
1

The Measurement Manifesto
George Varghese, Cristian Estan

Abstract—Useful measurement data is badly needed to help monitor and
control large networks. Current approaches to solving measurement prob-
lems often assume minimal support from routers and protocols (e.g., active
measurement) or place the entire burden on the router to support heavy-
weight mechanisms (e.g., NetFlow). In this paper we argue that the research
agenda in measurement must change to consider measurement solutions
which enlist the cooperation of routers, protocols, and tools. We believe
that the need is so urgent that the deployment issues associated with such
holistic solutions can be finessed by cooperation between a few key ISPs and
a few key router vendors. If this agenda is accepted, there is a rich vein of
technical problems, hitherto considered only from an active measurement
perspective, for which there can be new and effective orchestrated solutions.
We illustrate this thesis using two examples. Our major example is that of
measuring traffic matrices using class counters and class sampling (as op-
posed to the implementation cost of per-prefix counters, or the errors inher-
ent in tomography). We also provide a smaller example of measuring route
stability by modifying route computation. Beyond specific techniques, we
hope the guidelines in this paper can provide a focus for discussion among
researchers, router vendors, protocol designers, and network operators —
the stakeholders in the measurement enterprise.

I. INTRODUCTION

This paper deals with the problem of producing effective mea-
surements to help run large networks more effectively. We focus
on novel approaches to passive measurement [7]. Passive mea-
surement helps determine the causes of network performance
problems as opposed to active measurement [10], which pro-
vides insights into the effects of network problems on users.
Once causes — such as links that are unstable or have exces-
sive traffic – are identified, network operators can take action.
Thus measurement is crucial not just to understand the network
but to better engineer its behavior.

Currently used control mechanisms include adjusting OSPF
link weights and BGP policy to spread load, setting up circuit-
switched paths to avoid hot spots, and buying new equipment.
This paper focuses only on network changes that address the
measurement problem, making a network more observable.
Making a network more controllable, by adding more tuning
knobs, is an equally important problem we do not address.

Unlike the telephone network, where observability and con-
trollability was built into the design, the simplicity of the Inter-
net service model has made it difficult to observe [4]. In partic-
ular, there appears to be a great semantic distance between what
users (e.g., ISPs) want to know, and what the network provides.
In this tussle [3] between user needs and the data generated by
the network, users respond by distorting [3] existing network
features to obtain desired data.

For example, traceroute uses the TTL field in an admittedly
clever but distorted way. Tools like Sting [10] use TCP in inge-
nious ways to yield end-to-end measures. Even tools that make
more conventional use of network features to populate traffic
matrices (e.g, [7], [14]) bridge the semantic gap by correlating
vast amounts of spatially separated data and inconsistent con-
figuration information. This is clever, but is it engineering? For
example, civil engineers do not primarily test the stability of
bridges indirectly by driving cars of random weight across the

bridge.
The problem is complicated by the attitudes of the stakehold-

ers [3] in the measurement enterprise. Router vendors tend to
avoid adding measurement features because it impacts forward-
ing performance. ISPs appear resigned to the use of indirect
means. Finally, network researchers may regard passive mea-
surement1 as a boring exercise that could be solved by slapping
down a few counters in the right places.

And yet there are signs that change is possible. Cisco Ex-
press Forwarding offers per-prefix counters, a massive step up
in utility (and implementation complexity) from SNMP coun-
ters. ISPs are putting pressure on router vendors to add features.
Juniper’s DCU solution [11] uses routing protocol assistance to
reduce administrative complexity for accounting. Finally, re-
searchers are making imaginative proposals for new network
measurement primitives [4], [5].

Despite these winds of change, other than the Juniper DCU
solution [11] (which is not scalable and is limited to one applica-
tion, accounting), no solution represents a concerted effort to put
all the options (i.e., new router implementation features, proto-
col changes, new tools) together to orchestrate effective systems
solutions to user needs. Systems solutions are those that exploit
the fact that a system consists of a number of components, all of
which can be modified to help users.

Our central position is: 1) Sytems solutions can bridge the
semantic gap in network data today with reasonable implemen-
tation cost, and can provide a new direction for measurement
research 2) Current systems solutions like DCU do not go far
enough. 3) Systems solutions are deployable with achievable
cooperation among the stakeholders.

