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Abstract

We present a new technique for using samples to es-
timate join cardinalities. This technique, which we term
“end-biased samples,” is inspired by recent work in net-
work traffic measurement. It improves on random samples
by using coordinated pseudo-random samples and retain-
ing the sampled values in proportion to their frequency. We
show that end-biased samples always provide more accu-
rate estimates than random samples with the same sample
size. The comparison with histograms is more interesting
— while end-biased histograms are somewhat better than
end-biased samples for uncorrelated data sets, end-biased
samples dominate by a large margin when the data is cor-
related. Finally, we compare end-biased samples to the re-
cently proposed “skimmed sketches” and show that neither
dominates the other, that each has different and compelling
strengths and weaknesses. These results suggest that end-
biased samples may be a useful addition to the repertoire of
techniques used for data summarization.

1. Introduction

Often it is desirable to use synopses (for example, his-
tograms) to estimate query result sizes. Synopses work by
first processing a data set, computing a synopsis that is
smaller than the original data, then using this synopsis at
run time to quickly generate an estimate of the cardinal-
ity of a query result. In this paper we consider a challenging
scenario for estimating join cardinalities — one in which
joins are not key-foreign key, and for which building multi-
dimensional histograms on the join attributes is not feasible
(perhaps because the space of all possible joins is too large,
perhaps because the tables being joined are geographically
distributed.) As one example of a situation in which such
joins arise, consider a network monitoring setting in which
there are hundreds or thousands of sites storing logs of their
traffic. An analyst may decide to join the logs of any pair of
sites on non-key attributes, presumably to correlate proper-

ties of traffic at the first site with properties of traffic at the
second.

When multi-dimensional histograms are not feasible,
an obvious approach to solve this estimation problem is
to fall back on single dimensional histograms. Unfortu-
nately, while single dimensional histograms work superbly
for range queries, as we show in this paper, for join queries
they fail miserably if the data in the join attributes of the in-
put relations is correlated. Because of this, it makes sense
to consider the alternative approach of retaining a sample
of the values in the join attributes, because such samples
are likely to reflect the correlations in the attributes. Butthe
problem with such an approach is that for good estimates
we may have to use samples that are impractically large.

All work on synopsis-based approaches to join size esti-
mation must be viewed in the context of Alon et al.’s [2] fun-
damental result, which implies that for worst-case data sets,
it is impossible to do much better than simple random sam-
pling. This does not mean that we cannot improve on sim-
ple random sampling — not all data sets are worst case!
It does mean that future progress in the field will likely be
marked by exploring where existing and newly proposed
techniques are strong and where they are weak, and analyz-
ing the tradeoffs between a number of techniques to gain
insight as to when each can be profitably employed, not by
finding a “silver bullet” magical technique that is always
substantially better than any other.

In this spirit we propose a new way of building a sam-
ple summary, inspired by recent work in the network mon-
itoring community, which we term “end-biased samples.”
End-biased samples use three key ideas to improve upon
simple random samples. First, in a way reminiscent of end-
biased histograms, they store exact frequencies for the most
frequent values in the join attribute. This captures the fre-
quent values in the “head” of the distribution of the values
in the join attribute. Second, for the less frequent values in
the tail of the distribution, we sample those values, but re-
tain them in the sample with a probability proportional to
their frequency. For values that are retained in the sample,
we store their exact frequency. Third, when deciding which



values in the tail of the distribution to retain in the sam-
ple, we use the same universal-2 hash function for both in-
put tables, so that a value that is kept in the sample in one
table is likely to also appear in the sample for the other ta-
ble.

We show that end-biased samples always provide an un-
biased estimator of the join cardinality, and give analytical
formulas for the variance of this estimator under several as-
sumptions about the input data. We also perform an empir-
ical study on the tradeoffs between end-biased samples and
end-biased histograms. This study shows that while end-
biased histograms perform slightly better than end-biased
samples for uncorrelated data, they perform much worse if
the data is correlated (either positively or negatively). These
results suggest that end-biased sampling may be a useful
technique to add to the statistical summary tools used by
query optimizers.

Finally, we compare end-biased samples to the re-
cently proposed “skimmed sketches” [11]. The com-
parison is interesting. For small memory budgets, end-
biased samples dominate; in fact, in such configurations,
skimmed sketches appear to have a bias in their esti-
mate. For larger memory budgets, skimmed sketches give
lower errors than end-biased samples. Furthermore, un-
like skimmed sketches, end-biased samples can estimate
the sizes of an important class of select-join queries; con-
versely, unlike end-biased samples, skimmed sketches
are effective in a “read once” streaming environment; fi-
nally end-biased samples are simpler to configure and
require less “tuning” than skimmed sketches to return ac-
curate results.

2. Related Work

A great deal of work is relevant to end-biased samples
for join cardinality estimation. There is a long and distin-
guished history of papers dedicated to the design and eval-
uation of more accurate histograms for various estimation
problems, including [17, 21, 24, 26, 27]. While some of
these histograms could give somewhat better estimates than
the end-biased equi-depth histograms we consider in this
paper in some scenarios, the main conclusion that single di-
mensional histograms are problematic for join cardinality
estimation in the presence of correlated data still remains.
The problem arises whenever you assume a uniform distri-
bution within a bucket, as do all these histograms. Multi-
dimensional histograms [3, 15] fare better than their sin-
gle dimensional counterparts for join cardinality estimation
when they are feasible (that is, when it is feasible to com-
pute and store a join histogram for every pair of tables that
might be joined.)

With respect to error bounds and histograms, Ioannidis
and Christodoulakis [18] considered the problem of which

histograms give the best performance for a restricted class
of multiway joins. Jagadish et al. [19] give quality of esti-
mate guarantees for histograms in the context of range se-
lection queries. Neither paper considers tradeoffs between
sample-based synopses and histograms.

Two orthogonal lines of research are sketches [2, 5] and
wavelets [12, 13]. It would be an interesting area for fu-
ture work to explore how wavelets compare to end-biased
samples for join cardinality estimation. In this paper we
provide a comparison with the current “champion” of the
sketch-based approach to join-size estimation, “skimmed
sketches” [11].

There is also a large body of literature dedicated to the
use of sampling techniques in database systems. Much of
that work, including [4, 16, 22, 25], is devoted to issues that
arise when using samples at runtime to give approximate
answers while avoiding scanning the entire input to a query.
Maintaining samples as a way of summarizing a large data
set has been considered before as a technique for giving
approximate answers to queries. In particular, Acharya et
al. [1] consider using join synopses for approximate query
answering in the presence of joins. Like multi-dimensional
histograms, their approach requires actually computing the
join in order to build the summary, hence it is also prob-
lematic for large numbers of joins and distributed data. Re-
cently, Kaushik et al. [20] presented a theoretical treatment
of how accurate one can expect summaries to be for vari-
ous classes of queries. While they consider different tech-
niques (join synopses rather than end-biased samples) and
queries (key-foreign key joins rather than arbitrary joins),
their results are consistent with ours. In fact, in general
terms their results prove that there must be distributions for
which single-dimensional histograms fail, and we show a
specific kind of distribution for which they fail (correlated
join attributes).

