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Abstract ties of traffic at the first site with properties of traffic aeth
second.

We present a new technique for using samples to es- \when multi-dimensional histograms are not feasible,
timate join cardinalities. This technique, which we term zn obvious approach to solve this estimation problem is
“end-biased samples,” is inspired by recent work in net- to fall back on single dimensional histograms. Unfortu-
work traffic measurement. It improves on random samplespately, while single dimensional histograms work superbly
by using coordinated pseudo-random samples and retain-for range queries, as we show in this paper, for join queries
ing the sampled values in proportion to their frequency. We they fail miserably if the data in the join attributes of tie i
show that end-biased samples always provide more accupyt relations is correlated. Because of this, it makes sense
rate estimates than random samples with the same samplgo consider the alternative approach of retaining a sample
size. The comparison with histograms is more interesting of the values in the join attributes, because such samples
— while end-biased histograms are somewhat better thangye Jikely to reflect the correlations in the attributes. Bt
end-biased samples for uncorrelated data sets, end-biaseq)rob|em with such an approach is that for good estimates
samples dominate by a large margin when the data is cor- e may have to use samples that are impractically large.
related. Finally, we compare end-biased samples to the re-
cently proposed "skimmed sketches” and show that r]enhermation must be viewed in the context of Alon et al.’s [2] fun-

dominates the other, that each has different and compelling A
amental result, which implies that for worst-case dats, set
strengths and weaknesses. These results suggest that end-

biased samples may be a useful addition to the repertoire of IS |mpo_SS|bIe to do much better than S|mple random sam-
technigues used for data summarization, pling. This does not mean that we cannot improve on sim-

ple random sampling — not all data sets are worst case!
It does mean that future progress in the field will likely be
marked by exploring where existing and newly proposed
1. Introduction techniques are strong and where they are weak, and analyz-
ing the tradeoffs between a number of techniques to gain

Often it is desirable to use synopses (for example, his-iNsight as to when each can be profitably employed, not by
tograms) to estimate query result sizes. Synopses work b);mdlng a “silver bullet” magical technique that is always
first processing a data set, computing a synopsis that isSubstantially better than any other.
smaller than the original data, then using this synopsis at In this spirit we propose a new way of building a sam-
run time to quickly generate an estimate of the cardinal- ple summary, inspired by recent work in the network mon-
ity of a query result. In this paper we consider a challenging itoring community, which we term “end-biased samples.”
scenario for estimating join cardinalities — one in which End-biased samples use three key ideas to improve upon
joins are not key-foreign key, and for which building multi- simple random samples. First, in a way reminiscent of end-
dimensional histograms on the join attributes is not fdasib biased histograms, they store exact frequencies for thé mos
(perhaps because the space of all possible joins is tog largefrequent values in the join attribute. This captures the fre
perhaps because the tables being joined are geographicallguent values in the “head” of the distribution of the values
distributed.) As one example of a situation in which such in the join attribute. Second, for the less frequent valaes i
joins arise, consider a network monitoring setting in which the tail of the distribution, we sample those values, but re-
there are hundreds or thousands of sites storing logs af theitain them in the sample with a probability proportional to
traffic. An analyst may decide to join the logs of any pair of their frequency. For values that are retained in the sample,
sites on non-key attributes, presumably to correlate prope we store their exact frequency. Third, when deciding which

All work on synopsis-based approaches to join size esti-



values in the tail of the distribution to retain in the sam- histograms give the best performance for a restricted class
ple, we use the same universal-2 hash function for both in-of multiway joins. Jagadish et al. [19] give quality of esti-
put tables, so that a value that is kept in the sample in onemate guarantees for histograms in the context of range se-
table is likely to also appear in the sample for the other ta- lection queries. Neither paper considers tradeoffs betwee
ble. sample-based synopses and histograms.

We show that end-biased samples always provide an un- Two orthogonal lines of research are sketches [2, 5] and
biased estimator of the join cardinality, and give anayjtic wavelets [12, 13]. It would be an interesting area for fu-
formulas for the variance of this estimator under several as ture work to explore how wavelets compare to end-biased
sumptions about the input data. We also perform an empir-samples for join cardinality estimation. In this paper we
ical study on the tradeoffs between end-biased samples angrovide a comparison with the current “champion” of the
end-biased histograms. This study shows that while end-sketch-based approach to join-size estimation, “skimmed
biased histograms perform slightly better than end-biasedsketches” [11].

samples for uncorrelated data, they perform much worse if  There is also a large body of literature dedicated to the
the data is correlated (either positively or negatively)eSe  yse of sampling techniques in database systems. Much of
results suggest that end-biased sampling may be a usefuhat work, including [4, 16, 22, 25], is devoted to issues tha
technique to add to the statistical summary tools used byarise when using samples at runtime to give approximate
query optimizers. answers while avoiding scanning the entire input to a query.
Finally, we compare end-biased samples to the re-Maintaining samples as a way of summarizing a large data
cently proposed “skimmed sketches” [11]. The com- set has been considered before as a technique for giving
parison is interesting. For small memory budgets, end-approximate answers to queries. In particular, Acharya et
biased samples dominate; in fact, in such configurations,g|. [1] consider using join synopses for approximate query
skimmed sketches appear to have a bias in their esti-answering in the presence of joins. Like multi-dimensional
mate. For larger memory budgets, skimmed sketches givehistograms, their approach requires actually computieg th
lower errors than end-biased samples. Furthermore, unjoin in order to build the summary, hence it is also prob-
like skimmed sketches, end-biased samples can estimat@matic for large numbers of joins and distributed data. Re-
the sizes of an important class of select-join queries; con-cently, Kaushik et al. [20] presented a theoretical treatme
versely, unlike end-biased samples, skimmed sketchesof how accurate one can expect summaries to be for vari-
are effective in a “read once” streaming environment; fi- ous classes of queries. While they consider different tech-
nally end-biased samples are simpler to configure andniques (join synopses rather than end-biased samples) and
require less “tuning” than skimmed sketches to return ac- queries (key-foreign key joins rather than arbitrary jins

curate results. their results are consistent with ours. In fact, in general
terms their results prove that there must be distributions f
2. Related Work which single-dimensional histograms fail, and we show a