Amplifying on the last point, while incremental deployment
has been the gold standard for Internet research in the academic
community, it has not stopped major vendors from introducing
concerted changes such as MPLS and DiffServ in recent years.
If the customer need can be demonstrated to be sufficiently im-
portant (e.g., traffic engineering for MPLS, QoS for DiffServ)
vendors can be persuaded. The need is important: failure to ad-
dress the semantic gap will lead to a continued proliferation of
ad hoc tools and a lack of coherent data, with a large hidden cost
in reduced productivity for network managers.

The rest of this paper is organized as follows. Section II
describes guidelines that we use in searching for orchestrated
measurement solutions. Section III reviews existing primitives
and proposals in the light of these guidelines. Section IV de-
scribes a detailed attack on the problem of measuring traffic ma-
trices via a solution that generalizes existing approaches ranging
from tomography to per-prefix counters. Section V describes a
smaller encounter with the problem of measuring route stability.
Section VI summarizes the paper.

�Active measurement is another matter; finding clever ways to manipulate an
unsuspecting network to yield its secrets (e.g., TBIT, Sting) continues to fasci-
nate researchers.



2

II. THREE GUIDELINES

The RISC revolution may be partly due to the following ob-
servations. First, architects learned from circuit designers that
decoding complex instructions required large clock cycles. Sec-
ond, architects found that many complex instructions were not
used in user benchmarks. Third, architects learned to simulate
complex instructions in software, and to move some traditional
hardware functions (e.g., pipeline scheduling) to the compiler.
These lessons can be abstracted into three guidelines:

Guideline P1, Understand real implementation costs: Un-
derstand costs and hence the space of feasible implementations. 2

Guideline P2, Understand real user needs: Find aspects of
current solutions that do not match user needs, and can thus be
simplified. Modify measurement primitives to reduce the se-
mantic gap between user needs and network data.

Guideline P3, Leverage other aspects of the system: Rec-
ognize that a system consists of multiple components that can
cooperate to form effective solutions.

We use the principles as a yardstick in Section III to examine
existing proposals. We also use the principles to suggest new
solutions to two specific problems in Section IV and Section V.
Our descent from a 30,000 feet view of the measurement world
down to ground level in Section IV and Section V will be rapid,
and may disconcert the reader. Unfortunately, since measure-
ment is ultimately about measuring specific things, it is difficult
to appreciate the challenges without considering specific mea-
surement problems. We step back for a broader view once again
in Section VI.

III. EXISTING AND PROPOSED SCHEMES

We review standard measurement primitives in Section III-A,
consider new research proposals in Section III-B, and describe
an imaginative (at least to us) and orchestrated solution for ac-
counting from Juniper Networks.

A. SNMP and NetFlow

The following measurement primitives are standard. While
useful, building tools based on them is akin to writing programs
in assembly language: low-level, tedious, and error-prone.

SNMP Counters: Routers implement a large number of
SNMP counters, but for measuring the traffic mix on a link the
most relevant are packet and byte counters. SNMP counters are
easy to implement (P1), and are useful (P2) for managers to de-
termine congested links. Unfortunately, in terms of P2, SNMP
does not go far enough; today’s hardware can easily support
more discriminating counters.

NetFlow: NetFlow allows managers to log flow records keyed
on TCP/IP header fields. Because of the need to write these
headers to slow DRAM, earlier implementations slow down
routers considerably. These problems are partly addressed by
Sampled NetFlow and Aggregated NetFlow. The solutions rec-
ognize (P2) that users can get good statistics about traffic from
samples, and that users often only want the sum of traffic for
a given 5-tuple. Many implementations of Sampled NetFlow

�While the fact that RISC stripped away features to make hardware simpler
may have been technologically right twenty years ago, it is equally a mistake
to underestimate the potential of modern hardware. Thus, increasingly complex
instructions have been creeping back into even classic RISC machines.

are still problematic, and the vast amounts of data generated can
swamp managers and tools. Despite this, NetFlow is invaluable
for its role in diagnosis though other solutions can meet other
user needs more efficiently. [7] correlates NetFlow data at var-
ious routers to route information. This is error-prone and must
deal with incomplete data. Note that the AT&T production net-
work uses the tomogravity approach [14].