In work on sample-based synopses, Gibbons and Ma-
tias [14] proposed “counting samples.” In related work, var-
ious rules have been proposed for choosing the sampling
probability [9, 23] offering various memory usage or accu-
racy guarantees. In Section 5.2.2 we show that join size es-
timates from counting samples can have much higher vari-
ance than those from our end-biased samples.

Duffield et al. [6] estimate the traffic of various network
traffic aggregates based on a sample of a collection of flow
records produced by routers. Our technique is inspired by
theirs, which works by sampling all records whose traffic
is above a threshold and sampling those below the thresh-
old with probability proportional to their traffic, and thisen-
ables low variance estimates from small samples. They did
not consider the join cardinality estimation problem, hence
did not consider using correlated samples.

Flajolet [10] proposed an algorithm for estimating the
number of distinct values of an attribute in a database which



uses a sample of these values based on a hash function.
Estan et al. [8] proposed using these samples to estimate
the number of distinct flows in various traffic aggregates.
Duffield and Grossglauser [7] used a shared hash function
to correlate traffic sampling decisions at routers through-
out a network. Our use of a shared hash function to build
the end-biased samples is inspired by the use of hash func-
tions in these approaches, although they also did not explore
the application of such techniques to join cardinality estima-
tion.

3. End-biased sampling

The usage of the method we propose is very similar to
the usage of single dimensional histograms for join size es-
timation: we build a compact summary for each important
attribute of a table; when joining two tables on a certain
attribute, we estimate the join size based on the two end-
biased samples. We build the end-biased samples indepen-
dently in that the choices of which values to sample in one
table are not influenced by the frequency of values in the
other. As we will see, we use the same hash function to
make correlated pseudo-random decisions for both tables,
but the construction of the samples does not require the sys-
tem to even specify the join to be estimated at the time that
the sample is built. This is an advantage in distributed set-
tings.

3.1. Constructing end-biased samples

To build the end-biased sample for a given attribute of
a table we need the full list of the repeat counts for each
value of the attribute. End-biased sampling picks some of
the entries in this list based on two core ideas: preferen-
tially sampling values that repeat more often, and correlat-
ing sampling decisions at different tables to help find infre-
quent values that occur in both.

Frequent values can have a major effect on join sizes,
so it is important that we keep them in our sample. Thus
we bias our sample towards keeping the frequent values in
a manner similar to end-biased histograms. We use the fol-
lowing rule for the sampling probabilitypv for a given value
v: if the frequencyfv of valuev is above a thresholdT , we
keep (v,fv) in our sample, otherwise we keep it with prob-
ability pv = fv/T . The thresholdT is a parameter we can
use to trade off accuracy and sample size; the higher it is,
the smaller the sample, the lower it is the more accurate our
estimates will be. We propose that the size of the sample
is decided ahead of time and during the construction of the
end-biased sample the threshold is increased until the sam-
ple is small enough.

Infrequent values will have a small probability of be-
ing sampled. If the decisions for sampling infrequent val-

ues in the two tables are statistically independent, the prob-
ability of finding values that occur infrequently in both
tables is very low. While these values do not contribute
large amounts to the join size, if there are many of them,
their contributions add up. Within the sampling probabili-
ties given by the rules from the previous paragraph, we want
the sampling decisions to be correlated: the same infrequent
elements should be picked for all tables. We achieve this
by basing the sampling decisions on a common hash func-
tion h which maps values uniformly to the range[0, 1]: if
h(v) ≤ pv, we sample (v,fv), otherwise not. The end-
biased sampling processes for different tables will only need
to share the seed of the hash function to correlate their sam-
pling decisions. We will choose our hash function from a
family strongly 2-universal hash functions and thus guaran-
tee that the sampling decisions for any pair of values are in-
dependent.

3.2. Estimating join sizes

Let A andB be two tables to be joined. We useav and
bv to denote the frequency (repeat count) of valuev in the
join attribute of tablesA andB respectively. Suppose that
we have two end-biased samples that were constructed on
the common attribute with thresholdsTa andTb. Then we
can compute our estimatêS of the join sizeS by summing
the contributionscv of the values present in both samples
where the contributions are computed as follows.

cv =






avbv if av ≥ Ta andbv ≥ Tb

Tabv if av < Ta andbv ≥ Tb

avTb if av ≥ Ta andbv < Tb

avbv · max
(

Ta

av

, Tb

bv

)
if av < Ta andbv < Tb

Ŝ =
∑

v

cv (1)

Lemma 1 Estimates of join sizes computed through
Equation 1 are unbiased.

Note that Equation 1 ensures that if the actual join is
empty, the estimate will be always 0. For all cases we can
compute the variance given the full histograms on the com-
mon attribute for tablesA andB and the thresholdsTa and
Tb used for computing the end-biased samplesV AR[Ŝ] =∑

v V AR[cv] +
∑

v1 6=v2
COV [cv1

, cv2
]. By choosing our

hash functionh from a family strongly 2-universal hash
functions, we ensure that the sampling decisions for two
distinct valuesv1 andv2 are independent, so the covariance
of their contributions to the estimate isCOV [cv1

, cv2
] = 0.

We can compute∆v = V AR[cv] = E[c2
v] − E[cv]

2 =
(1/pv−1)(avbv)

2, wherepv is the probability that the value
v is sampled for both tables. From∆v we obtain the for-
mula forV AR[Ŝ].



∆v =






0 if av ≥ Ta , bv ≥ Tb(
Ta

av
− 1
)

a2
vb

2
v if av < Ta , bv ≥ Tb(

Tb

bv

− 1
)

a2
vb

2
v if av ≥ Ta , bv < Tb(

max
(

Ta

av
, Tb

bv

)
− 1
)

a2
vb

2
v if av < Ta , bv < Tb

V AR[Ŝ] =
∑

v

∆v (2)

Note that if we made the sampling decisions indepen-
dently at random for the two tables, in the fourth casepv

would have beenav/Ta · bv/Tb < min(av/Ta, bv/Tb) and
thus the variance of the estimate would have been higher.

3.3. Updating end-biased samples

While Section 3.1 gives a procedure of constructing an
end-biased sample from the frequency distribution of an at-
tribute, it does not give a procedure of updating the sam-
ple as tuples are added to or removed from the table. Due
to space constraints we do not discuss updating end-biased
samples in detail here, and just note that in general up-
dates can be processed efficiently if the system maintains
some data structure (e.g., an index) that records the full
frequency distribution on the join attribute. (Such a struc-
ture must have been built, at least implicitly, when the end-
biased sample was originally constructed.) The only kind
of update that is expensive is one that causes the sampling
threshold to be lowered, since then the entire attribute dis-
tribution must be re-sampled to determine what gets added
to the set of frequent values.