specific kind of distribution for which they fail (correlate

A great deal of work is relevant to end-biased samples i0in attributes).
for join cardinality estimation. There is a long and distin-  In work on sample-based synopses, Gibbons and Ma-
guished history of papers dedicated to the design and evallias [14] proposed “counting samples.” In related work; var
uation of more accurate histograms for various estimationious rules have been proposed for choosing the sampling
problems, including [17, 21, 24, 26, 27]. While some of Probability [9, 23] offering various memory usage or accu-
these histograms could give somewhat better estimates thaf@Cy guarantees. In Section 5.2.2 we show that join size es-
the end-biased equi-depth histograms we consider in thistimates from counting samples can have much higher vari-
paper in some scenarios, the main conclusion that single di-2nce than those from our end-biased samples.
mensional histograms are problematic for join cardinality ~ Duffield et al. [6] estimate the traffic of various network
estimation in the presence of correlated data still remains traffic aggregates based on a sample of a collection of flow
The problem arises whenever you assume a uniform distri-records produced by routers. Our technique is inspired by
bution within a bucket, as do all these histograms. Multi- theirs, which works by sampling all records whose traffic
dimensional histograms [3, 15] fare better than their sin- is above a threshold and sampling those below the thresh-
gle dimensional counterparts for join cardinality estiimat  old with probability proportional to their traffic, and tres-
when they are feasible (that is, when it is feasible to com- ables low variance estimates from small samples. They did
pute and store a join histogram for every pair of tables that not consider the join cardinality estimation problem, reenc
might be joined.) did not consider using correlated samples.

With respect to error bounds and histograms, loannidis  Flajolet [10] proposed an algorithm for estimating the
and Christodoulakis [18] considered the problem of which number of distinct values of an attribute in a database which



uses a sample of these values based on a hash functiorues in the two tables are statistically independent, thb-pro
Estan et al. [8] proposed using these samples to estimatability of finding values that occur infrequently in both
the number of distinct flows in various traffic aggregates. tables is very low. While these values do not contribute
Duffield and Grossglauser [7] used a shared hash functionlarge amounts to the join size, if there are many of them,
to correlate traffic sampling decisions at routers through- their contributions add up. Within the sampling probabili-
out a network. Our use of a shared hash function to build ties given by the rules from the previous paragraph, we want
the end-biased samples is inspired by the use of hash functhe sampling decisions to be correlated: the same infréquen
tions in these approaches, although they also did not explor elements should be picked for all tables. We achieve this
the application of such techniques to join cardinalityresti by basing the sampling decisions on a common hash func-

tion. tion A which maps values uniformly to the range 1]: if
h(v) < p,, we sample «,f,), otherwise not. The end-
3. End-biased sampling biased sampling processes for different tables will onche

to share the seed of the hash function to correlate their sam-

The usage of the method we propose is very similar to pling decisions. We_ will choose our hash function from a
the usage of single dimensional histograms for join size es-family strongly 2-universal hash functions and thus guaran

timation: we build a compact summary for each important tee that the sampling decisions for any pair of values are in-
attribute of a table; when joining two tables on a certain dependent.

attribute, we estimate the join size based on the two end- ] o

biased samples. We build the end-biased samples indepen3-2. Estimating join sizes

dently in that the choices of which values to sample in one

table are not influenced by the frequency of values in the A

other. As we will see, we use the same hash function to?v {0 denote the frequency (repeat count) of vaiue the

make correlated pseudo-random decisions for both tablesiCiN attribute of tablesi and B respectively. Suppose that

but the construction of the samples does not require the sysV& have two end-biased samples that were constructed on

tem to even specify the join to be estimated at the time that"€ common attribute with thresholds and;,. Then we
te our estimateof the join sizeS by summing

the sample is built. This is an advantage in distributed set- a1 computé .
tings. the contributions:, of the values present in both samples

where the contributions are computed as follows.

Let A and B be two tables to be joined. We usg and

3.1. Constructing end-biased samples

by if a, > T, andb, > T,
To build the end-biased sample for a given attribute of Tuby if a, <T, andb, > T,
a table we need the full list of the repeat counts for each v = \ a,Tp if a, > T, andb, < T,
value of the attribute. End-biased sampling picks some of ayb, - max (Z_a, %) if a, < T, andb, < T}
the entries in this list based on two core ideas: preferen- v
tially sampling values that repeat more often, and correlat G Z . (1)
ing sampling decisions at different tables to help find infre - Y

guent values that occur in both.

Frequent values can have a major effect on join sizes,
so it is important that we keep them in our sample. Thus
we bias our sample towards keeping the frequent values in  Note that Equation 1 ensures that if the actual join is
a manner similar to end-biased histograms. We use the fol-empty, the estimate will be always 0. For all cases we can
lowing rule for the sampling probability, for a givenvalue  compute the variance given the full histograms on the com-
v: if the frequencyf, of valuev is above a threshold, we mon attribute for tablesl and B and the thresholds, and
keep ¢,f,) in our sample, otherwise we keep it with prob- T, used for computing the end-biased sampletR|[S] =
ability p, = f,/T. The threshold is a parameter we can  >° VARle,| + >, ,, COV|ey,, cy,]. By choosing our
use to trade off accuracy and sample size; the higher it is,hash functionh from a family strongly 2-universal hash
the smaller the sample, the lower it is the more accurate ourfunctions, we ensure that the sampling decisions for two
estimates will be. We propose that the size of the sampledistinct values;; andv, are independent, so the covariance
is decided ahead of time and during the construction of theof their contributions to the estimate@®0V [c,, , ¢,,] = 0.
end-biased sample the threshold is increased until the samWe can compute\, = VAR[c,] = E[c?] — Elc,)? =
ple is small enough. (1/py—1)(ayb,)?, wherep, is the probability that the value

Infrequent values will have a small probability of be- v is sampled for both tables. Froh,, we obtain the for-

-~

ing sampled. If the decisions for sampling infrequent val- mula forV AR[S].

Lemma 1 Estimates of join sizes computed through
Equation 1 are unbiased.



We will use an example throughout this section to illus-
trate these bounds numerically. We assume we have two

0 ifay 2 To, by 2T tables whose join has, 000, 000 tuples and we use end-
L 1) a2e? ifa, <To,b, >T,  biased samples with a thresholdidi to estimate the size
A, = % —1) a2 if g, > T, by <T) qf this join. V\Lhil_e the bounds.are on the variance of the es-
R _ timate V ARJ[S], in our numerical examples we report the
max (ﬁv b—f) - 1) ajty ifa, <Ta,bs <Tp  average relative erra¥D[S]/S.
VARIS] = 3 A, ) 4.1. Limiton join size

_ _ o _ Lemma 2 For two tablesA and B whose end-biased sam-
Note that if we made the sampling decisions indepen- ples on a common attribute are computed with thresholds

-~

dently at random for the two tables, in the fourth case 7, andT;, respectivelyy AR[S] < (max(T,, Tp) — 1)S2.
would have been,, /T, - b, /T, < min(a,/T,,b,/Tp) and

thus the variance of the estimate would have been higher. ~ We note that this variance may be too large to be
useful in practice. The standard deviation of the esti-
mate SDIS] is larger thanS by a multiplicative factor of
max(T,,T,) — 1 which can amount to orders of magni-
tude for configurations we consider practical. For our nu-

