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Abstract— Network service providers use high speed e
flow measurement solutions in routers to track dominant
applications, compute traffic matrices and to perform other
such operational tasks. These solutions typically need to
operate within the constraints of the three precious router
resources — CPU, memory and bandwidth. Cisco’s Net- o
Flow, a widely deployed flow measurement solution, uses a
configurable static sampling rate to control these resaurce
In this paper, we propose Flow Slices, a solution inspired
from previous enhancements to NetFlow such as Smart
Sampling [8], Adaptive NetFlow (ANF) [10]. Flow Slices,
in contrast to NetFlow, controls the three resource bottle-
necks at the router using separate “tuning knobs”; it uses
packet sampling to control CPU usage, flow sampling to e
control memory usage and finally multi-factor smart sam-
pling to control reporting bandwidth. The resulting solu-
tion has smaller resource requirements than current pro-
posals (up to 80% less memory usage than ANF), enables
more accurate traffic analysis results (up to 10% less er-
ror than ANF) and balances better the error in estimates of
byte, packet and flow counts (flow count estimates up to 8
times more accurate than after Smart Sampling). We pro-e
vide theoretical analyses of the unbiasedness and vagance
of the estimators based on Flow Slices and experimental
comparisons with other flow measurement solutions such
as ANF.

1 Introduction

The role of traffic measurement in operating large scale IP
networks requires little or no introduction. Traffic mea-
surement allows network operators to make informed de- ®
cisions about provisioning and extending their networks,
and it helps solve many operational problems. Specialized
devices operating on relatively low traffic links can per-
form complex security analyses that reveal malicious activ ®
ities [18, 20], monitor complex performance metrics [6], or
simply capture packet (header) traces with accurate times-
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Flow Slices has separate parameters controlling the
three possible bottlenecks at the router: processing
load, memory, and reporting bandwidth. This separa-
tion allows the solution to be applicable in a wide vari-
ety of scenarios with different resource constraints.
The flow slicing algorithm at the core of this solution
provides more accurate results than packet sampling us-
ing the same amount of memory. Moreover, it enables
new measures of traffic such as estimates for the num-
ber of active flows. Note: we use Flow Slices to refer to
the the complete flow measurement solution proposed
in this paper and flow slicing to refer to the algorithm
at the core of the solution.

Flow Slices separates sampling rate adaptation from
binning. Adaptive NetFlow uses more router memory
and measurement bandwidth because its flow records
are active for fixed time intervals (bins). Adaptive sam-
pling rates give Flow Slices the robustness of Adaptive
NetFlow without the overheads of binning. See Table 1
for a comparison of various flow measurement solu-
tions.

We propose multi-factor smart sampling that takes into
account multiple factors such as byte counts, packet
counts, and the existence of SYN flags in the flow
records to determine the sampling probability for in-
dividual flow records. For comparable configurations,
this decreases significantly the variance in estimates
of the number of flow arrivals while increasing only
slightly the variance for byte counts when compared to
Smart Sampling.

Optional binned measurement allows us to eliminate
binning error in the analysis phase, while still main-
taining the memory and reporting bandwidth overheads
below those of Adaptive NetFlow.

We propose novel estimatobs 7, A1), and A® for
various measures of traffic. See Section 4 for a discus-
sion of these and other estimators.

tamps [7] to be analyzed offline. Much simpler solutions  Before we explain Flow Slices, we briefly review some
such as SNMP counters [16] are deployed on even the highsf the previous work in Internet flow measurement.

est speed links, but they only give measurements of the to-
tal volume of the traffic. Flow level measurement at rou-2

Related work

ters [2, 3] offers a good compromise between scalabilityNetFlow [17], first implemented in Cisco routers, is the
and the complexity of the traffic analyses supported sinceénost widely used flow measurement solution today. Rou-
it can offer details about the composition of the traffic mix. ters maintain flow records collecting various bits of infor-
In this paper, we propose a new flow measurement solumation. Flows are identified by fields present in the header
tion: Flow Slices The contributions of this paper are both of every packet: source and destination IP address, proto-
practical and theoretical and we summarize the most imeol, source and destination port, and type of service bits.

portant ones here.

The flow record keeps information such as the number of



| Issue | Sampled NetFlow | Adaptive NetFlow|  Flow Slices |

Memory usage Variable Fixed Fixed
Volume of flow data reported Variable Fixed Fixed
Behavior under DDoS with spoofed sources Panicky flow Reduction in Small reduction
and other traffic mixes with many flows expiration accuracy in accuracy
Estimates of traffic in small time bins Less accurate Accurate Less accurate
Reporting overhead when using small bins Unaffected Large increase Unaffected
Lifetime of flow record in router memory | Min (active timeout, Bin length Min (slice length,
flow length + flow length +
inactivity timeout) inactivity timeout)
Resource usage at end of time bin N/A Reporting spike or N/A
extra memory
Processing intensive tasks Counting Counting and Counting
renormalization
Counting TCP flow arrivals (using SYNSs) Yes Yes Yes
Counting all active flows No Separate flow Yes
counting extensior
Counting all active flows at high speeds No Hardware flow No
counting extensior

Table 1: Sampled NetFlow, Adaptive NetFlow and Flow Slicéfedin the types of measurements they support, in how
they adapt to different traffic mixes, and in their resourgestimption (memory usage and reporting traffic).

packets in the flow, the (total) number of bytes in thosetoo quickly, it switches to less aggressive sampling. It
packets, the timestamp of the first and last packet, and prdhen “renormalizes” existing entries so that they refleet th
tocol flag information such as whether any of those packetsounts they would have had with the new sampling rate in
had the SYN flag set. NetFlow uses four rules to decideeffect from the beginning of the bin. At the end of the bin,
when to remove a flow record from router memory and re-all entries are reported.

port it to the collection station: 1) when TCP flags (FIN  ysing fixed size bins in Adaptive NetFlow increases
or RST) indicate flow termination, 2) 15 seconds (config-the memory utilization compared to Sampled NetFlow and
urable “inactive timeout”) after seeing the last packetwit causes bursts in reporting bandwidth. Memory utiliza-
a matching flow ID, 3) 30 minutes (configurable “active tjon js higher because, to operate seamlessly between bin-
timeout”)’ after the record was created to avoid stalenesgoundaries, Adaptive NetFlow requires two sets of records
and 4) when the memory is full. (double-buffering), one for current bin and one for records
On every new packet, NetFlow looks up the correspondin the previous bin while they are being transmitted. With-
ing entry (creating a new entry if necessary) and updatesut double-buffering, flow records that expire at the bin-
that entry’s counters and timestamps. Since for high speedoundary need to be transmitted immediately to create
interfaces, the processor and the memory holding the flovgpace for the next set of entries. Large flows spanning mul-
records cannot keep up with the packet rate, Cisco introtiple bins are reported separately for every bin increasing
duced Sampled NetFlow [22] which updates the flow cach¢he bandwidth usage. Table 1 gives a summary comparison
only for sampled packets. For a configurable value of a paef Sampled NetFlow, Adaptive NetFlow and Flow Slices.