4. Variance Bounds

Given the thresholds used by end-biased sampling, we
can compute the variance of the join size estimates for any
pair of tables for which we have the full list of the frequen-
cies of all values. In this section we derive bounds on the
variance of these estimates that do not depend on such de-
tailed knowledge. To get useful bounds, we need to con-
strain the distribution of the frequencies of values in the
two tables in a meaningful way. In this section we work
with progressively stronger constraints that give progres-
sively tighter bounds: we first limit the actual join size, next
we cap the frequency of individual values in both tables,
last we compute a bound that relies on the exact distribu-
tion of frequencies that are above the threshold. Our bounds
hold for all possible distributions of values in the two ta-
bles that fit within the constraints. Note that these are not
bounds on the errors, but on the variance of join size esti-
mates.

We will use an example throughout this section to illus-
trate these bounds numerically. We assume we have two
tables whose join has1, 000, 000 tuples and we use end-
biased samples with a threshold of100 to estimate the size
of this join. While the bounds are on the variance of the es-
timateV AR[Ŝ], in our numerical examples we report the
average relative errorSD[Ŝ]/S.

4.1. Limit on join size

Lemma 2 For two tablesA andB whose end-biased sam-
ples on a common attribute are computed with thresholds
Ta andTb respectively,V AR[Ŝ] ≤ (max(Ta, Tb) − 1)S2.

We note that this variance may be too large to be
useful in practice. The standard deviation of the esti-
mateSD[Ŝ] is larger thanS by a multiplicative factor of√

max(Ta, Tb) − 1 which can amount to orders of magni-
tude for configurations we consider practical. For our nu-
merical example, which uses thresholds of100, this lemma
limits the average error of the estimate of the join size to no
more than995% which means that it is common for esti-
mates to be off by a factor of10. On the other hand, this ex-
treme variance is achieved when the entire join is due
to a single value that repeatsS times in one of the ta-
bles and once in the other. We expect any method that
doesn’t use knowledge about the frequent values in one ta-
ble when constructing the summary of the other, and
doesn’t use summaries with memory requirements compa-
rable to the number of distinct values, to have large errors
on such an input.

4.2. Limits on value frequencies

Lemma 3 Let A andB be two tables with a common at-
tribute for which we have an upper bound on frequencies
of values in the two tables∀v, av ≤ Ma and∀v, bv ≤ Mb.
The variance of their join size estimate based on end-biased
samples with thresholdsTa andTb respectively, is bound by
V AR[Ŝ] ≤ (max((Ta − 1)Mb, (Tb − 1)Ma)S.

Note that if the ratio SD[Ŝ]/S is bound by√
max(TaMb, TbMa)/S, so for some settings, espe-

cially when the actual join size is large and the thresh-
olds and the maximum frequencies are low, Lemma 3 can
guarantee low relative errors. If for the tables in our nu-
merical example we know that no value repeats more than
M = 1, 000 times in either, we can bound the average rel-
ative error to31.5%. If all values are below the threshold
of 100, using Corollary 3.1 we get even smaller average er-
ror: 9.9%.

Corollary 3.1 If the frequencies of all values are below the
end-biased sampling thresholds, the join size estimate vari-
ance is bound byV AR[Ŝ] ≤ (Ta − 1)(Tb − 1)S.



We can further strengthen these bounds by taking into
account the actual frequencies of the values whose frequen-
cies are above the threshold. These bounds are presented in
Appendix C. As a numeric example of this stronger bound,
if we know not only that the most frequent value in both ta-
bles repeats1, 000 times, but also that the second most fre-
quent500 times, the third333 times and theith 1, 000/i
times (Zipf distribution withα = 1), the bound on the aver-
age error is12.3%.

5. Theoretical comparison

Once we have results on the accuracy of join size esti-
mates provided by end-biased samples it is incumbent on us
to compare the accuracy of these estimates with that of other
solutions for solving the same problem. We first explore an-
alytical comparisons, but due to the very different nature of
some of the solutions, we use experiments in Section 6 to
perform comparisons that are unfeasible otherwise.

5.1. Worst case comparison

Alon et al. have shown [2] that when estimating the join
size of two relations withn tuples whose join is at least
B, there are some input data set distributions for which all
methods that summarize the relations separately need to use
at least(n−

√
B)2/B bits to guarantee accurate join size es-

timates with high probability. Furthermore, they show that
simply taking random samples from both tables achieves
this bound within a small multiplicative factor. More ex-
actly using a sample of sizecn2/B tuples can ensure accu-
rate estimates with high probability wherec > 3 is a con-
stant that depends on the desired accuracy and confidence.
Ganguly et al.[11] present a streaming sketch algorithm that
achieves this worst case bound when used for join size esti-
mation. In Section 5.2.1 we show that when using the same
number of elements in the sample, end biased samples al-
ways give more accurate (lower variance) results than ran-
dom samples, and thus they also are within a small constant
factor of the theoretical lower bound.

All three algorithms above basically achieve the worst
case bound. Is it valid to conclude that they are equally
good? No. The worst case bound only tells us that there is a
distribution of inputs (frequent values in one relation being
among the many infrequent values in the other) that is very
hard for all algorithms, and on these inputs all three algo-
rithms are within a constant factor of the bound. But as we
mentioned in the introduction, this bound tells us nothing
about how these algorithms perform on easier inputs. The
next section goes beyond this worst case and gives some re-
sults that apply for all inputs.

5.2. General results for sampling algorithms

In this section we compare end-biased samples against
two other sampling methods used in databases: random
samples and counting samples [14]. For both these sam-
pling methods there are unbiased estimators of the join size
that rely on samples of values of the join attribute in the two
tables. In this section we show that the variance of these es-
timates is higher than that of the estimates based on end-
biased samples using similar sample size.

5.2.1. Random samplesBy “random samples” we sim-
ply mean the most obvious approach: maintaining a random
sample of values for the join attribute. We have the follow-
ing lemma.

Lemma 4 For any data set, the expected size of an end-
biased sample using thresholdT is no larger than the ex-
pected size of a random sample obtained by sampling with
probability1/T .

We usepa andpb for the sampling probabilities at the
two tables, and for each attribute valuev, xv is the number
of samples with valuev from the first table,yv is the num-
ber of samples from the second,av the actual frequency in
the first table, andbv its frequency in the second. The es-
timator of the join sizeŜ =

∑
v xv/pa · yv/pb sums the

contributions of all valuesv present in both samples. Using
the fact thatxv/pa andyv/pb are independent random vari-
ables and unbiased estimators forav andbv respectively, we
can show thatV AR[Ŝ] =

∑
v(bv(1/pa − 1) + av(1/pb −

1)+(1/pa−1)(1/pb−1))avbv wherev ranges over all val-
ues in the join. After substitutingTa = 1/pa andTb = 1/pb

in the formula for the variance introduced into the estimate
by one value(Ta/av−1/av +Tb/bv−1/bv +(Ta−1)/av ∗
(Tb−1)/bv)a

2
vb

2
v and comparing with Equation 2, it is easy

to see the variance of the estimator is strictly larger than the
variance of the one based on end-biased samples. The ra-
tio of the two variances is very close to1 for the hard case
of a very smallav and a very largebv (or the reverse), but
very large for the case whereav andbv are small and infi-
nite for the case when both are over the threshold.