Wh_ile Section 3.1 gives a procedure Qf qonstructing aN merical example, which uses thresholdd 0, this lemma
end-biased sample from the frequency distribution of an at- s the average error of the estimate of the join size to no

tribute, it does not give a procedure of updating the sam- /. than995% which means that it is common for esti-
ple as tuples are added to or removed from the table. Du€nates to be off by a factor df). On the other hand, this ex-
to space constraints we do not discuss updating end—biasefireme variance is achieved when the entire join is due
samples in detail here, and just note that in general Up-5 a single value that repeats times in one of the ta-
dates can be processed efficiently if the system maintaing; ;a5 and once in the other. We expect any method that

some data tstrqctu.re (g, an |.ndex). that records the fullyqeqnt yse knowledge about the frequent values in one ta-
frequency distribution on the join attribute. (Such a struc ble when constructing the summary of the other, and

tqre must have been bll,li|.t, at least implicitly, when the er_1d- doesn’t use summaries with memory requirements compa-
biased sample was originally constructed.) The only kind 51,16 16 the number of distinct values, to have large errors
of update that is expensive is one that causes the sampling, <\,ch an input

threshold to be lowered, since then the entire attribute dis
tribution must be re-sampled to determine what gets adde
to the set of frequent values.

3.3. Updating end-biased samples

d4.2. Limits on value frequencies

Lemma 3 Let A and B be two tables with a common at-
4. Variance Bounds tribute for which we have an upper bound on frequencies
of values in the two tablegv, a,, < M, andVv, b, < M.
Given the thresholds used by end-biased sampling, weThe variance of their join size estimate based on end-biased
can compute the variance of the join size estimates for anysamples with thresholdg, andT), respectively, is bound by
pair of tables for which we have the full list of the frequen- VARI[S] < (max((T, — 1)My, (T, — 1)M,)S.
cies of all values. In FhIS section we derive bounds on the Note that if the ratio SD[§]/S is bound by
variance of these estimates that do not depend on such de- .
tailed knowledge. To get useful bounds, we need to con- v/max(T,My, T,M,)/S, so for some settings, espe-

. N : ; cially when the actual join size is large and the thresh-
strain the distribution of the frequencies of values in the . .
. . . . olds and the maximum frequencies are low, Lemma 3 can
two tables in a meaningful way. In this section we work

with progressively stronger constraints that give progres ?nuearirc?glteeia:?nw I;e\lsgvkengxc:gt Ir]:c]:O\/ratIE: rt:b:aeastsmmcc))trj; ?hua;n
sively tighter bounds: we first limit the actual join sizexhe pie we K P

ST . M = 1,000 times in either, we can bound the average rel-
we cap the frequency of individual values in both tables, .
last we compute a bound that relies on the exact distribu_atlve error t031.5%. If all values are below the threshold
tion of frequencies that are above the threshold. Our bounds?;rl_goé(;smg Corollary 3.1 we get even smaller average er-
hold for all possible distributions of values in the two ta- PO
bles that fit within the constraints. Note that these are notCorollary 3.1 If the frequencies of all values are below the
bounds on the errors, but on the variance of join size esti-end-biased sampling thresholds, the join size estimate var

A~

mates. ance is bound by AR[S] < (T, — 1)(T, — 1)S.




We can further strengthen these bounds by taking into5.2. General results for sampling algorithms

account the actual frequencies of the values whose frequen-

cies are above the threshold. These bounds are presented in In this section we compare end-biased samples against
Appendix C. As a numeric example of this stronger bound, two other sampling methods used in databases: random
if we know not only that the most frequent value in both ta- Samples and counting samples [14]. For both these sam-
bles repeats, 000 times, but also that the second most fre- pling methods there are unbiased estimators of the join size
quent500 times, the third333 times and theth 1,000/ that rely on samples of values of the join attribute in the two
times (Zipf distribution withoe = 1), the bound on the aver- ~ tables. In this section we show that the variance of these es-
age error is2.3%. timates is higher than that of the estimates based on end-

biased samples using similar sample size.

. . 5.2.1. Random samplesBy “random samples” we sim-
5. Theoretical comparison ply mean the most obvious approach: maintaining a random
sample of values for the join attribute. We have the follow-
Once we have results on the accuracy of join size esti-ing lemma.
mates provided by end-biased samples it is incumbent on ug
to compare the accuracy of these estimates with that of otherb
solutions for solving the same problem. We first explore an- . . . .
: . . pected size of a random sample obtained by sampling with
alytical comparisons, but due to the very different natdre o o
: ) . . probability 1 /7.
some of the solutions, we use experiments in Section 6 to
perform comparisons that are unfeasible otherwise. We usep, andp, for the sampling probabilities at the
two tables, and for each attribute valuer,, is the number
of samples with value from the first tabley, is the num-
5.1. Worst case comparison ber of samples from the second, the actual frequency in
the first table, and, its frequency in the second. The es-

Alon et al. have shown [2] that when estimating the join timator of the join sizeS' = 3z, /pa - y,/py sSums the
size of two relations with tuples whose join is at least Contributions of all values present in both samples. Using
B, there are some input data set distributions for which all the fact thatz, /p, andy, /p; are independent random vari-
methods that summarize the relations separately need to us@P!es and unbiased estimatorsdorandb, respectively, we
atleas{n—+/B)?/B bits to guarantee accurate join size es- ¢@n show thaV’ AR[S] = 3, (by(1/pa — 1) + a,(1/py —
timates with high probability. Furthermore, they show that 1)+ (1/Pa —1)(1/py—1))a.b, wherev ranges over all val-
simply taking random samples from both tables achievesUes in the join. After substituting, = 1/p, andT; = 1/p,
this bound within a small multiplicative factor. More ex- N the formula for the variance introduced into the estimate
actly using a sample of size:2/B tuples can ensure accu- PY one ValueT, /a, —1/ay+T5 /by —1/by+(To —1) /ay *
rate estimates with high probability where> 3 is a con- (7o —1)/by)a;b; and comparing with Equation 2, it is easy
stant that depends on the desired accuracy and confidencd? S€e the variance of the estimator is strictly larger than t
Ganguly et al.[11] present a streaming sketch algorithrn tha Variance of the one based on end-biased samples. The ra-
achieves this worst case bound when used for join size esti{i0 Of the two variances is very close tdfor the hard case
mation. In Section 5.2.1 we show that when using the same©f @ very smalka, and a very largé, (or the reverse), but
number of elements in the sample, end biased samples alYery large for the case wherg andb, are small and infi-
ways give more accurate (lower variance) results than ran-Nite for the case when both are over the threshold.