rameterlV, a packet is sampled with one W probability. The flow records are used to estimate the number of
One problem with NetFlow is that the memaory requiredbytes or packets in various traffic aggregates of interest.
by the flow records and the bandwidth consumed to reThis can give network operators information about domi-
port them depends strongly on the traffic mix. In partic- nant applications, the network usage of various clierds$; tr
ular, large floods of small packets with randomly spoofedfic matrices, and many other useful statistics [12, 19, 1, 14]
source addresses can increase memory and bandwidth r@mart Sampling [8] is a way of reducing the data used by
quirements by orders of magnitude. Adaptive NetFlow [10]such analyses without significantly affecting their result
solves this problem by dynamically adapting the sam-Smart Sampling retains flow records with probability pro-
pling rate. Adaptive NetFlow divides the operation of the portional to the size of their byte counter. The flow records
flow measurement algorithm into equally spaced time binscan also be used to estimate the number of active flows
Within each bin, the algorithm starts by sampling aggreswhich is important when looking for denial of service at-
sively (high sampling probability). If memory is consumed tacks, scans, and worms in the traffic mix. Unfortunately,



Packet Arrival

if we use Sampled NetFlow it is impossible to recover the
number of flows in the original traffic from the collected
data [5] unless we use protocol information. By using the packet sampling
SYN flag information in flow records we can accurately es- reduces processing overneads
timate the number of TCP flows in the traffic mix [9].
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3 Description of flow slices

The core flow slicing algorithm is based on the sample ™ How slicing
and hold algorithm [11]. After presenting the core algo- reduces memory usage

rithm, we discuss four extensions: adding packet sampling
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SLICING PROBABILITY |

to scale to high speed links, using an inactivity timeout to ADAPTIVE
. . BASED ON MEMORY USAGE TIME OUT
reduce memory usage at a router, adding binned measure- AFTER SLICE DURATION
ment to reduce binning error during analysis, and adding FLOW MEMORY

multifactor smart sampling
reduces volume of reports

multi-factor smart sampling to control the volume of flow
data reported. The version of Flow Slices described used
for Table 1 has the first two extensions. We also discuss the

configuration parameters of Flow Slices, and how they can Honttoring Station
be set adaptively based on the current traffic mix.

) Figure 1: Architecture
3.1 Core algorithm

The core flow slicing algorithm addresses the problem of

reducing the memory usage of the flow measurement mod'€ created, on average slightly bela#/t, we can also
ule. Sampled NetFlow and Adaptive NetFlow use randorf<€ep the rate at which flows records are reported smooth.
packet sampling: they only handle sampled packets. Judfp contrast Adaptive NetFlow proposes expiring all active
as sample and hold [11], flow slicing uses sampling only toEntries at the.end of the mgasurement bin, so it ellther has
control the creation of flow entries, once a sampled packe® |arge peak in reports, or it requires buffers that increase
creates an entry for a flow, all its subsequent packets arfk!® memory usage by almost a factor of two if the reporting
counted (not just the sampled ones). This increases the a@! the records is smoothed out over the next measurement
curacy of the estimates of packet counts, without changin§in- We do not however, discuss dynamic adaptation in
the memory requirement. We use the “flow slicing proba-m“Ch (?Ietall in this paper, as_ada_ptanon techmques similar
bility” p to control the creation of flow entries. We expire 0 thatin [10] can be applied in this context using feedback
and report each entry exactlyseconds after its creation, "0m the current memory usage. Note however, that in our
irespective of the rate at which packets arrive for a par-2daptation, we do not require the costly operation of renor-
ticular flow. We call this core algorithm “flow slicing” be- Malization that is required in Adaptive NetFlow. Next we
cause each entry tracks a “slice” of lengtfiom the flow. discuss some of the tuning knobs we provide to co_ntrol the
Just as in the case of NetFlow, the entry associated with §reée resource bottlenecks (CPU, Memory, Bandwidth).
flow has a byte and packet counter updated at every packet, ) .
timestamps for the first and last packet, and it stores proto3.2 ~ Scaling to high speeds
col information such as whether any of the packets countedhe flow slicing probabilityp controls the memory usage,
against the entry had the SYN flag set. To ensure unbiasetut since we do a lookup in the flow memory for every
ness of estimators, on creation of an entry we do not inipacket, flow slicing does not control the processing load. In
tialize the byte counter to the number of bytes.; inthe  the presence of limited processing power, we add a random
packet that caused the creation of the entry, blyip,/p  packet sampling stage in front of the flow slicing stage (see
(see Section 4.2 for more details). Figure 1). A simple solution is to set the packet sampling
The slice lengtht is related to the “active timeout” of probabilityq statically to a value that ensures that the pro-
NetFlow which controls for how long an active entry is kept cessor performing the flow measurement can keep up even
before expiring and being reported (default 30 minutes)with worst case traffic mixes. Based on Cisco recommen-
Both of these parameters limit the staleness of the data (i.elations [17] for turning on NetFlow sampling for speeds
if we have a long-lived flow, we know that its traffic will be higher than OC-3, we setto 1/4 for OC-12 links,1/16
reported with at most this much delay). for OC-48, etc. With these packet sampling rates, and with
By dynamically adapting the flow slicing probability, we worst case traffic consisting of the link entirely full with
can control the rate at which entries are created and freed0-byte packets, the flow measurement module has around
thus ensuring that the algorithm stays within its allocateu.s per packet and it has time to perform aro@sdwide)
memory budgef\/. By keeping the rate at which entries DRAM accesses on average.



3.3 Adding an inactivity timer the byte counts, they are closely correlated. Thus smart
Most flows in the Internet are short-lived. If our only mech- sampling will ensure that the errors introduced in packet
anism for removing an entry is its expiration after the slicecounts are also small. The situation is different with flow
lengtht and we use a large value farat any moment in ~ arrival counts. These depend heavily on flow records with
time, most of the entries in the flow memory will belong the SYN flag set, and most such records come from small
to flows that are no longer active and just use up memor§lows which are discriminated against by smart sampling.
waiting to expire. On the other hand having a very shortThus the errors introduced by smart sampling in the flow
slice length can lead to an increase in reporting traffic andrival counts are significant.

loss of accuracy. Adding an inactivity timeout parameter We propose a new variant of smart samplimguilti-
tinactive t0 flow slices reduces the memory spent on obsofactor smart samplingvhich takes into consideration not
lete entries. Experimental results in Section 6.1 show thaust byte counts, but also packet counts and SYN flags.
we can significantly reduce the memory requirement by usWhile multi-factor smart sampling still favors flow records
ing inactivity timers. An adaptive algorithm for settingeth With large byte and packet counts, it also favors records
flow slicing rate can turn this reduction in memory usagewith the SYN flag, thus ensuring that the errors introduced

into an increase in accuracy. into the flow arrival counts are not large either. Because
the exact rule used to determine the multi-factor smart
3.4 Adding binned measurement sampling probability- depends on estimators of byte and

