] of-
ten implemented using uRPF BGP source filtering uses
knowledge of the network topology to drop many of the
spoofed packets close to the sources of the attack. Park
and Lee show [27] that filtering based on routing infor-
mation available to routers can be very effective against
spoofed traffic in Internet-like topologies if deployed by
as few as 20% of ISPs. The Spoofer project [5] estimates
that despite such measures, one quarter of the comput-
ers in the Internet can still spoof source addresses. Close
to the victim, TTL based filtering proposed by Jin et al.
[13] can be applied to detect spoofed packets. This ap-
proach can filter out up to 90% of the flood without much
collateral damage, but it requires custom equipment since
it is not supported by current routers. Peng et al. [28]
proposed distinguishing between attackers and legitimate
clients based on source IP addresses, but they do not use

1Recently Steven Bellovin proposed an extension to the IP protocol
known as the “evil” bit[3]. Filtering on this bit could result in a ma-
jor reduction of collateral damage, but since this extension is not (yet)
widely supported by routers and operating systems, and the incetives
for its adoption by malicious software have not (yet) been convincingly
articulated, we do not consider it in this paper.
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prefixes, but store individual IP addresses in a Bloom filter
requiring custom hardware. Based on their evaluation of
the effectiveness of their technique it is hard to compare it
with the one we propose here.

Since early 2005 floods that are harder to filter have
been reported. As large zombie networks have at least
tens of thousands of computers, attackers started using the
real IP addresses of the zombies to initiate “legitimate”
sessions that overload the server with large volumes of
traffic [30]. Tests that rely on detecting spoofing cannot
defend against such attacks. Kandula et al. [15] propose
using CAPTCHAs (challenging clients to type a word
shown in an image) to distinguish humans sending re-
quests to a web server from automated programs flooding
it with requests. This solution can defend against DDoS
attacks with little collateral damage, and it is especially
effective against “uplink” attacks that try to congest the
path packets take from the server to the Internet. This so-
lution does not generalize to non-interactive services such
as DNS and email and it cannot protect the server from
“downlink” attacks that congest the links bringing client
requests to the server.

2.3 Complete DDoS solutions
Some of the proposed DDoS defenses take more radical
steps to provide a definitive solution. Extending the Inter-
net architecture with capabilities [32, 33] makes it impos-
sible for the attackers to send large floods because routers
check the capabilities in the packets and drop all traffic not
authorized by the receiver. The SOS proposal [16] takes
a different approach: hiding the server behind an overlay
network so that the attacker cannot find out the actual ad-
dress of the server and thus cannot direct a flood at it.

Some proposals for filtering out DDoS attacks advo-
cate filtering close to the sources [20, 2]. These solutions
can achieve good filtering with small collateral damage,
but deployment of such solutions is hindered by a mis-
alignment of incentives: the networks with the zombies
spend on defenses and the potential victims benefit. Push-
back [18] is an architecture for defending against DDoS
attacks, but it does not address the problem of differenti-
ating between flood packets and legitimate packets. The
technique we propose is complementary and it could be
integrated into a pushback-type architecture.

There are numerous commercial solutions implement-
ing DDoS filtering at the victim or the victim’s ISP
[24, 23, 7, 9] (see Appendix B of [19] for a survey of com-
mercial DoS Defenses). These solutions use one or both
of the following approaches: filtering the traffic at high
speed routers using ACL rules derived from measure-
ments of the attack traffic, and running the traffic through
“traffic scrubbing” devices placed between the server to

be protected and the rest of the Internet. Individual traffic
scrubbing appliances can be overwhelmed by very large
attacks. Agarwal et al. propose building regional centers
with many such appliances within the ISP [1] and redi-
recting the traffic of servers under attack through these
centers. Prolexic [29] uses a similar approach based on
redirection to a high bandwidth data center that performs
traffic cleaning using custom tools. Public material de-
scribes the architecture that allows traffic scrubbing de-
vices to handle relatively high volumes of traffic by using
specialized hardware, but there aren’t many details about
the tests used to distinguish between attacks and legiti-
mate traffic. We found no indication that any of these
solutions do source prefix based filtering as proposed in
this paper, and we believe that these solutions might be
improved through the use of the technique we present.