dom samples, and thus they also are within a small constant 2.2. Counting samplesCounting samples [14] of the at-
factor of the theoretical lower bound. tribute of interest are built in a single pass over the table
All three algorithms above basically achieve the worst in the following way: for each sampled value, the count-
case bound. Is it valid to conclude that they are equally ing sample stores exactly the count of tuples that have that
good? No. The worst case bound only tells us that there is avalue starting with the first one sampled. Note that this does
distribution of inputs (frequent values in one relationfgei  not give us exact counts of the frequencies of the values
among the many infrequent values in the other) that is veryin the sample, but the count only misses the tuples before
hard for all algorithms, and on these inputs all three algo- the first one sampled. }f is the sampling probability used,
rithms are within a constant factor of the bound. But as we the probability that a value with frequencyf, will ap-
mentioned in the introduction, this bound tells us nothing pear in the sample is— (1 — p)/» ~ 1 — e~P/>. If we set
about how these algorithms perform on easier inputs. Thep = 1/T, for every value, the probability that it appears in
next section goes beyond this worst case and gives some rethe end-biased sample is close to the probability that it ap-
sults that apply for all inputs. pears in the counting sample with the largest ratio being

emma 4 For any data set, the expected size of an end-
iased sample using threshdldis no larger than the ex-



achieved whery,, = T, so the size of the end-biased sam- concise samples we count attribute values that are sampled
pleis at most/(e — 1) ~ 1.58 times larger. only once as consuming a single word of memory, whereas

We provide the details of our analysis of join size esti- for counting samples and end-biased samples all values in
mates based on counting samples in Appendix B. We con-the sample take two words because we also store the counter
clude that counting samples allow estimates of the join sizeassociated with them. For all three algorithms we start with
whose variance is somewhat larger than that of estimatesa sampling probability op = 1 (or equivalently thresh-
based on end-biased samples for values that are frequentiold 7' = 1/p = 1) and decrement it slightly whenever we
one table and infrequent in the other, but their variance isreach the memory limit so that we stay within budget.

significantly higher for values with high frequencies intbot We also compare end-biased samples against a simple
tables for which end-biased samples give the exact contri-single dimensional histogram. We do not claim that there
bution to the join size and even more so for values with low are no histograms that could provide more accurate esti-
frequencies in both tables because end-biased samples comates, but we tried to choose a powerful member from
relate sampling decisions using a shared hash function.  the class of simple histograms with general applicability:
an end-biased equi-depth histogram. The histogram stores
6. Experimental comparison explicitly the frequency of values that repeat more times
than a certain threshold, and builds bins defined by non-
The previous section shows that when given similar overlapping value intervals that cover the whole range for
amounts of memory, end-biased samples dominate ordinarythe attribute. We compute the join size estimate by assum-
samples and counting samples on all inputs, and the accuing that except for values with frequencies over the thresh-
racy of the estimates based on end-biased samples is signifeld, the frequency of all values in a bin is the sarfye
icantly better on some inputs. Sketches and histograms arevhere f is the frequency of all values covered by the bin
very different approaches, and analytical comparisons tha andn is the number of values covered by the bin (not the
extend to all data sets are hard. In this section we explorenumber of values present in the table). Of course the fre-
this issue empirically. guent values are not counted towards the total frequency of
Answering this question with an exhaustive experimen- the bin and neither towards the number of values covered by
tal evaluation over all real-world data sets for all progbse it. Since we use equi-depth histograms, the total frequency
methods for computing join size estimates clearly would of elements in each bin is approximately the same.
be prohibitively expensive. Accordingly, in this sectioe w There are two parameters that affect the memory usage
present a less ambitious experiment meant to give a roughyf a histogram and the accuracy of the predictions based on
answer and some intuition. We compare end-biased samit: the threshold above which a value’s frequency is stored
ples with four other algorithms for estimating join sizes exactly and the number of bins used. To make the compar-
based on summaries on the join attribute computed sep-son with end-biased samples fair, we ran the histograms
arately for the two relations. When comparing the differ- with parameters that resulted in the same memory usage:
ent algorithms, their summary data structures use the samegr each data set we used the same threshold and a num-

number of words of memory. ber of bins equal to the number of values with frequency
o . below the threshold present in the end-biased sample.
6.1. Description of experiments A simple thought experiment reveals that using single

dimensional histograms for join cardinality estimation is

We generate various synthetic data sets and run the five, o6 t5 errors in some cases. The main realization required
summarization algorithms on them. The code we used forig ¢ no matter how carefully histograms choose their

generating the datasets, to compute the summaries, estimay, ,cyets, they always assume uniformity within a bucket.
join sizes, and process the results is publicly available atthis means that they can be easily “tricked” into making

http://www.cs.wisc.edu/"estan/ebs.tar.gz o a bad estimate. For example, it is possible that one relation
(we do not include the code for sketches because it is N0t 55 oniy even values in the join attribute, while the other

our code, we received it from Sumit Ganguly). has only odd values. The histogram, assuming uniformity

6.1.1. Summarization algorithms usedThe two other ~ and independence within buckets, will incorrectly predict
sampling algorithms we evaluate are concise samples andion-zero join size. Similarly, if both join inputs have only
counting samples. Concise samples differ from randomeven values, the histogram, assuming uniformity and inde-
samples in that for attribute values that are sampled morependence, will underestimate the join size.

than once, instead of keeping a copy of each sampled in- Ganguly et al. proposed a skimmed sketches [11], an al-
stance of the value, we keep a single copy of the value and ggorithm that achieves the worst case bound for estimating
counter storing the number of repetitions of the value in the join sizes. We contacted them for an implementation of this
sample. This can make it slightly more compact. Also for algorithm and we used an improved sketch they are cur-



rently working on. This sketch uses a number of hash ta-tion. Since the implementation of sketches we used requires
bles that operate in parallel. Each update is hashed to onghat the number of buckets per table be a power of two
of the buckets of each hash table based on the attribute’{hence the seemingly arbitrary decision of usirtg 304
value, and then added to or subtracted from (based on anwords in the previous experiment), we pick the memory
other hash of the attribute’s value) the counter associatedsizes based on the constraints imposed by sketches. We use
with the bucket. The sketch also has a small heap that operiwo types of configurations, both based on discussions with
ates in parallel storing the most frequent values. When esti the authors of the sketch algorithftables and the number
mating the join size, the frequency of the values in the heapof elements in the heap/64 times the number of buckets

is estimated based on the sketch, and these values are suln the table; and@ tables and a heap size bf32 times the
tracted from the tables. The final join estimate is the sum of table size. Each bucket in the table holds one counter that
the estimate based on the estimated frequencies of the fretakes one word of memory, and each element in the heap
guent values from the two heaps and the estimate based otakes two memory words, one for the attribute value and
the remaining counters in the tables. Due to the implemen-another one for its estimated frequency. We vary the mem-
tation of the hash function used by the sketches, the numbeory budget fron204 to 659, 456 words.