With flow slices we have the same problem as with Net-packet counts, we postpone its discussion to Section 4.5.
Flow if we want to perform traffic analysis using time bins: ) o
for flow slices that span time bins, we can only guess how3.6 ~ Setting the parameters of flow slicing
many of the flow’s packets were in each bin, and this in-Routers or other network devices performing flow measure-
troduces errors in the results. This problem is even morenent have three types of resources that can become bot-
pronounced when analysis is required in very small timetlenecks: processing power, flow memory, and reporting
bins to capture more precise traffic dynamics. We can exbandwidth. Flow slices use three different “tuning knobs”
tend flow slices to support binned measurement of traffic byto control these three resources: the packet sampling proba
keeping multiple sets of byte and packet counters, one sdility ¢ controls the processing load, the flow slicing pro-
for each bin the slice passes through. By keeping separatgability p controls the memory usage and the thresholds
counters for each bin, the binning error is eliminated en-determining the smart sampling probabilitycontrol the
tirely, at the cost of increasing the size of the flow recordsvolume of data reported. This can result in more accurate
Note that the reporting bandwidth costs of this solutiontraffic analysis results than using a single parameter, the
are significantly smaller than those of the solution used bypacket sampling probability, to control all three resosyce
Adaptive NetFlow where an entire record is reported foras Adaptive NetFlow does. This distinction would be ir-
each bin. The byte and packet counters are 8 bytes whereeslevant in practice if the only scarce resource would be
a complete record is 48 bytes. the processing power at the router, so it is useful to per-
The number of counters per record has to be one largeiorm a quick sanity check before proceeding any further:
than the number of bins required to fit a slice because thean an unfavorable traffic mix push the memory require-
flow slice can overlap only partially with the first and last ments or reporting bandwidth so high that they become
bin. The choice of the size of the measurement bin supa problem? First, let us assume a traffic mix consisting
ported is a compromise between resource consumption af back-to-back minimum sized packets, each belonging
the router and accuracy of results. Reasonable choices cam a different flow (a massive flooding attack with ran-
range anywhere from the slice lengtto 20 times smaller. domly spoofed source addresses). With the packet sam-
For brevity, we do not explore this further in the paper, butpling rates from Section 3.2, the traffic measurement mod-
note that depending on the final goal, the flow slicing algo-ule would receive a packet eveys. Even with an aggres-
rithm can be extended with additional resources to obtairsive inactivity timeout of;,,4..ive = 5 S€CONdS, we need a

the desired accuracy. flow memory that can fi2, 500, 000 flow records, which
. . ] at 64 bytes/record[17] requires>3 megabytes. When re-
3.5 Controlling the reporting bandwidth ported flow records takd8 bytes (ignoring overheads),

Smart sampling has been proposed as a way of reducing tts® at 500, 000 flow records/second, which requiré92
number of flow records without causing much error. Smartmegabits/second. These numbers are orders of magnitude
sampling focuses on measuring the number of bytes in ambove what one can comfortably afford. The experiments
bitrary aggregates of traffic and thus smart sampling favorérom Section 6 use realistic traffic mixes to evaluate the
flow records with large byte counters over those with smallbenefits of Flow Slices as compared to Sampled NetFlow
flow counters. Common packet sizes vary betwéeand  and Adaptive NetFlow.

1500, so while the packet counts are not proportional to For each of the parameters of Flow Slices listed in



Parameter | What it controls | How itiis set |

Flow slicing probability Memory usage at router | Adaptively based on memory usage

Flow slice length Staleness of reported datg Statically based on user preferences

Inactivity timeout Reduces memory usage | Statically based on typical inter packet arrival time
Packet sampling probability Processing load at router | Statically based on worst case traffic

Bin size (optional) Binning error Statically based on user preferences

Smart sampling thresholds Volume of flow data reported Adaptively or statically based on target volume

Table 2: Configuration parameters for Flow Slices.

Table 2, we need to decide whether to set them statically For the purposes of our analysis, a bin is an arbitrary
as part of the router configuration, or dynamically adaptinterval of time of interest to traffic analysig.o simplify
them to the current traffic mix. Of the three main tuning analysis, we start by focusing on the simple case of a sin-
knobs, the flow slicing probability should definitely be gle bin, with slice lengtht and inactivity timeout;,,qctive
set dynamically to allow the router to protect from mem- larger than the size of the bin and flow memory empty at
ory overflow when faced with unfavorable traffic mixes. the beginning of the bin. Next, we look at how the estima-
The thresholds controlling the smart sampling probabilitytors generalize when we remove these constraints. Table 3
can also be set adaptively. In this paper, we considesummarizes notation used throughout the paper.
that the packet sampling probabilityis static based on
recommended values for different link capacities. Flow4.1 Estimating packet counts
Slices would work just as well with a dynamic packet The packet counter, in an entry is initialized td when the
sampling probability that could go above the conservativeirst packet of the flow gets sampled, and it is incremented
static value, but since it is hard to guarantee the stahn'fity for all Subsequent packets be|0nging to the flow. L bk
such an approach without pushing the packet sampling rat@e number of packets in the flow at the input of the flow
adaptation logic into hardware (which raises deploymentiicing algorithm. Equation 1 gives the formula for our es-
problems), we chose not to explore such a solution here. timator for the number of packets in the flow.

The observant reader might have noticed that without
the optional binned measurement feature Flow Slices re- S=1/p—1+cs (1)
sembles Sampled NetFlow. If the dynamic adaptation al-
gorithms set the flow slicing probability and the smart | emma 1 5 as defined in Equation 1 is an unbiased esti-
sampling probability- to 1 the two solutions perform ex- mator ofs.
actly the same processing. We consider this to be an im-
portant feature. The difference between Sampled NetFlow proof: By induction on the number of packets
and Flow Slices is in how they react to unfriendly traf-  Base caself s = 1, the only packet of the flow is sam-

fic mixes and environments with strong constraints on repjed with probabilityp and in that case it is counted as
sources. While both Adaptive NetFlow and Flow Slices /;, 141 = 1/p packets. With probability — p it is not

provide robustness to unfavorable traffic mixes, Adaptivesampled (and it counts @. ThusE[s] = p-1/p+ 0 =
NetFlow forces the user to adopt the binned measurement_ .