B. Newer Proposals

The following proposals in the last three years have attempted
to raise the level of abstraction of network data.

[4] uses a common hash function to synchronize sampling of
a packet across all routers, and a second common hash function
as a content digest. [6] attempts to finesse the need for NetFlow
collection at a router by providing an algorithm to directly com-
pute (at high speeds) the flows over a threshold. [5] proposes a
sampling technique that can sieve the amount of NetFlow data
sent to a manager while preserving accurate estimates for any
high volume aggregate.

Trajectory sampling still requires great complexity in a tool to
gather and correlate labels from routers. On the other hand, [6]
and [5] only provide local views of heavy-hitters on one link,
and do not provide the network-wide view that ISPs need.

DCU: Juniper Network’s Destination Class Accounting
(DCU) solution [11] combines all three guidelines. DCU ad-
dresses the issue of an ISP wishing to collect traffic statistics on
traffic sent by a customer in order to charge the customer differ-
ently depending on the type of traffic and the destination of the
traffic. For example, assume that ISP � wishes to bill Customer
� at one rate for all traffic that exits via ISP� , and at a different
rate for all traffic that exits via ISP � . One way to do this would
be for router �� to keep a separate counter for each prefix that
represents traffic sent to that prefix.

Instead, the Juniper DCU solution [11] has two components.
First, each forwarding table entry has a 16 bit class ID. Each bit
in the class ID represents one of 16 classes. Thus if a packet
matches prefix � with associated class ID �, if � has bits set in
bits 3, 6, and 9, the counters corresponding to all 3 set bits are
incremented. Thus there are only 16 classes supported but a sin-
gle packet can cause multiple class counters to be incremented.
This is easily implementable in a forwarding ASIC (P1). The
solution also supports 16 tariffs (P2) for traffic charging. More
interestingly, to attack the problem of changing prefix routes
(which would result in the tool having to constantly map each
prefix into a different class), the DCU solution enlists the help
of the routing protocol (P3).

The idea is that all prefixes advertised by ISP � are given
a color (which can be controlled using a simple route policy
filter), and prefixes advertised by ISP � are given a different
color. Thus when a router gets a route advertisement for prefix
� with color �, it automatically assigns prefix � to class �. This
small change in the routing protocol greatly reduces the work of
the tool. The DCU solution is a great start and and illustrates the
principles in action, but it focuses only on accounting. Our first
proposal is to modify and generalize the underlying architecture
so it can be used for other applications such as traffic matrix
measurement.



3

IV. MEASURING THE TRAFFIC MATRIX

If even half the attention to ‘rocket science traffic modeling’
were devoted to how to estimate a reasonable ingress-egress
traffic matrix, network engineers, particularly of large clouds,
would find their job substantially easier

— Dennis Ferguson, 1996 ISMA

For our second problem, consider a network such as those
used by ISPs like Sprint and AT&T. The network can be mod-
eled as a graph with links connecting router nodes. Some of the
links are external as they go to routers belonging to other ISPs
or customers. External links directed towards the ISP router
are called input links; external links directed away from an ISP
router are called output links.

The traffic matrix of a network enumerates amount of traffic
that was sent (in some arbitrary period) between every pair of
input and output links of the network. For example, the traffic
matrix could tell managers of an ISP � that 60 Mbits of traffic
entered during the day from Customer � of which �� Mbits ex-
ited on the peering link �� to ISP � . Network operators find
traffic matrices (over time scales ranging from hours to months)
indispensable. They are used to optimize routing decisions (by
changing OSPF weights), for knowing when to set up circuit
switched paths (avoiding hot spots), for network diagnosis (un-
derstanding causes of congestion), and for provisioning (know-
ing which links to upgrade).

Unfortunately, existing legacy routers only provide a single
aggregate counter (SNMP byte counter) of all traffic traversing
a link, which aggregates traffic sent between all pairs of input
and output links that traverse the link. Inferring the traffic ma-
trix from such data is hard because there are 	�
 �� possible
pairs in the matrix (where 
 is the number of external links) and
many sparse networks may only have say	�
 � links (and hence
	�
 � counters). Even after knowing how traffic is routed, one
has 	�
 � equations for 	�
 �� variables, which makes deter-
ministic inference impossible. This has led to two very different
solution approaches.