of buckets in the table had to be a power of two in allourex-  In our last two experiments we vary the degree of cor-
periments. relation between the two tables we estimate the join for.
In the experiments so far, when choosing the frequency of
any given value, the decisions were independent for the two
tables. By positively correlating these choices, we make it
more likely that when one of the tables has a high frequency
for the value, the other one will too, and by correlating them

lion valu_es, and for each of these values we F’ic'f tht_air fre- negatively we make it more likely that the frequency of the
guency independently at random from the distribution of_ value in the other table will be low (possibly zero). Nega-

frequtlenmes._ For each con;;_ggratlgn we reﬁeat the_ eXpr?”'tively correlated data sets will have a smaller join size and
ment1,000 times to get sufficlent data to characterize the positively correlated data sets will have a larger join size

dr:strrl]put|on of the e:jrors |n.the.10|n size estiméteSince q (in the extreme of perfect correlation, the two tables have
the histograms are deterministic, we generate new randonye e frequency distributions and we get the self join

inputs for every run, but keep all g:onfiguration parametgrs size). For the experiment with unpeaked data (Zipf param-
the same. We used the Condor high throughput computlngeter of0.2) we have 8 configurations with join sizes from
environment developed at our department and the experi-

d collectivel h CPU faround()’% of the size for uncorrelated inputs 561%. For
ments consumed collectively more than one "Y€ar Olihe peaked input data we have 12 configurations going from
computing power.

around5% of the size of the uncorrelated input to almost

_ Our first experiment looks at the effect of peaks in the  times |arger. As for the first experiment, we uge 304
distribution of attribute value frequencies. We vary thpfZi 1.4« \which corresponds to a 5 table configuration for the
exponent from.2 to 0.95 to go from a distribution withno ¢} atches.

peaks to one with high peaks. In all these configurations we

keep the number of tuples arouhd)00, 000, so as we in-

crease the Zipf exponentthe number of distinct attribuke va 6.2. Discussion of results

ues decreases. In this experiment, all algorithms Qs&04

words per table to summarize the distribution of the fre-  In our discussion of the results of the experiments,

quencies of the values of the join attribute. we use4 measures of the distribution of join size esti-
In our next two experiments we vary the amount of mem- mates of the various algorithms in the various configura-

ory used by the summaries. We used the Zipf distributfons tions. The first measure is the average over all runs of the ra-

with parametera = 0.8 ando = 0.35 to see the difference  tio of the estimate to the actual join size (since the data

between how memory usage affects the accuracy of the reis different for every run, the join sizes differ too). A

sults on a peaked distribution versus a non-peaked distribu value of close to 1 for this measure means that the estima-
tor is not biased, while larger values indicate a bias toward
1 For some of the configurations, not &ll000 runs completed, but for qverestlmatlon and Sma”?r ones towards underestima-
most of them the results reported in this paper are on moredha tion. The second measure is the square root of the average
runs and for all of them the results are on more thah runs. of the square of the relative error. We refer to this quan-
2 The actual distributions for the frequencies are given by tity as average (relative) error. The third and fourth mea-
| 15,250/(1, 000,000 + 0.5)°-8 4 0.5] and|61/(5, 000, 0007 + ty ge ( ) L .
0.5)035 4 0.5] where r is a random variable uniformly dis- Sure are théth and95¢th percentile for the ratio between
tributed betwee® and1 and we pick independent values fofor all the join size estimate and the actual join size. We can-

5 million possible values of the attribute. not present the full results for all experiments due to

6.1.2. Input data and memory budgetAs input we used
two randomly generated tables with approximately 1 mil-
lion tuples each with a Zipf distribution for the frequersie
of the values. The values are from the domain with 5 mil-
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Figure 1. Average relative errors for the Figure 3. Different degrees of correlation of

peaked input set. the peaked frequency distributions of the two
inputs affect the join size and cause biases in
the estimates based on histograms.

10— —
explanation is that since concise samples use a single word

for values that are sampled only once whereas end-biased
samples use two words (to store both value and frequency)
s for all values sampled, concise samples can afford to sam-
Coneise samples ple slightly more aggressively than end-biased samples, an

this small increase in sampling probability is enough to
make estimates slightly more accurate. For the last data
point the error of concise samples is 0 because they can af-
ford to store the entire data set. The results are very differ
ent for unpeaked data. While for large amounts of memory

| | | (high sampling rates) the estimates are comparably accu-
1000 10000 1e+05 rate, for low memory settings the average error of the con-
cise samples is much larger than that of end-biased samples
(1434% versus26.87% for 204 words). The explanation is
Figure 2. Average relative errors for the un- that the join is due to many relatively infrequent values oc-
peaked input set. curring in both relations. Correlating the sampling deaisi
via a hash function with a shared seed, as done by the end-
biased samples, makes it easier to estimate how many such
lack of space. We present just the most important re- values there are and leads to the dramatically lower errors.

sult and the interested reader can access the full results ag 2 2. Counting samplesCounting samples never outper-
http://www.cs.wisc.edu/"estan/ebs.tar.gz - form end-biased samples. Despite being able to provide
more accurate estimates for the frequency of frequent val-
es than concise samples, the join size estimates based on
counting samples are slightly less accurate (average error
below approximately twice the error with concise samples)
for all settings tested. The reason is that counting samples
need to operate with less aggressive sampling than concise
samples as they store two words for each sampled value.

0.1

Average relative error (log scale)

0.014

Memory budget (log scale)

6.2.1. Concise sample#\s expected, the more memory
we used, the more accurate the estimates, and concise sal
ples showed no evidence of bias towards over or under-
estimation. Figures 1 and 2 show how the average error
is affected by the amount of memory used by the sam-
ples for peaked and unpeaked frequency distributions re-
spectively. It might seem surprising that despite our proof
in Section 5.2.1 that random samples give higher variance6.2.3. HistogramsiIn all our experiments with uncorre-
results, concise samples do slightly better than end-thiase lated data sets histograms estimated the join size withrlowe
samples for most memory sizes for the peaked data. Theerror than end-biased samples. Histograms did especially
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Figure 5. The degree of correlation between
the two inputs with peaked distributions af-
fects the results.