model (which can increase memory usage and the volume |nquctive step: By induction hypothesis, we know that
of reports) even when the traffic mix is favorable. for a flow withs’ = s — 1, E[s/] = s' = s — 1. Also since

the flow slice lengtht and the inactivity timeout;, qctive

are larger than the bin size, we know that once the flow
gets an entry, all its packets within the bin will get counted
In this section, we discuss formulae for estimating trafficby c;. There are two possible cases: the first packet of the
based on the flow records provided by Flow Slices. In pracflow gets sampled, and we get= s, or it doesn’tand then
tice, the user would be interested in the number of bytesthe value ofc, ands will be the same as those for a flow
packets or flows in the entire traffic mix or a portion of it with s" = s — 1 packets for which the sampling decisions
(e.g. the HTTP traffic, etc.). All our estimators focus on are the same as for the rest of the packets of our flow.

a single flow. To compute the total traffic, the user has to
sum the contributions of all individual flow records. If the EE = p-(1/p—1+s)+(1-p)E[s]
estimators for individual flows have the property of unbi- = 1l—-p+ps+(1—-p)(s—1)=s
asedness, the errors in the estimates for individual flows

will not accumulate, but cancel out (to some extent). |

4 Estimators based on flow slices



| Name | Meaning

D flow slicing probability

q packet sampling probability

r smart sampling probability

s size of flow (in packets) before flow slicing

Cs packet counter in flow record

s estimate of the size of flow before flow slicing (O if flow notcsld)

S original size of flow (in packets) before packet sampling

S estimate of the original size of flow (O if flow not sampled ot sliced)

b size of a flow in bytes before flow slicing

cp byte counter in flow record

b estimate of the number of bytes in flow based on flow slices 0w not sliced)

B original size of flow in bytes before packet sampling

B estimate of the original size of flow in bytes (0 if flow not sdetpor not sliced)

f contribution to the estimate of the number of active flowd fiv not sliced)

a contribution to the estimate of the number of flow arrival#f flow not sliced)
AM | contribution to first estimator of number of flow arrivals {@low not sampled or not sliced)
A®) | contribution to second estimator of number of flow arriv@lf flow not sampled or not sliced

Zs smart sampling threshold controlling the influenceSadn »

2p smart sampling threshold controlling the influenceobn

Za smart sampling threshold controlling the influencet6) onr

Table 3: Notation used in this paper.

If we sample packets randomly with probabilitypefore N
applying the flow slicing algorithm, we will want to esti- b=c¢p (2)
mate the number of packefs at the input of the packet
sampling stage. SincE[s] = ¢S, it is easy to show that
S =1/¢5is an unbiased estimator .

Lemma 2 b as defined in Equation 2 is an unbiased esti-
mator ofb.

Proof: By induction on the number of packets in the

4.2 E-stlmayng byte cognts . flow s. Letb, fori from1 to s be the sizes of the individual
Before discussing how to estimate byte count estimates Backets. By definition the number of bytes in the flow is
flow slices, we show why a simpler solution does notwork.; _ S b,. For convenience of notation, we index the
. . - =1 Y2 ’
We could have the byte countes in the flow entry just o5 cket sizes in reverse order, lsowill be the size of the
count the total number of bytes in the packets seen oncg,q; packet and, the size of the first one.
the flow record is created. Just like with the packet counter, pace casdf s=1. the only packet is sampled with pro-
we need an additive correction to account for the paCKEtBabilityp and in th,at case it is counteg = by /p = b/p
missed before the creation of the entry. We can get an Ubytes. With probabilityl — p, it is not sampled (and it
biased estimate for the number of packets missed, but Nt ,nts a®). ThusE[cy] = p - b/p+ 0 = b.
for their total size, because we do not know their sizes. We |, quctive step By induction hypothesis, we know that
could assume that the packet sizes are uniform within the 1ha first packet is not sampled we are left with the last
flow, but this would lead to systematic biases because they: _ . _ packets and?[c,] = b’ = b — b,. If the first
are not. As the proof of Lemma 2 shows, storing the Sizepacket gets sampled, we count ittagp and we count the

of the sampled packet that led to the creation of the entryeqt exactly because the flow slice lenggtnd the inactivity
would solve the problem because using it to estimate thgeoutt. 1ive are larger than the bin size
mactive .

total number of bytes in the packets not counted does lead

to an unbiased estimator. But this would require another  E[c,] = p- (bs/p+b)+ (1 —p)

entry in the flow regord. I.ns.t.ea_dz we store this information = bytpt +(L—pl =b,+b =b

in the byte counter itself binitializing c; to b¢;,5:/p when

the entry is created¢;,; is the size in bytes of the sam- W

pled packet). Leb be the number of bytes of the flow at  If we sample packets randomly with probabilifybe-
the input of the flow slicing algorithm. fore applying the flow slicing algorithm, we will want to



estimate the number of bytd$ at the input of the packet the bin do not count as flow arrivals for that bin (but they

sampling stage. SincE[b] = ¢B, it is easy to show that count as active flows). If we look a the core flow slicing

B = 1/q3is an unbiased estimator fét. algorithm we can use the following estimator to compute
the number of flow arrivals.

4.3 Estimating the number of active flows

We use two definitions for counting flows: active flows and s { 1/p if SYN flag set @)

flow arrivals. A flow is active during a time bin if it sends 0  if SYN flag not set

at least one packet during that time bin. Consecutive TCP i an that the SYN flag is set in the flow record if it

connections between the same two computers that NappgiLs set irany of the packets counted against the record, it

to share the same port numbers are considered a single flW jyia| to prove thati leads to unbiased estimates of the

and they will be reported in the same flow record und_ernumber of flow arrivals if we make an assumption.

our current assumptions. Active flows with none of their

packets sampled by the flow slicing process, will have noassumption 1 Only the first packet for the flow can have
records; at least some of the flow records we get shoulghe SYN flag set.

be counted as more than one active flow, so that the total

estimate will be unbiased. We count records with a packet The flow arrival information is preserved by random
countere, of 1 asl/p flows and other records dflowand  packet sampling. Duffield et al. propose two estimators of
this gives us unbiased estimates for the number of activehe number of flow arrivals that work based on flow records

flows. collected after random sampling of the traffic [9]. The for-
) mulas for the individual contributions of flow records to the
= { 1/p !f s =1 (3) total estimate of the number of flow arrivals are as follows.
1 if cg >1
Lemma 3 f as defined in Equation 4 has expectation IO { 1/q if SYN flag set
0 if SYN flag not set

1/q ifSYNflag setand =1

i M®
the last gets sampled; > 1, if only the last packet gets M 1 if SYN flag not set ors > 1

sampledc; = 1, and if none of the packets gets sampled
there will be no flow record, so the contribution of the flow  puffield et al. show [9] that both estimators are unbi-
to the estimate of the number of active flows will pe= 0. asedE[]/w\(l)] = E[M\@)] = 1 for flows that have exactly

The probability of the first case js 1 =1 — (1 -p)*"',  one SYN packet. Both estimators overestimate the num-
the probability of the second j{1 — p,—1) and that of the  per of flow arrivals if flows have more than 1 SYN packet.