5.2.2. Counting samplesCounting samples [14] of the at-
tribute of interest are built in a single pass over the table
in the following way: for each sampled value, the count-
ing sample stores exactly the count of tuples that have that
value starting with the first one sampled. Note that this does
not give us exact counts of the frequencies of the values
in the sample, but the count only misses the tuples before
the first one sampled. Ifp is the sampling probability used,
the probability that a valuev with frequencyfv will ap-
pear in the sample is1 − (1 − p)fv ≈ 1 − e−pfv . If we set
p = 1/T , for every value, the probability that it appears in
the end-biased sample is close to the probability that it ap-
pears in the counting sample with the largest ratio being



achieved whenfv = T , so the size of the end-biased sam-
ple is at moste/(e − 1) ≈ 1.58 times larger.

We provide the details of our analysis of join size esti-
mates based on counting samples in Appendix B. We con-
clude that counting samples allow estimates of the join size
whose variance is somewhat larger than that of estimates
based on end-biased samples for values that are frequent in
one table and infrequent in the other, but their variance is
significantly higher for values with high frequencies in both
tables for which end-biased samples give the exact contri-
bution to the join size and even more so for values with low
frequencies in both tables because end-biased samples cor-
relate sampling decisions using a shared hash function.

6. Experimental comparison

The previous section shows that when given similar
amounts of memory, end-biased samples dominate ordinary
samples and counting samples on all inputs, and the accu-
racy of the estimates based on end-biased samples is signif-
icantly better on some inputs. Sketches and histograms are
very different approaches, and analytical comparisons that
extend to all data sets are hard. In this section we explore
this issue empirically.

Answering this question with an exhaustive experimen-
tal evaluation over all real-world data sets for all proposed
methods for computing join size estimates clearly would
be prohibitively expensive. Accordingly, in this section we
present a less ambitious experiment meant to give a rough
answer and some intuition. We compare end-biased sam-
ples with four other algorithms for estimating join sizes
based on summaries on the join attribute computed sep-
arately for the two relations. When comparing the differ-
ent algorithms, their summary data structures use the same
number of words of memory.

6.1. Description of experiments

We generate various synthetic data sets and run the five
summarization algorithms on them. The code we used for
generating the datasets, to compute the summaries, estimate
join sizes, and process the results is publicly available at
http://www.cs.wisc.edu/˜estan/ebs.tar.gz
(we do not include the code for sketches because it is not
our code, we received it from Sumit Ganguly).

6.1.1. Summarization algorithms usedThe two other
sampling algorithms we evaluate are concise samples and
counting samples. Concise samples differ from random
samples in that for attribute values that are sampled more
than once, instead of keeping a copy of each sampled in-
stance of the value, we keep a single copy of the value and a
counter storing the number of repetitions of the value in the
sample. This can make it slightly more compact. Also for

concise samples we count attribute values that are sampled
only once as consuming a single word of memory, whereas
for counting samples and end-biased samples all values in
the sample take two words because we also store the counter
associated with them. For all three algorithms we start with
a sampling probability ofp = 1 (or equivalently thresh-
old T = 1/p = 1) and decrement it slightly whenever we
reach the memory limit so that we stay within budget.

We also compare end-biased samples against a simple
single dimensional histogram. We do not claim that there
are no histograms that could provide more accurate esti-
mates, but we tried to choose a powerful member from
the class of simple histograms with general applicability:
an end-biased equi-depth histogram. The histogram stores
explicitly the frequency of values that repeat more times
than a certain threshold, and builds bins defined by non-
overlapping value intervals that cover the whole range for
the attribute. We compute the join size estimate by assum-
ing that except for values with frequencies over the thresh-
old, the frequency of all values in a bin is the samef/n
wheref is the frequency of all values covered by the bin
andn is the number of values covered by the bin (not the
number of values present in the table). Of course the fre-
quent values are not counted towards the total frequency of
the bin and neither towards the number of values covered by
it. Since we use equi-depth histograms, the total frequency
of elements in each bin is approximately the same.

There are two parameters that affect the memory usage
of a histogram and the accuracy of the predictions based on
it: the threshold above which a value’s frequency is stored
exactly and the number of bins used. To make the compar-
ison with end-biased samples fair, we ran the histograms
with parameters that resulted in the same memory usage:
for each data set we used the same threshold and a num-
ber of bins equal to the number of values with frequency
below the threshold present in the end-biased sample.

A simple thought experiment reveals that using single
dimensional histograms for join cardinality estimation is
prone to errors in some cases. The main realization required
is that no matter how carefully histograms choose their
buckets, they always assume uniformity within a bucket.
This means that they can be easily “tricked” into making
a bad estimate. For example, it is possible that one relation
has only even values in the join attribute, while the other
has only odd values. The histogram, assuming uniformity
and independence within buckets, will incorrectly predicta
non-zero join size. Similarly, if both join inputs have only
even values, the histogram, assuming uniformity and inde-
pendence, will underestimate the join size.

Ganguly et al. proposed a skimmed sketches [11], an al-
gorithm that achieves the worst case bound for estimating
join sizes. We contacted them for an implementation of this
algorithm and we used an improved sketch they are cur-



rently working on. This sketch uses a number of hash ta-
bles that operate in parallel. Each update is hashed to one
of the buckets of each hash table based on the attribute’s
value, and then added to or subtracted from (based on an-
other hash of the attribute’s value) the counter associated
with the bucket. The sketch also has a small heap that oper-
ates in parallel storing the most frequent values. When esti-
mating the join size, the frequency of the values in the heap
is estimated based on the sketch, and these values are sub-
tracted from the tables. The final join estimate is the sum of
the estimate based on the estimated frequencies of the fre-
quent values from the two heaps and the estimate based on
the remaining counters in the tables. Due to the implemen-
tation of the hash function used by the sketches, the number
of buckets in the table had to be a power of two in all our ex-
periments.

6.1.2. Input data and memory budgetAs input we used
two randomly generated tables with approximately 1 mil-
lion tuples each with a Zipf distribution for the frequencies
of the values. The values are from the domain with 5 mil-
lion values, and for each of these values we pick their fre-
quency independently at random from the distribution of
frequencies. For each configuration we repeat the experi-
ment1, 000 times to get sufficient data to characterize the
distribution of the errors in the join size estimates1. Since
the histograms are deterministic, we generate new random
inputs for every run, but keep all configuration parameters
the same. We used the Condor high throughput computing
environment developed at our department and the experi-
ments consumed collectively more than one CPU-year of
computing power.

Our first experiment looks at the effect of peaks in the
distribution of attribute value frequencies. We vary the Zipf
exponent from0.2 to 0.95 to go from a distribution with no
peaks to one with high peaks. In all these configurations we
keep the number of tuples around1, 000, 000, so as we in-
crease the Zipf exponent the number of distinct attribute val-
ues decreases. In this experiment, all algorithms use10, 304
words per table to summarize the distribution of the fre-
quencies of the values of the join attribute.