3 Source address prefix based filter-
ing of DDoS floods

The goal of SAPF is to apply ACL rules at routers that
drop enough traffic to keep the remaining traffic volume
within a target rate. To compute these ACL rules we
start with two sets of sampled flow records. The first has
the entire traffic of the victim during a non-attack period
which we use as a “baseline” description. The other set
of records has the traffic sent to the victim during an on-
going attack. The filtering algorithm generates a list of
ACL rules for routers at the victim’s ISP that filterthe traf-
fic sent to the victimbased on source IP prefixes. The fil-
tering algorithm tries to limit the collateral damage (legit-
imate traffic dropped) and the number of rules kept within
a pre-specified budget. ACL rules are recomputed repeat-
edly throughout the attack so that the filtering can adapt
to changes in traffic.

Our measure of the effectiveness of a set of ACL rules
is the amount of legitimate traffic dropped, measured in
bytes. We could use other metrics such as the number
of blocked IP addresses that send legitimate traffic, or
something that differentiates between important clients
and unimportant ones. Ideally we should minimize the
monetary loss due to collateral damage. While the number
of bytes of legitimate traffic discarded is not an exact mea-
sure of monetary loss, we consider it a better approxima-
tion than the number of legitimate IP addresses blocked.
For example there can be many clients behind a large web
proxy and thus blocking that proxy inflicts more damage
than blocking a single user not using a proxy.

We impose two limitations on the sets of ACL rules
we consider: the traffic that passes should not exceed the
target rate and the number of rules should be below a pre-
specified threshold. The number of ACL rules routers can
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support is limited by hardware resources (e.g. the size
of the TCAM used to implement packet classification).
Furthermore, these rules are used for purposes other than
incident response [8], so the number of rules we can use
for filtering out DDoS attacks is significantly smaller than
hardware limits. And if there are multiple attacks active at
the same time, the hardware has to support separate ACL
rules for each attack because each rule will have in the
destination field the IP address (or prefix) of the victim it
protects. In Section 4 we show that, while a larger num-
ber of ACL rules can potentially improve protection, too
many rules can cause overfitting in the algorithm comput-
ing the ACL and thus increase collateral damage. In our
experiments we typically limit the number of rules to 100.

3.1 Evading SAPF
Source address prefix filtering (SAPF) can only be effec-
tive if the addresses that most legitimate traffic comes
from do not appear often as source addresses in attack
traffic. Since attackers can spoof source addresses, what
keeps them from exactly matching the distribution of
source addresses in legitimate traffic? There are two main
reasons why SAPF can be helpful despite attackers trying
to mimic the distribution of the sources address of legit-
imate clients. First, the attackers are not likely to have
an accurate description of the typical legitimate traffic for
the server; second, spoofing sources to mimic the legit-
imate traffic exposes the attackers to other countermea-
sures such as TTL based filtering [13]. For the attacker
to get the exact distribution of clients, she would have
to break into the server itself or into another computer
used for storing its logs or the flow records collected by
the first-hop router. SAPF cannot protect against such at-
tackers, but if the attacker can break into the victim, she
can probably cause significant damage without resorting
to a flooding attack. In some sense the distribution of the
source address of legitimate clients is the secret key that
allows SAPF to protect the victim to some extent from the
attackers.

In our experimental evaluation of collateral damage
we consider the two strategies widely employed by cur-
rent tools: spoofing source addresses at random from the
routable unicast address space, and using the actual ad-
dresses of the zombies. We also consider attacks that try
to mimic the legitimate traffic. For these attacks we as-
sume that the attacker has the logs of servers other than
the victim and uses them as a model for the distribution of
source addresses in the flood: each source address present
in the legitimate traffic of the model server will appear in
the attack traffic, and it will represent the same percentage
of both types of traffic. The collateral damage caused by
filtering such attacks depends on the similarity between

the client populations of the two servers and this is influ-
enced not just by the type of server (web, DNS, email,
etc.) but also by the type of information the two servers
are hosting and how much overlap there is between the
sets of users interested in it. Section 4.4 has the full details
of the experimental setup and a discussion of our results.