Proof: There are three possible cases: if a packet before {

third is (1 — p)(1 — ps—1). For flows without any SYN packets which according to our
~ definition of flow arrivals (which differs slightly from that
Elf] = ps-1-14p(=ps1)-1/p+ used in [9]) should not be counted, we hawg\/ (V] = 0
(1-p)(1=ps—1)-0=1 and E[M®)] > 0, so to make the second estimator unbi-

ased we need another assumption.

The estimators for the number of bytes and packets in &gsymption 2 The first packet within the bin for every
flow were trivial to generalize to the case where we applysow has the SYN flag set.

random packet sampling before flow slicing because the ex-

pected number of packets and bytes after packet sampling Flows retaining SYN packets after the random packet

was exactlyy times the number before. For the number Ofsampling stage will retain a single SYN packet, and")

active flows there is no such simple relationship and actugstimates the number of flow arrivals based on the number

ally it has been shown that it is impossible to estimate with-ot ,,ch flows. We can easily combine it wighto get an

outsignificant bias the number of active flows once randomystimator for the number of flow arrivals for the combined

sampling has been applied [5]. But by changing slightly the,|qrithm using random packet sampling and flow slicing.

definition of flow counts we can take advantage of the SYN

flags used by TCP flows. 0 1/(pq) if SYN flag set 5)
10 if SYN flag not set

4.4 Estimating flow arrivals
Flow arrivals are defined only for TCP flows which should M® treats separately flows that only have a SYN packet
start with one SYN packet. A flow is considered to have ar-after packet sampling and the others that survive it. Fortu-
rivedin a bin if its SYN packet is in that time bin. Flows ac- nately we can differentiate between the two types of flows
tive during a certain bin, but with their SYN packet before even after flow slicing is applied: if a flow with a single



SYN packet is sampled by flow slicing its record will have p should we use in our estimators? Are the estimators still
¢s = 1 and the SYN flag set; if any other flow is sampled unbiased? Actually none of the proofs depends on having
by flow slicing and it has:; = 1 at the end of the bin it a single value fop, and they would all work if we replaced
means that only its last packet was sampled thus it will nott with a separate); for every packet. All the estimators
have the SYN flag set because that would put it into thewvould need to use the value of the packet slicing probabi-
category of flows with a single SYN packet surviving the lity in effect at the time the sampling of a packet caused the
packet sampling. Thus we can combing&® with g to  creation of the entry. This doesn’t necessarily mean that
obtain another estimator. one needs to extend the flow entry with one more field, be-
cause it already holds the timestamp of the first packet and
that can be used to determine the flow slicing rate if the
router keeps a small log of recent adjustments to it.

When the flow record expires and it is reported, the re-
port should include the value of the flow slicing probability

Note that if assumption 1 is violated and we have morep in effect at the time the entry was created. Similarly if
than one SYN packet at the beginning of the flow, saythe smart sampling thresholds, z;,, andz, are adjusted
due to SYN retransmissions, both estimators will be biasedynamically, the report should include their current value
towards over-counting. But if repeated SYNs are a rares0 that one can computeduring analysis. If one uses just
enough occurrence, the effect on a final estimate based éhfew possible values for these parameters (e.g. only pow-

R 1/(pq) ifSYNflag setand:;; =1
A® =< 1/p if SYN flag notsetand, =1 (6)
1 if SYN flag not set and; > 1

many flow records will be small. ers of two), each of these sampling rates can be encoded in
_ _ less than one byte, so the reporting overhead they impose
4.5 Multi-factor smart sampling is limited (a flow record has 48 bytes).

To reduce the number of flow records, while maintaining

accurate byte counts, smart sampling [8] proposes sant.7  Bins, timeouts, and flow reconstruction

pling the flow records with a size dependent probabilityTo simplify our discussion of the estimators we started with
r = min(1,b/z) wherez is a threshold parameter con- some strong assumptions: all records last longer than the
trolling the trade-off between the loss in accuracy and thebin length, counters count only packets within the bin of
reduction in the volume of reports. We can adapt smarinterest, and the flow memory is empty at the beginning
sampling to flow slices using = min(1, B/z) and we  of the bin. In this section we relax these assumptions and
could still estimate byte, packet and flow arrival countsdiscuss the effects of these relaxations on the estimators.
based on the smart sampled flow records u§n:g 1/rS _ .

B = 1/rB, andA = 1/rA. But using this formula for 4.7-1 Continuous operation

r results in a variance farl much larger than that of ~ The mostelementary relaxation of the assumption is to con-
because it discriminates against flows with few bytes, angider continuous operation of the algorithm: records still

since most flows have few bytes, they will also producelast longer than the bin length, and we still have separate
most flow records with the SYN flag set — and these aré&ounters for each bin, but there can be active records at the

exactly the recordd®) and A2 rely on. start of our bin, records created earlier.

We propose a new variant of smart sampling, multi- The simplest case is that of records spanning the entire
factor smart sampling, which takes into consideration nobin. The byte and packet counters will reflect the actual
just byte counts, but also packet counts and SYN flags. Byraffic, so we us& = 1/qc, andB = 1/qc. If we do not
p|ck|ng a smart sampling probability of= min(1,5/2;+  have a packet sampling stage we can also computel
B/z, + A/z,) we can balance the requirements of theif ¢, > 0 andf = 0 otherwise. A = 0 because the flow
three estimators. The three individual thresholds controbtarted in an earlier bin.
the trade-off between accuracy and reduction in report vol- If a flow record expires within the bin we run the anal-
ume separately for the three estimators of bytes, packetssis on, it can be the only record for the flow, but it is
and flow arrivals. Note that multi-factor smart sampling also possible that another record for the same flow would
is a generalization of smart sampling: if we sgt= 2,  get created after the first record’s expiration. For byte and
zs = 0o, andz, = oo, it will assign the exact same sam- packet counts which are additive we can just add the coun-
pling probabilities to records as smart sampling. ters from the first record to the estimates from the second

) . . § = 81 + 52 andb = by + by. The analysis of unbiased-
4.6 Dynamically adjusting the flow slicing  pess carries through because we can consider that the bin
probability is actually two sub-bins, one ending when the first record
Flow Slices dynamically adjusts the flow slicing probabi- ends and the other starting at the same time. Since we have
lity p to the current traffic. This adjustment can happen inunbiased byte and packet estimates for both sub-bins, our
the middle of a time bin. Which one of the many values ofestimates for the sum of the bins will still be unbiased.