Figure 4. Different degrees of correlation of
the unpeaked frequency distributions of the
two inputs affect the join size and cause bi-
ases in the estimates based on histograms.

icantly, thus finding a good estimate of the frequency of
these values in the other relation is very important. With
end-biased sample either the value is sampled or not and we

atively (as in the even-even and odd-even examples from@SSume this gives higher variance than the estimate of this
Section 6.1.1), the histograms “do not notice” and give esti frequency using sketches and thus the better performance of

mates much closer to the join size on uncorrelated data tharPKEtChes for join size estimation on this type of data. We as-
the actual join size (see Figures 3 and 4), whereas estimateSUMe that the sketches' bias towards overestimation for un-
based on end-biased samples are unbiased as predicted kﬂgaked data is due to interactions between how the heap se-
Lemma 1. In our experiment with the unpeaked distribution 1€Cts the most frequent values and the actual tables of coun-
of value frequencies histograms went from overestimation €S- Other experiments show that the configuration with 3
by a factor ofL6.8 on average to underestimation by a factor fables and larger heap has an even stronger bias. _

of 0.18 on average and for peaked data fre@rto 0.14. The If we look at different degrees of corrglatl_ons_ for the in-
increase towards the end of the plot for the peaked distribu-Puts with peakedd = 0.8) frequency distributions (see
tion breaks the trend for histograms. This is due to the val- Figure 5) we see a more nuanced picture. Even though
ues that are frequent in both relations. Since the histogram Sketches give better results for the uncorrelated case the
we use are end-biased they correctly compute the contribuiS @ Significant portion of the input space over which end-
tion of such values to the join — with distributions that have Piased samples give lower errors.

strong positive correlation the contribution of such valte The results to our experiment varying the memory bud-

the join increases, and the bias of histograms diminishes. g€t with uncorrelated peaked input distributions show in
Figure 6 that end-biased samples have an advantage for low

6.2.4. SketchesOf the methods we tested, based on the memory settings while sketches do better when there is
accuracy of the estimates, sketches are the only one thamore memory. Sketches using 3 tables instead of 5 and a
we would recommend over end-biased samples for certainlarger heap are significantly less accurate that their plppe
types of inputs. Table 1 shows the results of the experi- configured counterparts, and this highlights the sensitivi
ment looking at various values of the Zipf parameter. This of sketches to proper configuration. With unpeaked data
experiment confirms our theoretical results from Section 4 end-biased samples are significantly better than sketches
which predict that the variance of the join cardinality es- with 3 tables for all configurations because of the sketches’
timates based on end-biased samples goes up as the frdias towards overestimation.

guency of the most frequent values increases. For large val-  Finally, we note that skimmed sketches and end-biased
ues ofa the sketches give more accurate estimates, but forsamples work well for overlapping but not identical do-
small values, the sketches show a slight bias towards overmains. There are qualitative differences too. End-biased
estimation. For high values of, there are some values with samples can be used to estimate the size of a select-join if
very high frequency that can influence the join size signif- the selection is on the join attribute, skimmed sketches can

well in settings with little memory. But if the value fre-
guencies in the two tables are correlated positively or neg-



End-biased samples

Sketches

5th percentile / average /95th percentile (average error)

0.2

0.953/1.001/1.052 (3.06%)

1.007/1.036/1.066 (4.05%

0.35

0.94471.001/1.065 (3.67%)

1.000/1.031/1.064 (3.67%

0.5

0.907/1.002/1.127 (7.10%)

0.950/1.000/1.052 (2.97%

0.65

0.790/1.003/1.353 (22.85%

0.837/1.000/1.174 (10.679

0.8

0.554/1.025/1.903 (71.00%

0.583/0.999/1.477 (29.289

0.95

0.275/1.104/2.936 (170.159

)0.591/1.000/1.424 (29.139

~

Table 1. The larger the Zipf exponent «, the harder to estimate the join size accurately. The sketches
we used show a slight bias towards overestimation for small values of a, but give more accurate
estimates than end-biased samples for large a.
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—— End-biased samples
--- Sketches (3 tables]
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Average relative error (log scale)
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Memory budget (log scale)

Figure 6. End-biased samples give lower er-
rors with low memory budgets.

L .
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L .
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tions include ones with distributed data and ones for which
there are “too many” potential joins.

Compared to end-biased samples, single dimensional

end-biased histograms have the disadvantage that they can
overestimate or underestimate the join size by orders of
magnitude when the distribution of values in the two ta-
bles is not independent. Good configurations for sketches
produce more accurate estimates than end-biased samples
on some of the data sets we tested, and sketches also
have the advantage of supporting streaming updates, but
the accuracy of their results strongly depends on configura-
tion parameters and they are slightly biased towards over-
estimation in some settings. For some types of data sets
and for settings where the available memory is low, end-

biased samples consistently give more accurate estimates

7. Conclusions

not apply or give inaccurate estimates.

than sketches. Furthermore, unlike sketches and single di-
mensional histograms, end-biased samples support selec-
tion on the join attribute. Compared to concise samples and

counting samples, end-biased histograms give significantl

. . _ more accurate results when the join is dominated by val-
not; skimmed-sketches can be used in a streaming “readyes not frequent in either table.

once” environment, end-biased samples cannot.

To elaborate, many join cardinality estimation tech-
niques, including multi-dimensional histograms and sam- References
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B. We show that in all four cases from Equation 1 we have
Cy = aypby /py and thustc,] = py-ayby /py+(1—p,)-0 =
ayb,. It is straightforward to check the first three cases
where the values qf, arel, a,,/T,, andb, / T}, respectively.
The discussion of the fourth case relies on how correlated
sampling decisions are made using the hash funétidior
the valuev to be selected in both samples, we need to have
h(v) < a, /T, andh(v) < b, /T}. This happens with prob-
ability p, = min(a, /Ty, b,/Tp) = 1/ max(T,/ay, Tp/by)
which gives the unbiasedness for the fourth clise.
Lemma 2 For two tablesA and B whose end-biased sam-
ples on a common attribute are computed with thresholds
T, andT, respectivelyy AR[S] < (max(T,,T,) — 1)S2.
Proof S = > ayb,, VAR[§] = > A, and by a sim-
ple transformation of the cases in Equation 2 we can show
thatA, is of the form(T, — a, )by, - ayby, ay (T —by) - ayby,
or0-a,b, if v's frequency is above the threshold in both ta-
bles. Letm = max,((T, — ay)by, a,(Ty — by),0) be the
largestA, /(ayby,) ratio. Thusy A, < Y mayb, = mS.
But for the values that participate in the join, we know that
1 <a, < Sandl < b, < S becauser,b, < S, thus
(T, — ay)b, < (T, —1)S anda, (T, — b,) < S(Tp —1). By