In our next two experiments we vary the amount of mem-
ory used by the summaries. We used the Zipf distributions2

with parametersα = 0.8 andα = 0.35 to see the difference
between how memory usage affects the accuracy of the re-
sults on a peaked distribution versus a non-peaked distribu-

1 For some of the configurations, not all1, 000 runs completed, but for
most of them the results reported in this paper are on more than 990
runs and for all of them the results are on more than925 runs.

2 The actual distributions for the frequencies are given by
⌊15, 250/(1, 000, 000r + 0.5)0.8 + 0.5⌋ and⌊61/(5, 000, 000r +
0.5)0.35 + 0.5⌋ where r is a random variable uniformly dis-
tributed between0 and1 and we pick independent values forr for all
5 million possible values of the attribute.

tion. Since the implementation of sketches we used requires
that the number of buckets per table be a power of two
(hence the seemingly arbitrary decision of using10, 304
words in the previous experiment), we pick the memory
sizes based on the constraints imposed by sketches. We use
two types of configurations, both based on discussions with
the authors of the sketch algorithm:5 tables and the number
of elements in the heap1/64 times the number of buckets
in the table; and3 tables and a heap size of1/32 times the
table size. Each bucket in the table holds one counter that
takes one word of memory, and each element in the heap
takes two memory words, one for the attribute value and
another one for its estimated frequency. We vary the mem-
ory budget from204 to 659, 456 words.

In our last two experiments we vary the degree of cor-
relation between the two tables we estimate the join for.
In the experiments so far, when choosing the frequency of
any given value, the decisions were independent for the two
tables. By positively correlating these choices, we make it
more likely that when one of the tables has a high frequency
for the value, the other one will too, and by correlating them
negatively we make it more likely that the frequency of the
value in the other table will be low (possibly zero). Nega-
tively correlated data sets will have a smaller join size and
positively correlated data sets will have a larger join size
(in the extreme of perfect correlation, the two tables have
identical frequency distributions and we get the self join
size). For the experiment with unpeaked data (Zipf param-
eter of0.2) we have 8 configurations with join sizes from
around6% of the size for uncorrelated inputs to571%. For
the peaked input data we have 12 configurations going from
around5% of the size of the uncorrelated input to almost
100 times larger. As for the first experiment, we use10, 304
words which corresponds to a 5 table configuration for the
sketches.

6.2. Discussion of results

In our discussion of the results of the experiments,
we use4 measures of the distribution of join size esti-
mates of the various algorithms in the various configura-
tions. The first measure is the average over all runs of the ra-
tio of the estimate to the actual join size (since the data
is different for every run, the join sizes differ too). A
value of close to 1 for this measure means that the estima-
tor is not biased, while larger values indicate a bias towards
overestimation and smaller ones towards underestima-
tion. The second measure is the square root of the average
of the square of the relative error. We refer to this quan-
tity as average (relative) error. The third and fourth mea-
sure are the5th and95th percentile for the ratio between
the join size estimate and the actual join size. We can-
not present the full results for all experiments due to
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Figure 1. Average relative errors for the
peaked input set.
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Figure 2. Average relative errors for the un-
peaked input set.

lack of space. We present just the most important re-
sult and the interested reader can access the full results at
http://www.cs.wisc.edu/˜estan/ebs.tar.gz .

6.2.1. Concise samplesAs expected, the more memory
we used, the more accurate the estimates, and concise sam-
ples showed no evidence of bias towards over or under-
estimation. Figures 1 and 2 show how the average error
is affected by the amount of memory used by the sam-
ples for peaked and unpeaked frequency distributions re-
spectively. It might seem surprising that despite our proof
in Section 5.2.1 that random samples give higher variance
results, concise samples do slightly better than end-biased
samples for most memory sizes for the peaked data. The
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Figure 3. Different degrees of correlation of
the peaked frequency distributions of the two
inputs affect the join size and cause biases in
the estimates based on histograms.

explanation is that since concise samples use a single word
for values that are sampled only once whereas end-biased
samples use two words (to store both value and frequency)
for all values sampled, concise samples can afford to sam-
ple slightly more aggressively than end-biased samples, and
this small increase in sampling probability is enough to
make estimates slightly more accurate. For the last data
point the error of concise samples is 0 because they can af-
ford to store the entire data set. The results are very differ-
ent for unpeaked data. While for large amounts of memory
(high sampling rates) the estimates are comparably accu-
rate, for low memory settings the average error of the con-
cise samples is much larger than that of end-biased samples
(1434% versus26.87% for 204 words). The explanation is
that the join is due to many relatively infrequent values oc-
curring in both relations. Correlating the sampling decisions
via a hash function with a shared seed, as done by the end-
biased samples, makes it easier to estimate how many such
values there are and leads to the dramatically lower errors.

6.2.2. Counting samplesCounting samples never outper-
form end-biased samples. Despite being able to provide
more accurate estimates for the frequency of frequent val-
ues than concise samples, the join size estimates based on
counting samples are slightly less accurate (average error
below approximately twice the error with concise samples)
for all settings tested. The reason is that counting samples
need to operate with less aggressive sampling than concise
samples as they store two words for each sampled value.

6.2.3. Histograms In all our experiments with uncorre-
lated data sets histograms estimated the join size with lower
error than end-biased samples. Histograms did especially
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Figure 4. Different degrees of correlation of
the unpeaked frequency distributions of the
two inputs affect the join size and cause bi-
ases in the estimates based on histograms.

well in settings with little memory. But if the value fre-
quencies in the two tables are correlated positively or neg-
atively (as in the even-even and odd-even examples from
Section 6.1.1), the histograms “do not notice” and give esti-
mates much closer to the join size on uncorrelated data than
the actual join size (see Figures 3 and 4), whereas estimates
based on end-biased samples are unbiased as predicted by
Lemma 1. In our experiment with the unpeaked distribution
of value frequencies histograms went from overestimation
by a factor of16.8 on average to underestimation by a factor
of 0.18 on average and for peaked data from20 to 0.14. The
increase towards the end of the plot for the peaked distribu-
tion breaks the trend for histograms. This is due to the val-
ues that are frequent in both relations. Since the histograms
we use are end-biased they correctly compute the contribu-
tion of such values to the join – with distributions that have
strong positive correlation the contribution of such values to
the join increases, and the bias of histograms diminishes.

6.2.4. SketchesOf the methods we tested, based on the
accuracy of the estimates, sketches are the only one that
we would recommend over end-biased samples for certain
types of inputs. Table 1 shows the results of the experi-
ment looking at various values of the Zipf parameter. This
experiment confirms our theoretical results from Section 4
which predict that the variance of the join cardinality es-
timates based on end-biased samples goes up as the fre-
quency of the most frequent values increases. For large val-
ues ofα the sketches give more accurate estimates, but for
small values, the sketches show a slight bias towards over-
estimation. For high values ofα, there are some values with
very high frequency that can influence the join size signif-
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Figure 5. The degree of correlation between
the two inputs with peaked distributions af-
fects the results.

icantly, thus finding a good estimate of the frequency of
these values in the other relation is very important. With
end-biased sample either the value is sampled or not and we
assume this gives higher variance than the estimate of this
frequency using sketches and thus the better performance of
sketches for join size estimation on this type of data. We as-
sume that the sketches’ bias towards overestimation for un-
peaked data is due to interactions between how the heap se-
lects the most frequent values and the actual tables of coun-
ters. Other experiments show that the configuration with 3
tables and larger heap has an even stronger bias.