If cs1 > 0, we know that the flow sent packets during the how the traffic divides between the bins is unbiased only if
bin, so we sefto 1, otherwise we use Equation 3 witly we make an assumption about the spacing of the packets.
since an unbiased estimator for whether the flow was ac-
tive in the second sub-bin will tell use whether it was activeAssumption 3 For every flow at the input of the flow slic-
overall. This approach preserves overall unbiasedness, bing algorithm, the time between the arrivals of all pairs of
it makes analysis more complicated because the two flovits consecutive packets is the same.
records representing the flow cannot be processed indepen-
dently anymore: the contribution of the second record to We use the following algorithm for distributing the pack-
the flow count of the bin depends on whether there was &ts of reported by a flow record that spans bins between
first record with the same flow identifier. When the routerthe bins covered by the record. We considepacket ar-
reports the records, they might not be near each other, saval events, the first one is the timestamp of the first packet
the analysis has to do “flow reconstruction”: keep a hastcounted by the entry, the last one the timestamp of the last
table with flow identifiers and find flow records with the packet counted by the entry and the remaining 2 evenly
same flow identifier covering parts of the same bin. Thespaced between them. We consider thpacket arrived at
consequence of not doing flow reconstruction is runningevery packet arrival event, except for the first event which
the risk of double counting such flows with more than onehasl /p packets, and distribute the packets between bins ac-
record (which might be acceptable in many settings). cordingly. This can be shown to be an unbiased way of dis-

By our definition of flow arrivals from Section 4.4, as tributing packets between bins under assumption 3. We rec-
long as assumption 1 holds, if a flow has a record that startsmmend distributing the, bytes of the flow between bins
before the start of the bin, we should ude= 0, irrespec-  proportionally with the number of packets counted against
tive of whether we have a second flow record (possibly witheach bin. Assumption 3 is not enough to prove this distri-
a SYN flag) or not. If we have a second flow record with bution of bytes between the bins to be unbiased, we would
the SYN flag set we can clearly say that assumption 1 doeseed an additional assumption about uniformity of packet
not hold, but without flow reconstruction we might count it sizes. For flow arrivals, we do not have a binning problem
separately against the flow arrival count. In many settingdecause we assume that the first packet counted by the flow
this type of over-counting is not a serious concerf?) record is the one with the SYN, so we count the flow arrival
should not be used because assumption 2 does not hold. against the bin the first packet is in.

We cannot achieve provably unbiased binning for bytes
and packets under realistic assumptions about inter packet

When the inactivity imeout;nactve is short or when the arrival times and packet size distributions within flows. We

analysis is over long time bins (say hours), flow slices Caltyrn to measurements instead to see how much the binning
be shorter than the bin size. It can happen that we hav

than t ds for th f ithin th &rror is on typical traffic. We recommend using such ex-
more than two records forin€ same Tlow Within tThe Sam&, . i enta| results to decide whether increasing the size of
bin. For byte and packet counts we can just add the in

dividual estimates for the different records and we get a the flow record by adding multiple counters to do binned

. . . . . Teasurement is worth it.
unbiased estimator for the entire bin. For active flows we

cannot get an unbiased estimate, not even with flow recong
struction. For flow arrivals, by using(") for the individual
records and summing the contributions without any flow
reconstruction gives unbiased estimates as long as assu
tion 1 is not violated. For a record started before the begin
ning of the bin, even if it has the SYN flag set in violation
of assumption 1 we do not count it as flow arrival and thu

4.7.2 Slices shorter than bins

Variances of estimators

The estimators discussed in the previous section were all
ofined on an individual flow and to compute a measure
say the number of packets) for a larger aggregate, the an-
alyst would sum the values of the estimators for the flow
gecords matching the aggregate. The sampling decisions

haveA() — o for different flows are fortunately independent and thus
o the variance of the estimates for aggregates are the sum
4.7.3 Binning errors of the respective variances for the estimators for indialdu

So far we assumed that Flow Slices uses binned measurflews. In this section we focus on studying the variances of
ment. This guarantees that as long as the analysis is ahe various estimators for individual flows. We also show
time intervals that are exact multiples of the measurementhat the variances of the estimators based on the core flow
bins used, it will be easy to determine exactly how manyslicing algorithm are lower than those of estimators based
of the packets and the bytes counted by the record weren random sampling used by Adaptive NetFlow to control
within the bin. But by default Flow Slices doesn’t use bins, memory usage. As in Section 4, we start with a simplified
and for records that span bin boundaries, the user will haveetting of a single bin in isolation and then proceed to more
to guess how the packets and bytes were actually dividetkalistic settings. The proofs for the variance resultsnfro
between the bins. We can prove that our reconstruction athis section can be found in technical report[15].



5.1 Packet count variance

For the core flow slicing algorithm we can compute the
variance of the packet count estimator.

VAR[s]=1/p(1/p—1)(1 = (1-p)°) (7)

Note how this variance is strictly lower than the variance
of results based on random packet samp(ihgp — 1)s ex-
cept for the case of = 1 when the two variances are equal.
The highers, the larger the difference between the variance
of results based on flow slicing when compared with packet 0 ‘ ‘
sampling. Since using the same sampling probability will ' 10000 100000 1e+06
give the same memory usage for flow slicing and ordinary # of packets in a flow
sampling, this comparison of variances shows us that flovgjgyre 2: Scatter plot depicting the accuracy of packet
slicing is a superior solution. The advantage is most apgount estimates based on flow slices.
parent when estimating the traffic of aggregates with much
traffic coming from large flows.

The same conclusion holds if we compare the combi5.4 Continuous operation

nation of packet sampling and flow slicing used by Flow |f we consider continuous operation for the algorithm, we
Slices to the pure packet sampling used by Adaptive Netcan have at the beginning of the bin a record for our flow.
Flow and Sampled NetFlow. Here the fair comparison isjf the slice spans the entire bin, it counts everything dyact
with Sampled NetFlow using a packet sampling probabi-and thus the variance of all estimatofislf the slice ends
lity of pg. We can conceptually divide this into a first stage in the current bin, we can divide the flow into two parts:
of packet sampling that samples packets with probahjlity one covered by this older record and the rest. For the first
and a second one that samples them with probabilifthe  part we have) variance for the byte and packet counts and
first stage has identical statistical properties for theswo  for the second part we can apply formulas 7 and 8, but in-
lutions, thus the difference in the accuracy is given by thestead ofs being the number of packets of the flow in the
second stage, but comparing the second stages reducesyi, it should be only the number of packets in this second
comparing flow slicing and packet sampling using the sameyart and the; be the sizes of those packets. For the flow

Ratio of Estimated/Actual # of packets

probabilityp. count estimate, if the number of packets in the first record
) is 0, the variance of the estimate (s otherwise formula
5.2 Byte count variance 9 applies. Thus having flow records active at the begin-

We can also compute the variance of the estimates for theing of the bin does not increase the variance of the packet,
number of bytes (we number the packet sizegim reverse  byte and flow count estimates, on the contrary, it can reduce
order withb; being the size of the last packet andhat of ~ them significantly.
the first one).