Approach 1, Internet Tomography: This approach [9], [14]
does statistical inference based on SNMP counters. At the heart
of the technique is a model of the underlying traffic distribution
(e.g., gravity) and some statistical (e.g., maximum likelihood)
or optimization technique (e.g., quadratic programming [14]).
Early approaches based on Gaussian distributions did poorly
[9], but a new approach based on gravity models does much
better, at least on the AT&T backbone [14]. The great advan-
tage of tomography is that it works without retrofitting existing
routers, and is cheap to implement in routers. Disadvantages
of this method are errors (off by as much as 20% in [14]) and
sensitivity to routing errors (a single link failure can throw an
estimate off by 50%).

Approach 2, Per-prefix counters: Some newer routers of-
fer per-prefix counters. By pooling together router per-prefix
counters and with a knowledge of routes, a tool can reconstruct
the traffic matrix. One advantage of this scheme is that it pro-
vides perfect traffic matrices. A second advantage is that it can
be used for differential traffic charging based on destination ad-
dress. The two disadvantages are the implementation complex-

ity of maintaining per-prefix counters, and the large amount of
data that needs to be collected and synthesized from each router
to form traffic matrices.

Instead, we propose a scheme that dials between these two
earlier approaches using per-class counters that aggregate mul-
tiple prefix counters into each per-class counter. Our scheme
modifies the DCU proposal to make it more general and more
scalable.

Implementation Complexity: Routers have to work for 5-10
years. Factoring growth, such a router needs to support perhaps
1 million prefixes. Byte counters are 64 bits. To keep up with
wire speeds at say 40 Gbps, counters must be in fast (1- 5nsec
cycle time) SRAM. 64 Mbits of fast SRAM is expensive, and
has other costs in terms of area and power. Shah et al. [12] show
how to reduce SRAM width by storing only low order counter
bits in SRAM but storing all 64 bits in a cheaper DRAM backing
store. However, the implementation is still complex and requires
sorting.

On the other hand, implementing a small number (e.g., 1000)
counters in on-chip SRAM is trivial. A hidden cost even for a
small number of counters is the cost of mapping a packet to a
counter. One simple way to do this is to add to each next hop
table entry a class ID. For example with 1000 counters, a 10 bit
class ID has to be added to each forwarding entry. For say a mil-
lion prefixes, this is 10 Mbits! However, many next-hop entries
are large (20 bytes to store multiple adjacencies for load balanc-
ing), and some routers already add a 16-bit class ID. Better still
is to finesse the need for a class ID by mapping to a class based
on information (e.g., output port, see local matrix proposal in
Section IV-B) already present in the forwarding entry.

The rest of this section is organized as follows. Section IV-A
uses the principles to derive a general architecture, and
Section IV-B describes five interesting uses of thus architec-
ture for traffic matrices, three of which yield new schemes.
Section IV-C proposes using a small counter space and yet elim-
inating tomography completely using sampling on the class
counter space.

A. General Solution using Class Counters

We apply the guidelines of Section II to the traffic matrix
problem. First, we have just seen (P1) that 100-1000 counters
are almost as simple as 1 counter except for the potential storage
per prefix for class mapping, and even that can be eliminated if
the mapping is a trivial function of existing next-hop informa-
tion.

Second, the major applications (P2) of prefix counters seem
to be accounting and traffic matrices. In both cases, the solution
seems unaligned with real needs. For example, prefix counters
seem to be overkill for the traffic matrix problem because there
may be millions of prefixes (120,000 today) but an ISP may have
far fewer external links.

The RocketFuel [13] data indicates that the large ISPs had
between 6000 and 12,000 external links in 2002. Similarly, an
accounting application may have only have hundreds of differ-
ent providers and much fewer tariff structures (Juniper, observ-
ing that cell phones offer at most 8 tariffs, allows 16). Thus the
final tool (for traffic matrix calculation or accounting) would ag-
gregate thousands of prefixes into equivalence classes anyway.



4

Why not have the router do this in the first place, reducing com-
plexity for both the router and the management tool?