substituting we ge} - A, < mS < max((T, —1)S, (T, — an unbiased estimat&/ of a, as follows: X! = a, if
1)8)S = (max(T,,Ty) — 1)S* A ay > Ty, X, = T, if a, < T, andv is in the sam-
Lemma 3 Let A and B be two tables with a common at- ple andX; = 0 otherwise. We defing’; similarly. We
tribute for which we have an upper bound on frequencies haveVAR[X]] = (T, — ay)a, for a, < T, (and0 oth-
of values in the two tablesv, a,, < M, andVuv, b, < M,. erwise) and similariy” AR[Y,] = (T, — b,)b,. Note that
The variance of their join size estimate based on end-biaseds’ = >, XY, is also an unbiased estimator of the join
samples with thresholdg, andT}, respectively, is bound by  size. The variance for values participating to the join is
VAR[S] < (max((T, — 1) My, (T, — 1) M,)S. VAR[X,)VAR[Y,|+VAR[X,]b2+V AR[Y,]a?. For val-
Proof Based on exactly the same reasoning as in theues above threshold in either table, this is exactly the same
proof of Lemma 2, we arrive at AR[S] < mS, butsince  asA, for end-biased samples, it is only worse for values
a, andb,, are bound by\/, and M, respectively instead of  below the threshold in both tables (because the sampling
S,m <max((T, — 1) My, (T, — 1)M,). R decisions are not correlated). By showing that the estima-
Lemma 4 For any data set, the expected size of an end- tor based on counting samples has higher variance$han
biased sample using threshdldis no larger than the ex- we show that it has higher variance than for end-biased
pected size of a random sample obtained by sampling withsamples. We only need to show now that fgr = 1/7,
probability 1/7. VAR[X,] > VAR[X]]|Va, € 1,...,T, and forp, = 1/T
Proof We first compute for each valug the expected V AR[Y,] > VAR[Y,] Vb, € 1,...,T,. We most prove the
contribution to the size of the two samples. For random following inequality.
samples, each tuple has a probabilityl¢T" of being sam-
pled and since different tuples with the same attributeevalu
are not combined, the expected contribution of a value that

appears inf, tuplesisf, - 1/T = f,/T. For end-biased 1/1 :

samples the probability of the sample containing the en- » (5 - 1) 1--p) = Q/p-0r
try (v, f,) is min(1, f,/T) because values witlf, > T L op— (=) > fp— 22
appear with probability one and the rest with probability L= (f+)p+ f2p° — (1—p)/*! > 0

f»/T. Since end-biased samples have one entry for each
value presenty’s expected contribution to the sample size

ismin(1, f,/T) < f,/T. As each value is expected to con-

tribute to the end-biased sample no more than to the ran- We will treat the left side as a continuous functig(p)
dom sample, the expected size of the end-biased sample igefined on0,1]. ¢'(p) = —f —1+2f%p+ (f +1)(1—p)’
no larger than the expected size of the random sarlible. ~ andg”(p) = 2f% — (f* + f)(1 — p)/~*. Sinceg(0) = 0
andg’(0) = 0, it suffices to show that” (p) > 0 over|0, 1].
g"(p) > Ois equivalenttql —p)f = < 2f/(f+1). Since
for f > 1,2f/(f+1)=2(1-1/(f+1) > 1> (1 -

=1

Letx, andy, be the counts associated with vatuia the p)

two counting samples. Itis easy to show by inductiorgn Discussion of resultsThis analysis in this appendix
andb, that X, = z, + 1/p, — landY, =y, +1/p, — 1 shows thatVAR[X,] > VAR[X!] and VAR[Y,] >
are unbiased estimators af andb, respectively (when  V AR[Y/], but the difference is small for small valuescaof
a valuev is not in their respective sampl, andY, are  andb,. While for large values, the difference is larger, even
0). Through a similar induction, but with a more involved asy AR[X!] andV AR[Y;] reach zero after, andb, reach
derivation, we show that AR[X,] = 1/pa(1/p. —1)(1 = the threshold, we always ha¥@AR[X,] < 1/pa(1/ps —
(1=pa)®)andVAR[Y,] = 1/pp(1/ppo=1)(1=(1=pp)*). 1) = T,(T, — 1) ~ T2 andVAR[Y,] < 1/ps(1/ps —
Using thatX, andY, are independent random variables, it 1) = 7,(T, — 1) ~ TZ. For values frequent in only
is easy to show tha¥ = > XY, = > (v, + 1/pa — one table, the variance for estimates based on counting
1)(yo 4+ 1/py — 1) is an unbiased estimator of the join size samples is only slightly larger than the variance of those
and its variance i’ AR[S] = >°, VAR[X,|VAR[Y,] + based on end-biased samples. For values that are frequent
VAR[X,|b? + VAR[Y,]a2. in both, end-biased samples have a variance of 0, and the
We will not compare counting samples against end- relative error for estimates based on counting samples is
biased samples directly but against a weaker version ofSD[S]/S ~ max(T,/a,,Ty/by). For values that are in-
end-biased samples which make sampling decisions aboufrequent in both tables, because counting samples do not
values independently for the two relations with the same correlate sampling decisions, the variance of their eséma
probabilities as end-biased samples, but without the ghare can be larger than for end-biased samples by a multiplica-

hash function. Based on these samples we can computéive factor ofmin(7,, T3), just like for random samples.

B. Analysis of counting samples



C. Variance bounds based on the exact distri- S, > 0. From Corollary 3.1 we can bound the variance

bution of frequent values of the contribution of these values to the estimate of the
join size by (T, — 1)(Ty — 1)S;. Assuming this bound
The distribution of value frequencies that achieves the is achievablg, we can compute the part 6f AR[S] that

bound in Lemma 3 is one where the join is dominated by iS due to values below the threshold in both relations as

values that repeat/ times in one table and once in the VAR[S:] = (T.—1)(Ty—1)(S— 0, agwi— S0 bis).

other, and we have as many of these values as we can fit

in the joir_1 size ofS. But with the _type_s qf di_stributions VAR[§]

common in databases, such as Zipf distributions, we usu-

Na

ny
Z(Tb — z)Tia; + Z(Ta — yi)yib; +

i=1 i=1

ally only have few values that are close to the maximum ng np
frequency. Furthermore, as with end-biased histograms, if (T, — )(Tp, — 1) (S — Z a;x; — Z biyi>
we use end-biased samples, we know exactly the identity i '
and the frequency of the values that repeat most often. We o
can use this knowledge to compute an even tighter bound - Z(Tbal (Ta = (T = 1)asz; — xja; +
on the variance of the estimate. Tbl

For values that are above the threshold in both tables, we Z(Tabi — (T — 1)(Ty — 1))bsy; — y2b2 +
can compute the exact contribution to the join size. From i=1
here on, we will focus on the harder case when no values (To — 1)(T, — 1)8

are above the threshold in both tables. The more general
problem can be turned into this case by removing the val-
ues that are above the threshold: deleting them from the two
lists of values above the threshold and subtracting their co
tribution from the join size. We provide the following for-
mal definition for the problem we will solve in this section.