6 Experimental evaluation

VAR[Z] _ 1/p25:(1 — p)imstip? (8) We divide the expe_rimental evaluation into_ two parts. The
= first group of experiments evaluates the efficacy of the core
) ) ) _ ~ flow slicing algorithm and the multi-factor smart sampling
Note how this variance is strictly lower than the vari- algorithm. The second group compares the Flow Slices so-
ance of results based on random packet samgliig —  |ution with Adaptive NetFlow (ANF) to show the efficacy
1) >5_, b7 (except for the case of a single packet flow). of Flow Slices both in terms of memory usage and accuracy
This shows that for byte counts too, flow slices are a bettepf estimates. For our evaluations, we obtained traces on an
solution than ordinary sampling. OC-48 link from CAIDA [4].

5.3 Flow count variance 6.1 Accuracy of core flow slicing algorithm
We can also compute the variance of the estimates for thﬁ]

. : this section, we evaluate the core flow slicing algorithm
number of active flows. We cannot compare against packea{gainst the “full-state” approach. These experiments pro-

sampling because there are no unbiased estimates for tb/ de more insight into the efficacy of the flow slicing al-

number of active flows based on packet sampled data. gorithm and the effect of changing various variables such
N . as flow slicing probability and slice length on the memory
VAR[f]=(1-p)* " (1/p-1) (9)  usage and the mean relative error of results.
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Figure 3: Trade-off between the mean relative error and-igure 4: Scatter plot depicting the errors introduced in in
memory usage as we increase flow slicing probability.  terpolating bin measures from slices.

Are estimates unbiased®r this experiment, we fix the sions can be drawn from the results in Figure 4. First, for
flow slicing probabilityp to 0.8% (1 in 125) and the slice large flows, the error in the estimates obtained by interpo-
duration to 60 seconds. Figure 2 shows the scatter pldating bins from slices is insignificant. On the other hand,
of ratio of the estimated and true flow sizes (in number offor relatively small flows, interpolating from flow slices-re
packets) on the y-axis with increasing true flow size on thesults in much higher error. This is because we divide the
x-axis. Note that the plot only shows flows that have moreentire volume of traffic for a particular flow among the bins
than 5,000 packets throughout the duration of the trace (& covers (see Section 4.7.3 for more details); the error de-
hour). From this scatter plot, we can see that most of thgpends on the timing of bursts of traffic. Of course, to cap-
flows have been accurately estimated (within 10%). Theure the fine grained traffic information, the extension pro-
estimates converge to the true values as the flow size irposed in Section 3.4 could be used, but it would result in
creases. The presence of two-sided errors empirically corkigher memory requirements. Second, we can observe the
firms the unbiasedness of estimates based on flow slicingpresence two-sided errors indicates lack of bias.

What is the effect of flow slicing probability on the ac- What is the effect of multi-factor smart sampling on the
curacy of these estimates According to Equation 7, in- accuracy of estimatest Section 4.5, we proposed a mod-
creasing flow slicing probability increases the accuracy offication to smart sampling to improve the accuracy of the
estimated flow sizes. Besides, the memory usage should irstimates for the number of flow arrivals. Table 4 summa-
crease as the slicing probability increases. In Figuree, thrizes the results of our experiment comparing multi-factor
mean relative error for flows larger than 5,000 and the corsmart sampling with smart sampling. Before we discuss the
responding memory usage have been plotted with varyingdetails of this experiment, we want to note that we found
slicing probability on the x-axis. Apart from the empiri- that Assumption 1, that only the first packet of a flow can
cal value of the mean relative error, we also plot the theohave the SYN flag set, is often violated in our trace. For
retical value based on Equation 7. Figure 3 confirms thatome applications, the average number of packets with the
increasing slicing probability decreases the mean re&ativSYN flag set per flow is almost 2 (due to SYN retransmis-
error while increasing the memory usage. It can also b&ions). This affects all estimators of flow arrivals based on
observed from the figure that the theoretical and empiricaSYN counts. In this experiment, we do not aim to evaluate
values of mean relative errors are in close agreement thuhe accuracy of estimators based on SYN counts, but the ef-
validating the analysis in Section 5.1. fect of smart sampling on their estimates. Therefore, we do

What kinds of errors do we introduce by interpolating not measure the error relative to the actual number of flow
the number of packets in time bingRe goal of this exper- arrivals, but to the estimate of flow arrivals based on the
iment is to study the errors introduced when interpolatingnput to the two smart sampling algorithms. The input we
the number of packets in various time bins from flow slicesused is the result of Flow Slices with a packet sampling pro-
that do not use bins (they only store the timestamps of théability of¢ = 1/4 and flow slicing probability op = 1/4,
first and last packet). In Figure 4, the y-axis has the ratio olising a slice length of 60 seconds and an inactivity timeout
estimated to actual size of the flow in a given bin and theof 15 seconds. The threshold used for smart sampling is
x-axis has the actual flow size (in packets). For this experz = 50,000 bytes. The thresholds used for multi-factor
iment, we used a slice length of 90 seconds and divided ismart samplingz, = 1,000 packetsz, = 500, 000 bytes
up equally into 10 bins of size 9 seconds each. Two concluandz, = 50 flows, have been selected so that it produces



Port number used as Multifactor s. s. error | Smart sampling error Actual traffic

aggregationkey | Pkts | Bytes| SYNs | Pkts | Bytes| SYNs | Pkts | Bytes [ SYNs
Web (80) 04%| 0.7% | 0.8% | 0.3% | 0.1% | 1.6% | 17.5M | 1582M | 1852K
Kazaa (1214) 04% | 0.2% | 2.4% | 0.6% | 0.1% | 12.4% | 2.67M | 1527M | 44.9K
eDonkey (4662) | 0.5% | 0.7% | 1.5% | 1.0% | 0.2% | 4.5% | 2.96M | 1075M | 344K
telnet (23) 0.6% | 0.8% | 4.9% | 0.9% | 1.0% | 39.2%| 1.84M | 79.1M | 12.0K
SMB (445) 1.3%| 1.6% | 1.1% | 2.5% | 1.8% | 3.1% | 1.50M | 93.3M | 1380K
SMTP (25) 1.9% | 1.0% | 1.4% | 2.7% | 0.9% | 6.4% | 0.43M | 130M | 86.9K
DNS (53) 1.8% | 2.4% | 3.6% | 2.7% | 1.7% | 16.8%| 0.45M | 34.8M | 6.02K

Table 4;: Comparison of the error introduced by multifactoast sampling and smart sampling into estimates of traffic of
various applications (average of 10 runs with differentds@eBoth algorithms were configured to reduce the number of
flow records from 1,700,000 to around 190,000.