Mapping from prefixes to equivalence classes can cause prob-
lems when prefixes change. If a prefix advertised by ISP � be-
gins to be advertised by ISP � , who should tell each router of
the new mapping? Rather than have the tool or managers do
this, it is far more “administratively scalable” [11] to enlist help
from the routing protocol. Thus the proposed general solution
has two aspects:

1. Class Counters: Each prefix is mapped to a small class ID
of 8-14 bits (256 to 16,384 classes) using the forwarding table.

2. Routing Support: As in the DCU proposal, routes can
be colored using the same equivalence class. For example, for
traffic matrix applications, all prefixes arising from the same ex-
ternal link or network could be mapped to one class.

Some differences between Junipers DCU proposal [11] and
ours are:

Generality: To allow the architecture to be used for different
applications, we make it more general, programmable, and scal-
able. For example, the traffic matrix applications with 10,000
external links motivates the need for a larger number of classes.
Similarly, the architecture must allow a more general mecha-
nism to color routes rather than just based on traffic class.

Scalability: A large number of classes requires a scalable so-
lution. Our scheme is more scalable because � classes require
at most ���

�
� class ID bits per prefix, and at most one incre-

ment. Incrementing multiple counters per packet, as in the DCU
proposal, requires an � bit class ID, and a more complex im-
plementation that is unlikely to scale to � � ����.

Subtleties: This is not a complete proposal; there are tricky
issues (e.g., OSPF load balancing) that need to be addressed,
and can be. Two issues worth noting are as follows. First, some
applications may wish to select traffic (or accounting) classes
based on QoS. This can be easily done using the DiffServ bits
(in addition to the class ID) to select a class. Second, many
papers [7] point out that the real traffic matrix is a point-to-
multipoint demand because traffic from say Customer 1 may
have multiple egress points to the same Provider. This is eas-
ily handled by aggregating all these egress points into the same
class.

Progammability: Our proposal scales by allowing only one
counter to be incremented per packet. But accountants may want
tariff data, and operations may need the traffic matrix. A small
generalization is to map a prefix to a superclass ID which can
then be parsed to yield a small number of class IDs. For exam-
ple, a 16 bit superclass ID could be partitioned into an 8 bit class
ID for accounting, and an 8 bit class ID for traffic matrices. A re-
ceived packet increments both. Note that we have separated the
degree of parallelism from the number of counters; these two are
confounded in the DCU proposal. Class counters, are of course,
specified abstractly by specifying only that routers increment a
counter for every class in a superclass.

B. Using Class Counters for Traffic Measurement

When applied to traffic matrices, the architecture above pro-
vides the traffic counts from each input link to each destination
class. By aggregating input links (at either the router or the tool)
also into classes, this method yields the class to class traffic ma-

trix. Let � be the number of classes. We now consider five
examples (Figure 1 shows three examples in a different order
from the text below) of how the general class matrix mechanism
can be used. The first two are well known.

1, One class: If � � �, we have a single SNMP counter,
which requires tomography to find the traffic matrix.

2, Prefixes: If � is the number of prefixes we get per-prefix
counters — see bottom of Figure 1. Note that the class mecha-
nism is a strict generalization of the two earlier solutions (SNMP
and per-prefix counters) which represent two extremes. The next
three are more interesting.

3, External Links: We have already referred to this idea,
shown in the middle of Figure 1. This provides the traffic to and
from external links. Links could be aggregated by provider to
handle point-to-multipoint data. RocketFuel data [13] indicates
that an � � �� ��� sufficed in 2002 for the largest ISP, but this
number is probably growing, especially with ISPs consolidation
and mergers.

4, PoPs: A PoP is a physical location where an ISP houses
a collection of routers. Many ISPs find the PoP-to-PoP traffic
matrix to be very valuable [2] and aggregate the router-to-router
matrix to find this. This can be done directly by classes by set-
ting each PoP into a separate class. RocketFuel data [13] indi-
cates a great reduction in the number of PoPs, with � � �	�
sufficing for the largest ISP.