3.2 SAPF as part of broader solutions
We do not consider source address prefix based flood fil-
tering a complete solution, but an imperfect test for dis-
tinguishing legitimate traffic from some types of attack
traffic. SAPF is best used in combination with other tech-
niques as part of broader DDoS defenses (see Figure 1).
One possibility is to use SAPF in combination with traf-
fic scrubbing approaches when the attack is larger than
the capacity of the available traffic scrubbing appliance:
high speed routers inside the ISP could filter out some
of the traffic directed at the victim, while the appliance
would apply its filtering to the remaining traffic. For at-
tacks large enough to congest the ISP’s links close to the
victim SAPF can be applied at multiple routers, deeper in
the network. Another possibility is to combine the source
prefix tests with other techniques to arrive at a better filter-
ing solution. For example imagine a DDoS protection so-
lution that does flow reassembly to detect floods based on
application-level clues that needs to time out connection
records to avoid running out of memory. When combined
with SAPF, such a solution could be more aggressive in
timing out and eventually blocking connections that come
from suspicious prefixes. We do not evaluate SAPF in
combination with other methods in this paper. Our goal
is to give a quantitative answer to the question of how
good source prefix information is at separating flood traf-
fic from legitimate traffic.

When deployed as part of DDoS defenses, SAPF would
be extended with various tuning knobs. For example the
network administrator might forbid the algorithm from fil-
tering out some important, low volume customers whom
the algorithm could discriminate against. He might also
assign weights to different prefixes of client addresses,
to bias our algorithms towards protecting more important
clients. Another possibility is to allow the network admin-
istrator to manually modify or override the ACLs gener-
ated by SAPF. In this paper we only evaluate SAPF as a
defense operating on its own through ACL rules installed
in a single high speed router.

3.3 Algorithms generating ACL rules
In this section we briefly discuss the algorithms we pro-
pose for generating the ACL rules. The technical report
version of this paper [25] gives a more detailed descrip-
tion. Our algorithms generate the filtering rules based on
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Figure 1: Source address prefix filtering is a technique best used as part of broader DDoS defenses. The example of
the left uses SAPF to do a coarse filtering of a massive flood anda processing-intensive traffic scrubbing device to
separate the remaining attack traffic from the legitimate traffic. The example on the right shows how SAPF can be
used in combination with other tests to separate the flood from the legitimate traffic.

a comparative analysis of the traffic at the time of the at-
tack with regular traffic during an earlier “baseline” pe-
riod. There are233 − 1 possible prefixes, and the num-
ber of combinations of prefixes we could use is many or-
ders of magnitude larger. We do not advocate performing
an exhaustive search in this space for the optimal list of
ACL rules, but the use of simpler, faster, greedy heuristics.
We experiment with three types of algorithms, producing
three types of outputs: the “positive” algorithm denies all
traffic going to the victim with the last (default) rule in
the list and the other rules specify non-overlapping source
prefixes that are allowed to pass; the “negative” algorithm
allows all traffic by default and the list contains rules for
specific non-overlapping prefixes that should be filtered
out; the “mixed” algorithm gives a list with a mix of “ac-
cept” and “deny” rules with possibly overlapping prefixes
arranged so that the more specific prefixes come before
the more general ones.

To simplify the choice of prefixes in the output, all
three algorithms cluster the traffic. Once we have clus-
tered the traffic, the algorithms choose prefix lengths and
determine which prefixes to add to the output list and
which not to (and the mixed algorithm also needs to de-
cide whether to allow or deny the prefixes it adds to the
output). This stage ensures that the number of rules is
within the budget and that the total traffic that passes the
filter does not exceed the target rate. In picking which pre-

fixes to allow and which to deny, the algorithms make sim-
ple greedy choices: prefixes that send much traffic during
the flood but not much in the baseline period are denied,
and prefixes that send much traffic in the baseline but are a
smaller percentage of the traffic during attack are allowed.