Problem definition Let A andB be two tables with end-

We can now formulate our problem as the optimization
problem of maximizing” AR[S] over the values of; and
y; under the constraints below.

) - ) r, > 0Viel, .., ng
biased samples using thresholdsandT;, respectively. Let i > 0Viel,..n
n, andn; be the number of values above the thresholds and . ne - T
a;fori e {1,...,n,} andb; fori € {1,...,n,} be the fre- Z“ixi + Zbiyi < S
guencies of values above the thresholds in the two tables. ; ;
Given that the actual join size Is, what is the largest pos-
sible value forVAR[S] among all distributions consistent If we remove the additional constraint that and y;
with a; andb;? be integers, the bound faf AR[S] becomes easy to com-

We can formulate this as an optimization problem where pute, and it still stays valid for the more constrained case
an adversary tries to maximize the variance of the estimateOf integer values. Note that we want to maximize a func-
of the join size, under the constraints of the problem def- tion strictly concave in all variables that has a single glob
inition. We first introduce some new notations and make maximum. The objective function has the same properties
some observations. Note the change of notation we intro-when restricted to the hyperplanes constraining the vari-
duced with this definition: we denote hythe frequency of ~ ables. Using these observations and the particular form of
the ith value that is above the threshold, not the frequencythe objective function, we can build a simple greedy algo-
of valuei. Without loss of generality we will assume that rithm for solving the problem of finding the bound. With
the sequences; andb; are sorted in descending order. Let @ change of variable te; = a;z; Vi € 1,...,n, and
0 < z; < T, — 1 be the frequency in tabl& for the ith Zitn, = biyi Vi € 1,...,n, we convert the problem to the
frequent value in tablel and0 < y; < T, — 1 be the  equivalent problem of finding the maximizing} (a; z; —
the frequency in tablel for theith frequent value in table  27) + (Ta — 1)(T, — 1)S under the constraints > 0 and
B. The variances for individual values from Equation 2 are >_ 2zi < Swherea; = Tya;—(To—1)(Ty—1)Vi € 1,...,n,
maximized byz; = T,/2 andy; = T,/2, so we can omit ~ anda;n, = Tob; — (T, — 1)(Tp — 1)Vi € 1,...,np. The
z; <T,—1andy; < T, —1fromthe list of constraintswe  global maximum is achieved fas; = «;/2, but this might
impose on the optimization problem. Finall§,can be so  Violate}_ z; < 5. 1fso, we need to find the pointin the vari-
large that the frequent values cannot achieve a large enouglable space within this constraint that maX|m|z/éAR[S]
join, so values below the threshold in both tables also have
to be part of the join. Lef, = S — Zl 1 GiTi — Z?:bl biyi 3 Given that we later use the equations based on this assumipttle-
be the contribution to the join size of values that are be- rive an upper bound ol A R[S], this assumption is not necessary, we
low the thresholds in both tables. We have the constraint  lustmake it to simplify the presentation.
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fori =1ton,
o= D (Ta=D(Ty—1)
? 2 2(17',
endfor

fori = 1tomn,
D (Ta=D(Tp=1)

Yi =3 2b;
endfor
if Y0 aiw + >0 by < S

returny >k (Ty — @)wiaf + 3000 (Ta — yi)yibi+

(Ta = 1)(Ty = 1)(S = 3232y agwi — 32724 biys)

endif
while true

d— S wiai+3000 yibi—28

2(na+np)
if min(ay,, Tn,,bn,Yn,) = d
break
endif
if an,Tn, < bp,Yn,
Ng = Ng — 1
else
ny = Np — 1

endif
endwhile
fori =1ton,

T; = Tj — a%
endfor '

for: =1tony

Vi =Yi— i

endfor
returnE?;l(Tb — z;)Ta? + Z?:bl(Ta — yi)yib?
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Figure 7. The algorithm for computing the
bound on the variance of the join size esti-
mate takes as input the actual join size S, the
threshold for the end-biased samples T, and
Ty, the number of values above the thresh-
olds in the two relations n, and n; and the fre-
quencies of these values a; and b; assumed
to be in descending order.

ct. — Y (/2 — z;)?. Letz; = a; /2 — d;. We need to find

d; such thatd" d? is minimized and>"d; = > «a;/2 — S
which is achieved fod; = d = (3" «;/2 — S)/(ng + ).

The problem with this solution is that somg= «;/2 — d
might be below0. If so, we can greedily take the dimen-
sions with the smallest; and set;; = 0 (which is equiva-
lent to removing that dimension from the optimization prob-
lem), and recompute. Figure 7 gives the resulting algorithm

-~

for computing the upper bound dnAR[S].

Discussion of algorithmThe algorithm picks for all val-
ues frequent in one of the tables the number of repetitions

in the other table as to maximize the variance of the join
size estimate (equivalent t9 = «;/2). The two for loops

in lines 1 to 6 compute these optimal values fgrandy;.

The “if” statement checks whether the join size obtained
with these optimal values exceeds the actual join size and
if not, it “fills up” the rest of the join with values infre-
guent in both relations. If the join size is a limitation, the
while loop in lines 10 to 20 computes which frequent val-
ues we use to maximize the variance. Line 11 computes the
deviation from the optimal value (in the coordinate sys-
tem introduced in the previous paragraph) and it progres-
sively eliminates the least frequent values until the csunt
for all remaining ones are strictly positive.Note thids re-
computed after each decision to eliminate one of the val-
ues above the threshold. Finally the two loops in lines 21 to
26 adjustr; andy; for the remaining values to positive fre-
guencies below their optimal values that ensure that we ob-
tain the correct join size.

As a specific example of the insight provided by this al-
gorithm, if we know not only that the most frequent value
in both tables repeats 000 times, but the second most fre-
quent500 times, the third333 times and theth 1,000/4
times (Zipf distribution withae = 1), we can use this algo-
rithm to compute the bound on the average error. The result
is 12.3%, which is closer to the bound we obtained assum-
ing all values repeat less thad0 times than to the bound al-
lowing an unlimited number of values to repeat ug 660.