Port number/ | Adaptive NetFlow| Flow Slices(60s)| Flow Slices(180s) Flow Slices(300s
Range Packets| Bytes | Packets| Bytes | Packets| Bytes | Packets| Bytes
Web (80) 0.5% 1.4% 0.4% 2.0% 0.5% 1.5% 0.3% 0.9%
Kazaa (1214) 1.2% 2.6% 1.0% 2.4% 0.8% 1.0% 1.0% 1.4%
eDonkey (4662) 1.4% 3.3% 1.7% 2.1% 1.1% 1.9% 1.0% 1.9%
telnet (23) 1.3% 1.5% 2.2% 2.2% 2.1% 1.8% 2.3% 2.5%
SMB (445) 2.6% 3.3% 2.5% 5.0% 2.2% 2.5% 1.7% 4.1%
SMTP (25) 1.9% 8.7% 2.3% 7.7% 3.9% 6.5% 3.8% 6.8%
DNS (53) 2.7% 4.0% 3.6% 2.6% 2.8% 3.6% 4.4% 4.9%
> 50,000 9.7% 10.1% 5.4% 5.6% 3.7% 3.9% 3.1% 3.3%
10,000-50,000| 20.5% | 21.9% | 15.3% | 16.7%| 12.2% | 13.5% | 10.8% | 11.9%
5,000-10,000 | 30.6% | 35.8% 26% 29.4% | 22.2% | 24.9% | 19.9% | 22.5%

Table 5: Comparison of the accuracy of estimates based opt&daNetflow and Flow Slices with different slice lengths.

approximately same number of records as smart samplingility into two parts consisting of packet sampling/(6
(from 1,700,000 down to roughly 190,000). Table 4 showsfor our OC-48 trace) and flow slicing probability [64).

the error introduced by the two variants of smart sam-We compare average error in the estimates for both indi-
pling into estimates of the traffic of various applications vidual flows (categorized by ranges) as well as aggregates
identified by destination port numbers. While smart sam-based on destination port number. typically, are Table 5
pling introduces very large errors in the flow arrival esti- shows that ANF and Flow Slices have similar errors when
mates, multi-factor smart sampling ensures that the errorastimating the traffic of various applications (aggregéated
are comparable to packet and byte count estimates. Fqort). However, Flow Slices performs better than ANF (by
example, smart sampling incurs an error of 39.2% for tel-about 10%) in the average error for individual flows. Vary-
net because it's small flows (approximately 6,600 bytes peing the slice length from 60 to 300 seconds for Flow Slices
flow on average compared to 34,000 for Kazaa) are disdid not affect the accuracy of the results significantly, al-
criminated against by smart sampling. Multi-factor smartthough bigger slice lengths seem to perform a little better
sampling, on the other hand, achieves more accurate flothan with smaller slice lengths.

arrival counts by biasing its sampling towards records with How does Flow Slices compare with ANF in resource

nodn—zgro fI_owr?mvaIs. This t):cplcalllz/ resugsk;n onlyasig  .,nsumption ?Table 6 summarizes the memory usage at
reduction in the accuracy of packet and byte count estly, o ,qter and the volume of traffic reports for Flow Slices

mates. and ANF . Without an inactivity timeout, the resource re-
. . . quirements of the two solutions are similar. As we move
6.2 Comparison with Adaptive NetFlow to longer bins/slices there is a slight decrease in repdrt vo

In this section, we compare Flow Slices with Adaptive Net-umes and a significant increase in memory requirements.
Flow [10], a previously proposed solution based on packeAdding an inactivity timeout of 15 seconds to Flow Slices
sampling. For the purposes of evaluation, we fix the packehas a dramatic effect. The memory requirements are re-
sampling probability to 1 in 1024 for ANF. To be fair in our duced significantly (about 80%) at the cost of only a slight
comparisons with Flow Slices, we split th¢1024 proba-  increase in the volume of the reports (about 5%). With the



Trace Packets Slice length / Memory (entries) Report volume (records)
per second Bin size (in secs) Slices | tinactive | ANF | Slices | tinactive | ANF

1 (1 hour) 23,733 60 1,148 597 1,195 | 68,537| 63,658 | 64,764
1 (1 hour) 23,733 180 3,021 741 3,141 | 61,316| 57,028 | 60,229
1 (1 hour) 23,733 300 4,691 793 4,158 | 57,635| 53,953 | 58,730
2 (10 mins)| 124,988 60 5,378 3,065 5,641 | 25,896| 26,362 | 27,509
2 (10 mins)| 124,988 180 14,046 3,944 | 14,049| 22,896| 23,800 | 23,994
2 (10 mins)| 124,988 300 21,667 4,218 | 21,716| 21,667 22,841 | 21,716

Table 6: Comparison of the amount of memory used and the whirtraffic reports generated by Flow Slices and ANF
for different slice lengths (in Flow Slices) and bin sizas ANF). Thet;,qctive COluMns show the memory savings Flow
Slices achieve by using an inactivity timeout of 15 seconds.
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Figure 5: Accuracy of ANF and Flow Slices the rate of attaelffit increases. The left plot compares the average relative
error in estimating the size of flows with more than 5,000 eéek The right plot compares the average relative error in
estimating the size of two traffic aggregates — telnet anch{aall results are averages over 10 runs with differentseed

inactivity timeout, the memory usage of Flow Slices is lesspling probabilityp-q varied from 0.781%to0 0.0156%. Flow
sensitive to the slice length. The lower memory usage oSlices could afford more aggressive sampling mainly due
Flow Slices compared to ANF has important consequence® the use of an inactivity timeout of 15 seconds (the slice
when the sampling rates are adapted dynamically. Givetength for Flow Slices and bin size for ANF were 60 sec-
the same memory constraints, the sampling rate adaptaticmnds). On the left, we plot the attack rate on the x-axis and
algorithm can converge to more aggressive sampling ratethe mean relative error (both for packet and byte counts)
for Flow Slices which results in more accurate estimates. of flows with more than 5,000 packets on the y-axis, both
in log-scale. For comparable memory usage, in the pres-
What is the effect of Denial-of-Service attack$?g-  ence of DoS attacks, Flow Slices produces traffic estimates
ure 5 compares the estimates obtained by ANF and Flovan order of magnitude better than those of ANF. On the
Slices in the presence of a DoS attack. We varied the atright, we plot the average relative error in estimating-traf
tack rate from 1000 packets-per-second (pps) to 1.6 milfic that belongs to two different applications — telnet and
lion pps; each attack packet represents a different flow aKazaa, using the two flow measurement solutions. While
source addresses are spoofed at random. We configurdek accuracy of both the estimates reduces as the attack rate
ANF and Flow Slices to operate within a memory budgetincreases, Flow Slices provides better accuracy than ANF.
of 8,000 flow records (not including the buffering needed
by ANF to transmit the records at the end of the measure- While these results do not prove that for all traffic mixes,
ment bin). ANF converged to smaller sampling probabili- Flow Slices perform better than other solutions, these re-
ties as attack traffic gained intensity; the sampling probasults do show the efficacy of the Flow Slices on realistic
bility varied from 0.155% at 1,000 pps to 0.0026% at 1.6traffic mixes. When we apply inactivity timeouts to the
million pps. Similarly, for Flow Slices, while the random Flow Slices, it results in much better re-use of memory at
packet sampling probability remained constantat1/16  the cost of a small loss in accuracy and a little increase in
(to simulate real hardware constraints), the combined santhe total volume of flow records reported.
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