4 Experimental evaluation
The usefulness of SAPF depends on the extent of the col-
lateral damage it inflicts. As discussed in Section 3, we
measure collateral damage as the percentage of the legiti-
mate traffic (in bytes) that is filtered out. We use actual
NetFlow records to reconstruct the legitimate traffic of
various servers traffic and we mix in controlled synthetic
DDoS floods to evaluate the amount of collateral damage
in various scenarios. We look at how the following factors
affect collateral damage: the size of the attack, the strat-
egy the attackers use to mimic legitimate traffic, the de-
gree of overprovisioning, the number of ACL rules used,
the choice of filtering algorithm and the choice of “base-
line” period used as description of the legitimate traffic.

4.1 Methodology and description of data
We use two sets of NetFlow data for our experiments. The
first set has traffic coming from the Internet into our uni-
versity’s campus over two one-week periods separated by
a month in the first half of 2005. The second data set rep-
resents the traffic for June 2005 on an OC12 peering link
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of a regional ISP. The Campus data was collected with a
sampling rate of 1 in 256 packets and the ISP data with
1 in 10 packets. We simulate an 8 hour attack during the
busiest time of a Thursday, from 9:00 AM to 5:00 PM.
For each server type we pick the one with the most traf-
fic in its trace as a victim of the simulated DDoS attack.
For the ISP data we use the largest SMTP server (peak
traffic 74.4 MB/5 minute bin), the largest HTTP server
(peak traffic 4.67MB/5 minute bin)2, and the largest DNS
server (peak traffic 1.36 MB/5 minute bin). For the Cam-
pus data set we use the largest SMTP server (peak traffic
95.6 MB/5 minute bin), the largest HTTPS server (peak
traffic 40.7 MB/5 minute bin), and the largest DNS server
(peak traffic 1.28 MB/5 minute bin). We do not consider
the largest web server from the Campus data set because
it experienced an apparent outage during the period of the
simulated attack.

During the attack, we re-run the algorithms for gener-
ating the ACL rules every 5 minutes. In an actual de-
ployment the available measurement data about an attack
would be a few minutes old. To capture this disadvantage
in our experiments, we evaluate the collateral damage in-
flicted by the filtering rules on thenext5 minutes’ traffic,
not on the traffic the rules were computed for. For each
setup, we have 95 data points for the 5 minute bins in the
8 hour period of the attack when filtering of the attack
takes place.

For the attack traffic we use three methods for gener-
ating the distribution of source addresses corresponding
to the three strategies discussed in Section 3.1. For at-
tacks with source addresses spoofed at random we use
a uniform distribution of 100,000 random IP addresses
from the unicast address space (except unroutable pre-
fixes 0.0.0.0/8, 10.0.0.0/8, 127.0.0.0/8, 172.16.0.0/12,and
192.168.0.0/16). For attacks where zombies use their own
IP addresses we need to model the distribution of ad-
dresses for the zombies. We do not have data that al-
lows us to measure directly such distribution, so we used
an indirect method instead. Zombies are often subverted
through worms, and computers infected by worms con-
tinue to scan. By logging scans to unused address space
we can get an approximate distribution of the computers
infected by worms and we use it to model the distribu-
tion of zombies. We used a one week trace of scans cap-
tured by two unused /19 campus networks. The third at-
tack strategy we consider tries to mimic the distribution
of legitimate clients of the victim by using the traffic of
another server as a model. We use as models other servers
from our data sets. For all types of attacks we control the

2Note that this is the direction of traffic going towards the web server,
traffic in the opposite direction is much larger.

Collateral damage
Victim server 5th percentile/avg./95th percentile

Src. addr. filtering Uninformed filt.