If we look at different degrees of correlations for the in-
puts with peaked (α = 0.8) frequency distributions (see
Figure 5) we see a more nuanced picture. Even though
sketches give better results for the uncorrelated case, there
is a significant portion of the input space over which end-
biased samples give lower errors.

The results to our experiment varying the memory bud-
get with uncorrelated peaked input distributions show in
Figure 6 that end-biased samples have an advantage for low
memory settings while sketches do better when there is
more memory. Sketches using 3 tables instead of 5 and a
larger heap are significantly less accurate that their properly
configured counterparts, and this highlights the sensitivity
of sketches to proper configuration. With unpeaked data
end-biased samples are significantly better than sketches
with 3 tables for all configurations because of the sketches’
bias towards overestimation.

Finally, we note that skimmed sketches and end-biased
samples work well for overlapping but not identical do-
mains. There are qualitative differences too. End-biased
samples can be used to estimate the size of a select-join if
the selection is on the join attribute, skimmed sketches can-



α End-biased samples Sketches
5th percentile / average /95th percentile (average error)

0.2 0.953 / 1.001 / 1.052 (3.06%) 1.007 / 1.036 / 1.066 ( 4.05%)
0.35 0.944 / 1.001 / 1.065 (3.67%) 1.000 / 1.031 / 1.064 ( 3.67%)
0.5 0.907 / 1.002 / 1.127 (7.10%) 0.950 / 1.000 / 1.052 ( 2.97%)
0.65 0.790 / 1.003 / 1.353 (22.85%) 0.837 / 1.000 / 1.174 ( 10.67%)
0.8 0.554 / 1.025 / 1.903 (71.00%) 0.583 / 0.999 / 1.477 ( 29.28%)
0.95 0.275 / 1.104 / 2.936 (170.15%)0.591 / 1.000 / 1.424 ( 29.13%)

Table 1. The larger the Zipf exponent α, the harder to estimate the join size accurately. The sketches
we used show a slight bias towards overestimation for small values of α, but give more accurate
estimates than end-biased samples for large α.
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Figure 6. End-biased samples give lower er-
rors with low memory budgets.

not; skimmed-sketches can be used in a streaming “read-
once” environment, end-biased samples cannot.

7. Conclusions

When one surveys the synopses proposed to date, it is
clear that no single approach dominates all others for all
purposes. It is certainly not our claim that end-biased sam-
ples should replace all other synopses for join cardinality
estimation. However, based on our observations in this pa-
per, we think that end-biased samples are useful for some
estimation problems on which other approaches either do
not apply or give inaccurate estimates.

To elaborate, many join cardinality estimation tech-
niques, including multi-dimensional histograms and sam-
ples of join results, only apply if the join itself (or at least a
representative subset) can be precomputed. This is infeasi-
ble in some applications; as we have noted, these applica-

tions include ones with distributed data and ones for which
there are “too many” potential joins.

Compared to end-biased samples, single dimensional
end-biased histograms have the disadvantage that they can
overestimate or underestimate the join size by orders of
magnitude when the distribution of values in the two ta-
bles is not independent. Good configurations for sketches
produce more accurate estimates than end-biased samples
on some of the data sets we tested, and sketches also
have the advantage of supporting streaming updates, but
the accuracy of their results strongly depends on configura-
tion parameters and they are slightly biased towards over-
estimation in some settings. For some types of data sets
and for settings where the available memory is low, end-
biased samples consistently give more accurate estimates
than sketches. Furthermore, unlike sketches and single di-
mensional histograms, end-biased samples support selec-
tion on the join attribute. Compared to concise samples and
counting samples, end-biased histograms give significantly
more accurate results when the join is dominated by val-
ues not frequent in either table.

Substantial room for future work remains. One interest-
ing task would be to compute confidence intervals for the
estimates produced by end-biased samples. Another inter-
esting and important task would be to better understand how
to automatically pick the method that is best fitted for a
given scenario of interest.
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A. Proofs of Lemmas

In this appendix we include proofs of the lemmas in the
text.
Lemma 1 Estimates of join sizes computed through
Equation 1 are unbiased.

Proof We need to show that theE[Ŝ] = S. The actual
join size is is the sum of the number of repetitions in the join
for each valuev that occurs in both tablesS =

∑
avbv. If

considercv = 0 for values that do not appear in both sam-
ples we can extend the summation from Equation 1 to all
values that appear in both tables. By the linearity of expec-
tation,E[Ŝ] =

∑
E[cv], so it suffices to show that the ex-

pected contribution to the estimateE[cv] = avbv for each
valuev. Letpv be the probability that we chose a hash func-
tionh for which the valuev is sampled forbothtablesA and
B. We show that in all four cases from Equation 1 we have
cv = avbv/pv and thusE[cv] = pv ·avbv/pv+(1−pv)·0 =
avbv. It is straightforward to check the first three cases
where the values ofpv are1, av/Ta, andbv/Tb respectively.
The discussion of the fourth case relies on how correlated
sampling decisions are made using the hash functionh. For
the valuev to be selected in both samples, we need to have
h(v) ≤ av/Ta andh(v) ≤ bv/Tb. This happens with prob-
ability pv = min(av/Ta, bv/Tb) = 1/ max(Ta/av, Tb/bv)
which gives the unbiasedness for the fourth case.�

Lemma 2 For two tablesA andB whose end-biased sam-
ples on a common attribute are computed with thresholds
Ta andTb respectively,V AR[Ŝ] ≤ (max(Ta, Tb) − 1)S2.

Proof S =
∑

avbv, V AR[Ŝ] =
∑

∆v and by a sim-
ple transformation of the cases in Equation 2 we can show
that∆v is of the form(Ta−av)bv ·avbv, av(Tb−bv) ·avbv,
or 0 ·avbv if v’s frequency is above the threshold in both ta-
bles. Letm = maxv((Ta − av)bv, av(Tb − bv), 0) be the
largest∆v/(avbv) ratio. Thus

∑
∆v ≤ ∑

mavbv = mS.
But for the values that participate in the join, we know that
1 ≤ av ≤ S and1 ≤ bv ≤ S becauseavbv ≤ S, thus
(Ta−av)bv ≤ (Ta−1)S andav(Tb− bv) ≤ S(Tb−1). By



substituting we get
∑

∆v ≤ mS ≤ max((Ta − 1)S, (Tb −
1)S)S = (max(Ta, Tb) − 1)S2

�

Lemma 3 Let A and B be two tables with a common at-
tribute for which we have an upper bound on frequencies
of values in the two tables∀v, av ≤ Ma and∀v, bv ≤ Mb.
The variance of their join size estimate based on end-biased
samples with thresholdsTa andTb respectively, is bound by
V AR[Ŝ] ≤ (max((Ta − 1)Mb, (Tb − 1)Ma)S.