R1

Customer A

I1

I2
E1

R1

Customer A
E1

ISP X
E2

ISP Y

E3

Customer B
E4

Customer C

E5

R1

Customer A
E1

Customer B

Customer C

20,000 prefixes

10,000 prefixes

2) EXTERNAL VIEW (traffic matrix)

3) PREFIX VIEW (overkill for matrices)

1) LOCAL VIEW (local matrix)

Fig. 1. Using the class counter to produce various views that range from the
standard per-prefix view of traffic (bottom) to a local traffic matrix (top).

5, Router Ports: To dial down the number of classes still
further, consider making every output port in a router a class
Figure 1). This provides the local traffic matrix at a router —
i.e., the traffic between every input port and output port on each
router. Two implementation advantages that accrue are: first,
from packets to classes is now trivial and there is no need for a
class ID in each forwarding entry (output port is effectively the
class ID); second, many routers have a small number of ports



5

from 16 to at most 256 and the reduced class count implies a
smaller number of counters.

The conjunction of local matrices at all routers does not pro-
vide the global traffic matrix. However, local matrices provide
more equations that help constrain tomography schemes even
more, and thus seems likely to produce more accurate solutions.
Although one may expect a factor of � � gain in the number of
equations where � is the number of ports (e.g., this is a factor of
256 for a 16 port router), the equations are not independent. In
practice, some early experiments [8] show a factor of 2 increase
in the number of equations.

Despite only a two-fold gain in the number of equations, for
inference on the AT&T network, the accuracy improvement of
knowing the local matrix everywhere is roughly the same as
knowing the top 15 complete rows (e.g. by turning on NetFlow
at 15 busiest backbone routers). With no noise, simulations
show that the best-known tomographic inference scheme [14]
has an error of ��
; the error reduces to �
 using the extra in-
formation in our local matrices idea. With a noise level of 	

in the SNMP link data, simulations show a relative error of ��

without local matrices, and only 	
 with local matrices.

For a noise level of ��
, the relative error is �
 without lo-
cal matrices and �
 with local matrices. This is perhaps surpris-
ing because the final error is less than the amount of input noise
assumed! While this was on the AT&T network, local matrices
should help tomography even more on a sparse network; if the
topology is a star, note that the local matrix gives the complete
traffic matrix! Overall, local matrices increase the accuracy of
the best known tomography schemes ([9], [14]) by a factor of
��	 to �.

Local matrices can be generalized to compute the use the two-
hop (or �-hop) local matrices. The marginal gain in terms of in-
dependent equations generated by � � � hop matrices is small,
and thus the knee of the tradeoff curve seems to be at � � �.

C. Sampling Classes as an Alternative to Tomography

We have seen that current data [13] indicates that an imple-
mentation must use around 12,000 classes for the external link
matrix, 150 for the POP matrix, and even as few as 32 for the lo-
cal matrix. We claimed earlier that 100-1000 counters is easy to
implement. Assuming that on-chip SRAM sizes can scale faster
than the growth rate of external links, we believe that even han-
dling the external link matrix is feasible using our proposal, now
and in the future.

However, some implementations may wish to have a smaller
number of classes (say ��) in order to use on-chip SRAM for
other purposes. An interesting question worth answering is
whether one can infer larger matrices (e.g., external link ma-
trix) using a number of classes that is strictly smaller than the
number of rows of the desired matrix.

One approach, as in the local matrices idea above, is to com-
pute some exact numbers and use them to constrain statistical
inference in tomography. But a completely different approach
is to realize that the final output of tomography is a set of sta-
tistical traffic pair estimates based on deterministic inputs. Why
not consider turning this proposition on its head and calculate
deterministic traffic-pair estimates based on statistical inputs?

In other words, even if we have only 32 class counters and we

wish to watch say 12,000 external links in the AT&T network,
why not sample (in time) the links being watched? Thus in
any subinterval, 32 randomly selected output links are watched
faithfully by the class counter. At the next subinterval, another
32 randomly selected output links are watched.

Assume a traffic estimate is required for � subintervals (e.g.,
for estimating the hourly traffic matrix, one may wish to use
3600 one second subintervals). Suppose traffic from Customer
� to ISP � was watched for � out of the� possible subintervals.
Then a simple estimate for the traffic of Customer � to ISP �
can be found by scaling the sum of the traffic over the watched
intervals by the factor ���.