ISP Mail 0.4 / 2.6 / 12.7% 62.8 / 64.0 / 65.7%
ISP Web 2.4 / 8.3 / 17.0% 64.6 / 66.1 / 67.3%
ISP DNS 7.0 / 9.6 / 12.8% 66.9 / 67.7 / 68.3%
Campus Mail 0.9 / 4.1 / 14.5% 62.7 / 64.3 / 66.2%
Campus HTTPS 0.0 / 1.9 / 6.8% 62.8 / 63.9 / 65.7%
Campus DNS 0.0 / 8.6 / 16.9% 64.4 / 65.8 / 67.4%

Table 1: Collateral damage with the default parameters.
Positive and uninformed.

volume of the attack by controlling the amount of traffic
sent by individual source addresses.

4.2 A first look at collateral damage

In subsequent experiments we look at the effect of vari-
ous factors on the size of the collateral damage. The first
experiment discussed here uses the default values for the
various factors. We assume a link capacity (or target rate)
of 2 times the peak traffic of the victim, a flood volume of
5 times the peak traffic of the victim, an attack that uses
the actual addresses of the zombies, a limit of 100 on the
number of ACL rules, and we use the positive algorithm
with the previous 3 days’ traffic as baseline.

We can quantify the reduction in collateral damage we
achieve by using filtering rules that discriminate against
attack traffic and favor legitimate traffic. To do this we
compare against a simple “uninformed filtering” algo-
rithm that drops legitimate and attack connections with
the same probability. For the default configuration the
total traffic is 6 times the peak legitimate traffic, whe-
reas the link capacity is 2 times peak legitimate traffic,
so two thirds of the traffic is dropped. Note that un-
informed filtering is better than the behavior of routers
which drop packets indiscriminately because their queues
are full: under the current behavior of routers, congestion
aware TCP compliant legitimate clients reduce their send-
ing rate whereas the attackers don’t and they end up using
the entire bandwidth.

Table 1 and 2 show that for all victims, SAPF positive
and mixed algorithms have around an order of magnitude
lower collateral damage than uninformed filtering. SAPF
is more effective protecting SMTP and HTTPS servers
than HTTP and DNS servers which incur larger collateral
damage. The reason is that the distribution of legitimate
clients for HTTP and DNS servers is more similar to dis-
tribution of zombies. We note that the HTTPS server had
by far the fewest distinct client IP addresses of all servers
(149 per week in the campus NetFlow data sampled 1/256
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Victim Algorithm
server Mixed Negative

ISP Mail 0.2 / 3.0 / 17.4% 1.2 / 15.1 / 35.6%
ISP Web 9.3 / 17.5 / 29.0% 4.6 / 12.6 / 22.9%
ISP DNS 6.9 / 10.0 / 13.9% 22.1 / 36.2 / 48.4%
Campus Mail 0.2 / 6.0 / 25.4% 3.7 / 16.3 / 36.8%
Campus HTTPS 0.1 / 6.7 / 26.6% 2.3 / 7.2 / 23.8%
Campus DNS 1.2 / 6.8 / 15.4% 16.1 / 33.0 / 57.8%

Table 2: The collateral damage with mixed and negative
algorithms for default parameters.

compared to 21,384 for DNS and 59,017 for SMTP), and
it was easier to protect such a small client population.

For bins where the legitimate traffic is lower than its
peak, the collateral damage of uninformed filtering is
slightly below 66.7%. For other bins it is slightly higher.
The reason is that we rounded down the peak traffic to
the next megabyte when computing the link capacity and
attack size.

Our most important conclusions are as follows.

• SAPF is an order of magnitude more effective than
uninformed filtering.

• Some types of servers (SMTP) are significantly easier
to protect than others (web, DNS).