Proof Based on exactly the same reasoning as in the
proof of Lemma 2, we arrive atV AR[Ŝ] ≤ mS, but since
av andbv are bound byMa andMb respectively instead of
S, m ≤ max((Ta − 1)Mb, (Tb − 1)Ma). �

Lemma 4 For any data set, the expected size of an end-
biased sample using thresholdT is no larger than the ex-
pected size of a random sample obtained by sampling with
probability1/T .

Proof We first compute for each valuev, the expected
contribution to the size of the two samples. For random
samples, each tuple has a probability of1/T of being sam-
pled and since different tuples with the same attribute value
are not combined, the expected contribution of a value that
appears infv tuples isfv · 1/T = fv/T . For end-biased
samples the probability of the sample containing the en-
try (v, fv) is min(1, fv/T ) because values withfv ≥ T
appear with probability one and the rest with probability
fv/T . Since end-biased samples have one entry for each
value present,v’s expected contribution to the sample size
is min(1, fv/T ) ≤ fv/T . As each value is expected to con-
tribute to the end-biased sample no more than to the ran-
dom sample, the expected size of the end-biased sample is
no larger than the expected size of the random sample.�

B. Analysis of counting samples

Letxv andyv be the counts associated with valuev in the
two counting samples. It is easy to show by induction onav

andbv thatXv = xv + 1/pa − 1 andYv = yv + 1/pb − 1
are unbiased estimators ofav and bv respectively (when
a valuev is not in their respective sampleXv andYv are
0). Through a similar induction, but with a more involved
derivation, we show thatV AR[Xv] = 1/pa(1/pa − 1)(1−
(1−pa)

av ) andV AR[Yv] = 1/pb(1/pb−1)(1−(1−pb)
bv ).

Using thatXv andYv are independent random variables, it
is easy to show that̂S =

∑
v XvYv =

∑
v(xv + 1/pa −

1)(yv + 1/pb − 1) is an unbiased estimator of the join size
and its variance isV AR[Ŝ] =

∑
v V AR[Xv]V AR[Yv] +

V AR[Xv]b2
v + V AR[Yv]a2

v.
We will not compare counting samples against end-

biased samples directly but against a weaker version of
end-biased samples which make sampling decisions about
values independently for the two relations with the same
probabilities as end-biased samples, but without the shared
hash function. Based on these samples we can compute

an unbiased estimateX ′
v of av as follows:X ′

v = av if
av ≥ Ta, X ′

v = Ta if av < Ta and v is in the sam-
ple andX ′

v = 0 otherwise. We defineY ′
v similarly. We

haveV AR[X ′
v] = (Tb − av)av for av < Ta (and0 oth-

erwise) and similarlyV AR[Y ′
v ] = (Tb − bv)bv. Note that

Ŝ′ =
∑

v X ′
vY

′
v is also an unbiased estimator of the join

size. The variance for values participating to the join is
V AR[Xv]V AR[Yv]+V AR[Xv]b

2
v +V AR[Yv]a2

v. For val-
ues above threshold in either table, this is exactly the same
as∆v for end-biased samples, it is only worse for values
below the threshold in both tables (because the sampling
decisions are not correlated). By showing that the estima-
tor based on counting samples has higher variance thanŜ′,
we show that it has higher variance than for end-biased
samples. We only need to show now that forpa = 1/Ta

V AR[Xv] ≥ V AR[X ′
v] ∀av ∈ 1, ..., Ta and forpb = 1/Tb

V AR[Yv] ≥ V AR[Y ′
v ] ∀bv ∈ 1, ..., Tb. We most prove the

following inequality.

1

p

(
1

p
− 1

)(
1 − (1 − p)f

)
≥ (1/p − f)f

1 − p − (1 − p)f+1 ≥ fp − f2p2

1 − (f + 1)p + f2p2 − (1 − p)f+1 ≥ 0

We will treat the left side as a continuous functiong(p)
defined on[0, 1]. g′(p) = −f −1+2f2p+(f +1)(1−p)f

andg′′(p) = 2f2 − (f2 + f)(1 − p)f−1. Sinceg(0) = 0
andg′(0) = 0, it suffices to show thatg′′(p) ≥ 0 over[0, 1].
g′′(p) ≥ 0 is equivalent to(1− p)f−1 ≤ 2f/(f + 1). Since
for f ≥ 1, 2f/(f + 1) = 2(1 − 1/(f + 1)) ≥ 1 ≥ (1 −
p)f−1.

Discussion of resultsThis analysis in this appendix
shows thatV AR[Xv] ≥ V AR[X ′

v] and V AR[Yv] ≥
V AR[Y ′

v ], but the difference is small for small values ofav

andbv. While for large values, the difference is larger, even
asV AR[X ′

v] andV AR[Y ′
v ] reach zero afterav andbv reach

the threshold, we always haveV AR[Xv] ≤ 1/pa(1/pa −
1) = Ta(Ta − 1) ≈ T 2

a andV AR[Yv] ≤ 1/pb(1/pb −
1) = Tb(Tb − 1) ≈ T 2

b . For values frequent in only
one table, the variance for estimates based on counting
samples is only slightly larger than the variance of those
based on end-biased samples. For values that are frequent
in both, end-biased samples have a variance of 0, and the
relative error for estimates based on counting samples is
SD[Ŝ]/S ≈ max(Ta/av, Tb/bv). For values that are in-
frequent in both tables, because counting samples do not
correlate sampling decisions, the variance of their estimates
can be larger than for end-biased samples by a multiplica-
tive factor ofmin(Ta, Tb), just like for random samples.



C. Variance bounds based on the exact distri-
bution of frequent values

The distribution of value frequencies that achieves the
bound in Lemma 3 is one where the join is dominated by
values that repeatM times in one table and once in the
other, and we have as many of these values as we can fit
in the join size ofS. But with the types of distributions
common in databases, such as Zipf distributions, we usu-
ally only have few values that are close to the maximum
frequency. Furthermore, as with end-biased histograms, if
we use end-biased samples, we know exactly the identity
and the frequency of the values that repeat most often. We
can use this knowledge to compute an even tighter bound
on the variance of the estimate.

For values that are above the threshold in both tables, we
can compute the exact contribution to the join size. From
here on, we will focus on the harder case when no values
are above the threshold in both tables. The more general
problem can be turned into this case by removing the val-
ues that are above the threshold: deleting them from the two
lists of values above the threshold and subtracting their con-
tribution from the join size. We provide the following for-
mal definition for the problem we will solve in this section.

Problem definition LetA andB be two tables with end-
biased samples using thresholdsTa andTb respectively. Let
na andnb be the number of values above the thresholds and
ai for i ∈ {1, . . . , na} andbi for i ∈ {1, . . . , nb} be the fre-
quencies of values above the thresholds in the two tables.
Given that the actual join size isS, what is the largest pos-
sible value forV AR[Ŝ] among all distributions consistent
with ai andbi?