The random sampling can be implemented by the route pro-
cessor by picking a class counter to replace, reading the value,
and updating the affected prefixes. This is fairly time consuming
and thus implementation constraints will require subintervals of
at least seconds to avoid burdening route processors. While
there is the usual tradeoff between the sampling rate and accu-
racy, the analysis for such class sampling seems different from
that of standard sampling (e.g., [4]). This is because the samples
are batched with a random interval between batches and not be-
tween individual samples.

Such batch sampling could cause problems with bursty dis-
tributions. For example, suppose a flow class sends traffic dur-
ing the busiest hour and nothing else for the other hours. If the
subintervals are in units of hours, then there is a strong chance
that the sampling will miss this flow’s traffic. However, this is
not true if the subintervals are in units of seconds. Thus as with
tomography there is some dependence on the input traffic model.
However, the dependence is quite different and can (hopefully)
be abstracted in terms of some simple summary property of the
distribution such as the maximum (with high probability) burst
length. One conjecture is that class sampling should do well
if the sampling subinterval is much smaller than the maximum
burst length, but this needs to be studied.

Further, the accuracy of class sampling can be improved us-
ing the sample-and-hold technique of [6]. This comes at the cost
of only finding the large elements in the traffic matrix, but this
appears to suffice [7] for the traffic matrix and accounting appli-
cations. The results in [6] indicate that the use of sample-and-
hold can make � counters have the accuracy of using roughly
�� counters and ordinary sampling. This should provide good
accuracy for even small values of � . In general, comparing the
accuracy and robustness (especially to assumptions about traf-
fic distributions) of class sampling versus tomography seems an
interesting open problem.

V. MEASURING ROUTE STABILITY

We turn to a quick second example of measuring route stabil-
ity. For imagine that the route from Customer � to Customer �
usually uses the direct path through link ��. However, if link ��
is flaky, assume that a backup path is chosen instead. If link ��
keeps coming up and down, traffic to Customer � (say an im-
portant web site) may be affected because of routing instability.

This phenomenon could be measured indirectly by observ-
ing link failures via say SNMP counts and then correlating with
the topology and the protocol to determine that say the route to
Customer � will be affected. However, there is a simpler and



6

more direct way to measure route instability with help from the
routing protocol or its implementation.

The idea is illustrated in the case of OSPF (by far the most
common IGP used by ISPs). When new link state packets ar-
rive at announcing the failed link, the tree moves around to in-
clude the backup path. Normally, a router high in the Dijsktra is
blissfully unaware of the route instability if its own next hop for
Customer � stays the same when the link bounces. However, a
trivial, incrementally deployable, change to Dijsktra’s algorithm
can notice that a node in the tree has changed parents. All chil-
dren of a node whose parent has changed are marked as having
changed, by passing an “instability flag” down the tree.

The route processor can now maintain summary route stabil-
ity statistics — such as the number of changes in the last day —
on a per-prefix basis. If this is considered too expensive, a man-
agement station attached to router can compute this information
if it receives all link state packets. Similar ideas can be applied
to path vector protocols like BGP by passing an instability at-
tribute with a route.

This approach can be simulated by having a PC pretend it is
a router and trick an adjacent router into believing it is a router.
However, such route stability measurements could be more use-
ful if routers include summary link statistics (e.g., traffic utiliza-
tion, link errors, etc.) in link state packets. Instead of using
these statistics for dynamic routing, which has been considered
difficult to do without endangering network stability, the man-
agement station could this information to potentially correlate
routing problems to causes. After writing this paper, we found
a recent tool called Route Explorer from Packet Design that im-
plements a similar idea.

VI. CONCLUSIONS

We first state our specific conclusions based on the specific
new techniques we examined in this paper. First, traffic ma-
trices can be calculated more directly using class counters and
routing support. Even using an easily feasible number of class
counters, local traffic matrices can be used to improve the accu-
racy of tomogravity schemes [14], PoP matrices can possibly be
directly calculated, and link to link matrices can be estimated by
class sampling techniques. Second, route stability can be mea-
sured precisely and even possibly explained by watching routing
traffic, and passing link statistics in LSPs.