4.3 Intensity of attack and degree of over-
provisioning

The intensity of the attack and the size of the link connect-
ing the server to the Internet influence how aggressive the
filtering has to be to keep the link uncongested. Here we
present experiments evaluating the effect of those two fac-
tors on the collateral damage. Figures 2 and 3 show result
for attacks against the ISP web server and the Campus
mail server. The first plot in each figure shows how the
collateral damage increases as we increase the attack size
from 1 times the peak legitimate traffic to 100 times, with
a tightly provisioned link of capacity equal to the peak
traffic. In second plot in each figure we increase the link
capacity to up to 20 times peak legitimate traffic with con-
stant attack size of 100 times peak traffic. Collateral dam-
age decreases as we increase the linik capacity because
we can afford to filter less aggressively. As in the pre-
vious section, the collateral damage is consistently lower
for the mail server than for the web server. The advan-
tage of SAPF over uninformed filtering is even larger for
the more challenging scenarios with large attacks against
small links. Whereas uninformed filtering would allow
1% of the legitimate traffic through when the attack size
is 100 times the link capacity, SAPF allows 49.4% of the
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Figure 2: The effect of increased attack sizes and in-
creased overprovisioning for the ISP web server.

legitimate traffic to pass for the mail server and 32.6% for
the web server.

The higher the ratio between flood size and link size,
the larger the collateral damage. But even when we keep
this ratio constant, the collateral damage depends on the
attack size. Table 3 has in its first column the collateral
damage of an attack 20 times larger than the peak traffic
against a link only 2 times the peak traffic and in the sec-
ond column an attack 100 times the peak traffic against a
link 10 times the peak traffic. For all servers the collateral
damage is significantly lower for the second scenario. We
conclude that SAPF could be a good pre-filter in systems
using multiple filters against very large attacks.

Our most important conclusions are as follows.

• SAPF improves its advantage over uninformed filter-
ing for large attacks.
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Figure 3: The effect of increased attack sizes and in-
creased overprovisioning for the Campus mail server.

• Overprovisioning has a stronger effect on collateral
damage than the size of the attack.

4.4 Attack strategy

SAPF relies on finding differences between the distribu-
tion of source addresses of regular traffic and the flood, so
the strategy the attacker uses to set the source addresses
influences the effectiveness of filtering. We first compare
two strategies implemented by existing tools: spoofing
source addresses at random and using the actual source
addresses of the zombies. Next we evaluate the effective-
ness of trying to mimic the source address distribution of
the victim’s legitimate clients by modeling attacks after
other servers’ traffic. All attacks have the same volume
(5 times the peak traffic of the victim). We do not model
the effects of egress filtering on attacks that spoof source
addresses.

Collateral damage
Victim server 5th percentile/avg./95th percentile

Flood 20x link 2x Flood 100x, link 10x

ISP Mail 2.6 / 12.1 / 29.9% 1.7 / 8.3 / 24.2%
ISP Web 18.6 / 29.8 / 41.3% 10.3 / 18.5 / 28.7%
ISP DNS 27.3 / 30.6 / 34.1% 14.8 / 17.0 / 20.1%
Campus Mail 4.6 / 14.0 / 29.0% 2.3 / 9.5 / 26.7%
Cmps. HTTPS 1.6 / 5.8 / 13.6% 1.4 / 4.2 / 9.0%
Campus DNS 22.0 / 34.7 / 46.2% 14.7 / 25.8 / 36.3%

Table 3: Overprovisioning has a stronger effect than at-
tack size.

Port number (service name)Distinct addresses

445 (SMB) 339,047
135 (DCOM) 9,642
80 (Web) 4,333
6129 (Dameware) 2,318
1433 (Msft. SQL) 886

Table 4: Number of scanners.