We can formulate this as an optimization problem where
an adversary tries to maximize the variance of the estimate
of the join size, under the constraints of the problem def-
inition. We first introduce some new notations and make
some observations. Note the change of notation we intro-
duced with this definition: we denote byai the frequency of
the ith value that is above the threshold, not the frequency
of valuei. Without loss of generality we will assume that
the sequencesai andbi are sorted in descending order. Let
0 ≤ xi ≤ Tb − 1 be the frequency in tableB for the ith
frequent value in tableA and 0 ≤ yi ≤ Ta − 1 be the
the frequency in tableA for the ith frequent value in table
B. The variances for individual values from Equation 2 are
maximized byxi = Tb/2 andyi = Ta/2, so we can omit
xi ≤ Tb − 1 andyi ≤ Ta − 1 from the list of constraints we
impose on the optimization problem. Finally,S can be so
large that the frequent values cannot achieve a large enough
join, so values below the threshold in both tables also have
to be part of the join. LetSt = S−

∑na

i=1 aixi −
∑nb

i=1 biyi

be the contribution to the join size of values that are be-
low the thresholds in both tables. We have the constraint

St ≥ 0. From Corollary 3.1 we can bound the variance
of the contribution of these values to the estimate of the
join size by (Ta − 1)(Tb − 1)St. Assuming this bound
is achievable3, we can compute the part ofV AR[Ŝ] that
is due to values below the threshold in both relations as
V AR[Ŝt] = (Ta−1)(Tb−1)(S−

∑na

i=1 aixi−
∑nb

i=1 biyi).

V AR[Ŝ] =

na∑

i=1

(Tb − xi)xia
2
i +

nb∑

i=1

(Ta − yi)yib
2
i +

(Ta − 1)(Tb − 1)

(
S −

na∑

i=1

aixi −
nb∑

i=1

biyi

)

=

na∑

i=1

(Tbai − (Ta − 1)(Tb − 1))aixi − x2
i a

2
i +

nb∑

i=1

(Tabi − (Ta − 1)(Tb − 1))biyi − y2
i b2

i +

(Ta − 1)(Tb − 1)S

We can now formulate our problem as the optimization
problem of maximizingV AR[Ŝ] over the values ofxi and
yi under the constraints below.

xi ≥ 0 ∀i ∈ 1, ..., na

yi ≥ 0 ∀i ∈ 1, ..., nb
na∑

i=1

aixi +

nb∑

i=1

biyi ≤ S

If we remove the additional constraint thatxi and yi

be integers, the bound forV AR[Ŝ] becomes easy to com-
pute, and it still stays valid for the more constrained case
of integer values. Note that we want to maximize a func-
tion strictly concave in all variables that has a single global
maximum. The objective function has the same properties
when restricted to the hyperplanes constraining the vari-
ables. Using these observations and the particular form of
the objective function, we can build a simple greedy algo-
rithm for solving the problem of finding the bound. With
a change of variable tozi = aixi ∀i ∈ 1, ..., na and
zi+na

= biyi ∀i ∈ 1, ..., nb we convert the problem to the
equivalent problem of finding thezi maximizing

∑
(αizi −

z2
i ) + (Ta − 1)(Tb − 1)S under the constraintszi ≥ 0 and∑

zi ≤ S whereαi = Tbai−(Ta−1)(Tb−1)∀i ∈ 1, ..., na

andαi+na
= Tabi − (Ta − 1)(Tb − 1)∀i ∈ 1, ..., nb. The

global maximum is achieved forzi = αi/2, but this might
violate

∑
zi ≤ S. If so, we need to find the point in the vari-

able space within this constraint that maximizesV AR[Ŝ] =

3 Given that we later use the equations based on this assumption to de-
rive an upper bound onV AR[ bS], this assumption is not necessary, we
just make it to simplify the presentation.



COMPUTEVARIANCE BOUND
1 for i = 1 to na

2 xi = Tb

2 − (Ta−1)(Tb−1)
2ai

3 endfor
4 for i = 1 to nb

5 yi = Tb

2 − (Ta−1)(Tb−1)
2bi

6 endfor
7 if

∑na

i=1 aixi +
∑nb

i=1 biyi < S
8 return

∑na

i=1(Tb − xi)xia
2
i +

∑nb

i=1(Ta − yi)yib
2
i +

(Ta − 1)(Tb − 1)(S −∑na

i=1 aixi −
∑nb

i=1 biyi)
9 endif
10 while true

11 d =
P

na

i=1
xiai+

Pn
b

i=1
yibi−2S

2(na+nb)

12 if min(ana
xna

, bnb
ynb

) ≥ d
13 break
14 endif
15 if ana

xna
< bnb

ynb

16 na = na − 1
17 else
18 nb = nb − 1
19 endif
20 endwhile
21 for i = 1 to na

22 xi = xi − d
ai

23 endfor
24 for i = 1 to nb

25 yi = yi − d
bi

26 endfor
27 return

∑na

i=1(Tb − xi)xia
2
i +

∑nb

i=1(Ta − yi)yib
2
i

Figure 7. The algorithm for computing the
bound on the variance of the join size esti-
mate takes as input the actual join size S, the
threshold for the end-biased samples Ta and
Tb, the number of values above the thresh-
olds in the two relations na and nb and the fre-
quencies of these values ai and bi assumed
to be in descending order.

ct.−∑(αi/2 − zi)
2. Let zi = αi/2 − di. We need to find

di such that
∑

d2
i is minimized and

∑
di =

∑
αi/2 − S

which is achieved fordi = d = (
∑

αi/2 − S)/(na + nb).
The problem with this solution is that somezi = αi/2 − d
might be below0. If so, we can greedily take the dimen-
sions with the smallestαi and setzi = 0 (which is equiva-
lent to removing that dimension from the optimization prob-
lem), and recompute. Figure 7 gives the resulting algorithm
for computing the upper bound onV AR[Ŝ].

Discussion of algorithmThe algorithm picks for all val-
ues frequent in one of the tables the number of repetitions

in the other table as to maximize the variance of the join
size estimate (equivalent tozi = αi/2). The two for loops
in lines 1 to 6 compute these optimal values forxi andyi.
The “if” statement checks whether the join size obtained
with these optimal values exceeds the actual join size and
if not, it “fills up” the rest of the join with values infre-
quent in both relations. If the join size is a limitation, the
while loop in lines 10 to 20 computes which frequent val-
ues we use to maximize the variance. Line 11 computes the
deviation from the optimal value (in thez coordinate sys-
tem introduced in the previous paragraph) and it progres-
sively eliminates the least frequent values until the counts
for all remaining ones are strictly positive.Note thatd is re-
computed after each decision to eliminate one of the val-
ues above the threshold. Finally the two loops in lines 21 to
26 adjustxi andyi for the remaining values to positive fre-
quencies below their optimal values that ensure that we ob-
tain the correct join size.

As a specific example of the insight provided by this al-
gorithm, if we know not only that the most frequent value
in both tables repeats1, 000 times, but the second most fre-
quent500 times, the third333 times and theith 1, 000/i
times (Zipf distribution withα = 1), we can use this algo-
rithm to compute the bound on the average error. The result
is 12.3%, which is closer to the bound we obtained assum-
ing all values repeat less than100 times than to the bound al-
lowing an unlimited number of values to repeat up to1000.