But the main message of this paper is broader than the two
specific examples we used to illustrate the ideas. The general
conclusions are as follows. First, we believe that there is a large
semantic gap between data provided easily by the network and
the needs of users like ISPs. This leads to either the need to trick
the network into providing data (e.g., [10]), or to collect, cor-
relate, and synthesize vast amounts of spatially separated data
(e.g., [7]). Second, we believe this semantic gap can be bridged
at reasonable implementation cost by a systems approach.

Third, the systems approach is codified in this paper using
three guidelines. Any such list is necessarily incomplete, but
they can perhaps serve as a first cut. Fourth, we believe that
besides the two examples we used in this paper (route stability
and traffic matrix calculation), there are many other network-
wide metrics whose calculation can be reconsidered using these
principles. Other examples include link bandwidth, end-to-end

error rates, and routing update delays. These three examples
were taken from papers on these topics (all of which assumed
the network to be a black box) in the 2001 Internet Measurement
Workshop. A more careful survey could probably find a larger
number of such problems.

Fifth, we believe that it is possible for the stakeholders to
work together. We believe network researchers can be con-
vinced that the field of measurement is not merely a boring study
of counters, but can furnish rich and beautiful problems. We be-
lieve that ISPs are already discovering a business case for bet-
ter data collection that can lead to running their networks more
profitably. Finally, we believe that router vendors can make
changes when pressed.

Amplifying the last point, it may be argued that protocol
changes, as advocated by guideline P3 (leveraging other sys-
tem components), are hard to accomplish. However, this flies
against protocol changes made in the last few years (MPLS traf-
fic engineering, VPNs, etc.). It appears that as long as there is
a strong business case for the two dominant router companies,
protocol and implementation changes can and do happen.

To establish such a business case it would clearly help for
ISPs to form a user consortium to specify measurement require-
ments. After all, router vendors already take the NEBS stan-
dards for reliability in telecommunications equipment very seri-
ously. Thus we end, somewhat tongue-in-cheek and with apolo-
gies to Karl Marx, with a final slogan:

ISPs of the world unite — you have nothing to lose but the chains
that imprison the data you need!

REFERENCES

[1] S. Bhattacharya et al Network Measurement and Monitoring: A Sprint
Perspective draft-bhattacharyya-monitoring-sprint-00.txt

[2] S. Bhattacharya et al. Pop-level and Access-link traffic dynamics in a Tier-
1 pop. In SIGCOMM Internet Measurement Workshop, November 2001.

[3] D. Clark et al. Tussle in cyberspace: Defining tomorrow’s internet. In
Proceedings SIGCOMM 2002, September 2002.

[4] N. Duffield and M. Grossglauser. Trajectory sampling for direct traffic
observation. In Proceedings ACM SIGCOMM, August 2000.

[5] N. Duffield, C. Lund, and M. Thorup. Charging from sampled network
usage. In SIGCOMM Internet Measurement Workshop, November 2001.

[6] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. In Proceedings SIGCOMM 2002, September 2002.

[7] A. Feldmann et al. Deriving traffic demands for Operational IP networks:
Methodology and experience. In SIGCOMM 2000.

[8] Y. Zhang et al An information theoretic approach to Estimation of Traffic
Matrices from link traffic measurements. In SIGCOMM 2003,

[9] A. Medina et al. Traffic matrix estimation: Existing techniques and new
directions. In Proceedings SIGCOMM 2002, September 2002.

[10] S. Savage. Sting: A TCP-based network measurment tool. In USENIX
Symposium on Intenet Technologies and Systems, 1999.

[11] C. Semeria and J. Gredler. Juniper networks solutions for network ac-
counting. In Juniper White Paper, 200010-001, 2001.

[12] D. Shah et al. Maintaining statistics counters in router line cards. In IEEE
Micro, Jan 2002.

[13] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies using
RocketFuel. In Proceedings SIGCOMM 2002, September 2002.

[14] Y. Zhang et al. Fast accurate computation of large-scale IP matrices from
link loads. In ACM SIGMETRICS 2003, May 2003.

Acknowledgements: We thank Albert Greenberg, Jennifer
Rexford, and Christophe Diot for information on ISP operations.
We thank Yin Zhang for implementing our local matrix idea.