We model the distribution of zombies after the IP ad-
dresses of computers scanning unused IP address space
because these computers are often infected by worms, and
thus likely to be turned into zombies. In practice there are
many networks of zombies (botnets) controlled by dif-
ferent groups. We model different zombie networks by
grouping scanners based on the port number they scan on,
because computers with different vulnerabilities are likely
to be infected by different worms (and subsequently con-
trolled by the writers of those worms). Table 4 gives the
sizes of the 5 networks of zombies used in this section.
For all other experiments we used a sample of 100,000 IP
addresses from those scanning on port 445.
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Figure 4: Attacks with different zombie networks using
their own addresses or spoofing uniformly at random.
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Figure 4 shows a comparison of the collateral damage
inflicted by attacks using the IP addresses of the 5 zombie
networks and uniformly spoofed source addresses on the
6 servers we consider. We draw a number of surprising
conclusions from these results. Contrary to our expecta-
tion, spoofing source addresses uniformly inflicts collat-
eral damage similar to the most effective zombie network
distribution. We would have expected that uniform spoof-
ing will use more IP addresses from ranges where none
of the servers have legitimate clients and thus be easier
to filter with little collateral damage. It was not surpris-
ing to see that the address distributions of some zombie
networks were able to inflict more damage than others.
But the amount of damage is not related to the size of the
zombie network. Ports 445 and 135 expose vulnerabilities
in desktop clients and the zombies and inflict similarly
high collateral damage despite the fact that the number
of distinct IP addresses in the port 445 zombie network
is one order of magnitude higher. The next most damag-
ing zombie network is that built by exploiting Microsoft
SQL, an application that typically runs on servers located
close to the clients. It is more damaging than the larger
zombie network based on exploiting web server vulnera-
bilities and significantly more damaging than the zombie
network built by exploiting vulnerabilities in remote com-
puter management software which are closely clustered in
a few networks (566 distinct /16s for Microsoft SQL ver-
sus 649 /16s for Dameware).

Figure 5 shows the effects of attacks where the distri-
bution of source addresses is modeled after the trafic of
another server. The top plot shows attacks against the
largest ISP web server and the bottom graph shows at-
tacks against the largest Campus mail server. Each cluster
of bars represents attacks based on traffic derived from the
four examples of each server type indicated on the hori-
zontal axis. We also included the results for attacks mod-
eled after the victim’s own traffic from an earlier week,
and not surprisingly, the collateral damage inflicted by
SAPF matched the damage of uninformed filtering. Other
servers of the same type often proved to be damaging
models (typically less damaging if from the other orga-
nization). Note that for attacks against the largest Cam-
pus mail server, two servers from the same campus proved
poor models and the collateral damage of attacks modeled
after them is similar to that of attacks not trying to mimic
the distribution of legitimate clients. The DNS servers
proved the most dangerous models other than servers of
the same type as the victim, with DNS servers from the
same organization slightly more damaging. A possible ex-
planation is that clients to all services go through the DNS
servers for address lookups, so the distribution of clients
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Figure 5: Attacks with source address distributions mod-
eled after the traffic of servers of the same type as the
victim can be very damaging.

for the DNS servers is a combination of the distribution
of the clients of all other services (more exactly their lo-
cal DNS servers), but it does not give a good indication of
the amount of traffic each legitimate client sends.

Our most important conclusions from comparing diffe-
rent strategies forattacks with identical amounts of traffic
reaching the victimare as follows.

• Spoofing source addresses at random is as damaging
as using the actual addresses in the most damaging of
our simulated zombie networks.

• For all victims studied, the most damaging zombie
networks are those that result from exploiting vulner-
abilities in desktop clients, or servers close to them.

• The application exploited to build the zombie network
is more important than the number of zombies.

• The damage caused by using SAPF on attacks mod-
eled after other servers can be as high as the collat-
eral damage with uninformed filtering, but the effect
is highly dependent on the choice of model server.
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4.5 Number of ACL rules allowed
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Figure 6: Typically collateral damage decreases as we in-
crease the number of rules.

The number of ACL rules affects how exact our filter-
ing of the traffic can be. With few rules we can do only
coarse filtering, with more rules the granularity improves.
Figure 6 plots the average collateral damage for the 6
servers considered when using the mixed algorithm to
generate the filtering rules. For some servers the decrease
in collateral damage is more pronounced as the number of
rules increases. Surprisingly, for the ISP web server the
collateral damage increases after we increase the number
of rules above 50. By looking at the actual ACL rules gen-
erated we found the explanation of this apparent anomaly.
With a larger budget for the number of rules, the filter-
ing algorithm generates many ACL rules that deny indi-
vidual IP addresses of legitimate clients which do not ap-
pear in the baseline, but for which there are other clients
in the same /16 that do appear. Having only few ACL
rules forces the algorithm to make decisions about few
large aggregates. These larger aggregates do have traf-
fic in the historic baseline, and are consequently not fil-
tered out. But when the decision is made on individual
IP addresses, the legitimate client address that is not in
the baseline seems to be an attacker and it is filtered out.
Improvements to the algorithms generating the ACL rules
could eliminate this overfitting of the baseline data.

4.6 Baseline and filtering algorithm

We experimented with using various portions of the traffic
log of the victim as baselines for the filtering algorithms.
For most servers and most algorithms for generating ACL
rules, the choice of the baseline period had a small ef-
fect on the collateral damage. Figure 7 shows that the 3
days prior to the attack worked well for all configurations.
Using shorter baselines, closer to the time of the attack
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Figure 7: The effect of different baselines for the positive
and mixed algorithm.

(the hour before the attack) does not capture the full diver-
sity of legitimate clients. Using older baselines (an earlier
week) can miss shifts in the client population yet in most
instances these older baselines also work well.

We also compared our three algorithms “positive”,
“mixed” and “negative” (see Section 3.3 for a description
of the algorithms) with many values for the parameters.
For brevity we omit the detailed results (see Table 2 for
partial results). The positive and mixed algorithms have
similar results for most configurations, but positive has a
slight overall advantage. The negative algorithm results
in significantly higher collateral damage than either of the
other algorithms and we do recommend against its use.

5 Conclusions
Distributed denial of service attacks are an on-going con-
cern for ISPs and companies with an online presence. De-
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fending against flooding attacks is the subject of signifi-
cant academic research efforts and there are many com-
mercial solutions implementing DDoS defenses. A hard
problem that all these defenses need to solve is distin-
guishing the attack traffic which should be filtered out
from the legitimate traffic. In this paper we investigate
a light-weight technique for filtering attack traffic based
on the historic distribution of packet source addresses ar-
riving at a given IP address and service port. The main ad-
vantage of this technique is that it can be applied at high
speed routers without changes in hardware or software.
The main disadvantage is the fact that it causes collateral
damage. We performed extensive experimental evalua-
tion to understand how various factors affect the collat-
eral damage. SAPF is best suited to be used not as a sole
defense, but as a pre-filter to more processing-intensive
filters, or in combination with other techniques.

Our experimental evaluation of SAPF lead to a number
of important conclusions. We evaluated three algorithms
that use a comparative analysis of the traffic of the server
during normal operation and the traffic during the attack
to generate a short list of ACL rules that reduce the traffic
to within a target rate. We used simulated attacks superim-
posed over traces of actual traffic to study the amount of
collateral damage inflicted by source address prefix based
filtering in various scenarios. This collateral damage is
typically an order of magnitude lower than the damage
incurred through uninformed filtering. The average dam-
age is between 2% and 10% when the traffic during the
attack is 3 times the target rate, with damage typically
lower for mail servers than for DNS and web servers. For
attacks using the actual addresses of the zombies, the ef-
fectiveness of SAPF increases if the zombie network is
not built through a worm that exploits a desktop computer
vulnerability. If the attacker mimics the distribution of
the source address of legitimate clients of the victim by
modeling the source addresses used in the attack after the
clients of another server, the damage inflicted by SAPF
can be close to that of uninformed filtering. Some servers,
even some offering the same service as the victim, consti-
tute a bad model for the attack and attacks modeled after
their client distribution do not inflict more collateral dam-
age than attacks with the actual source addresses of the
zombies. The collateral damage inflicted by filtering in-
creases with the attack size, and decreases as the capacity
of the bottleneck link increases. Overprovisioning has a
stronger positive effect than the negative effect of attack
size. We have shown that the distribution of source ad-
dresses is relatively stable over periods of time sufficient
to construct ACL rules which filter enough traffic to avoid
congestion and allow a majority of the legitimate traffic to

pass. We have also demonstrated a relative insensitivity of
SAPF to baseline choice. From the experimental results
we conclude that source address prefix based filtering can
improve DDoS defenses.
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