
Efficient Signature Matching with Multiple Alphabet
Compression Tables

Shijin Kong
∗

Randy Smith Cristian Estan
Computer Sciences Department
University of Wisconsin-Madison

{krobin,smithr,estan}@cs.wisc.edu

ABSTRACT
Signature matching is a performance critical operation in
intrusion prevention systems. Modern systems express sig-
natures as regular expressions and use Deterministic Finite
Automata (DFAs) to efficiently match them against the in-
put. In principle, DFAs can be combined so that all signa-
tures can be examined in a single pass over the input. In
practice, however, combining DFAs corresponding to intru-
sion prevention signatures results in memory requirements
that far exceed feasible sizes. We observe for such signatures
that distinct input symbols often have identical behavior in
the DFA. In these cases, an Alphabet Compression Table
(ACT) can be used to map such groups of symbols to a
single symbol to reduce the memory requirements.

In this paper, we explore the use of multiple alphabet
compression tables as a lightweight method for reducing the
memory requirements of DFAs. We evaluate this method
on signature sets used in Cisco IPS and Snort. Compared
to uncompressed DFAs, multiple ACTs achieve memory sav-
ings between a factor of 4 and a factor of 70 at the cost of an
increase in run time that is typically between 35% and 85%.
Compared to another recent compression technique, D2FAs,
ACTs are between 2 and 3.5 times faster in software, and
in some cases use less than one tenth of the memory used
by D2FAs. Overall, for all signature sets and compression
methods evaluated, multiple ACTs offer the best memory
versus run-time trade-offs.

Categories and Subject Descriptors: C.2.0 [Computer
Communication Networks]: General - Security and protec-
tion (e.g., firewalls)

General Terms: Algorithms, Performance, Security

Keywords: Signature matching, deep packet inspection,
regular expressions, alphabet compression

∗Employed by Cisco Systems, Inc. at the time of publica-
tion; email: shikong@cisco.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SecureComm 2008, September 22 - 25, 2008, Istanbul, Turkey.
Copyright 2008 ACM 978-1-60558-241-2 ...$5.00.

1. INTRODUCTION
Network Intrusion Detection Systems (NIDS) and Intru-

sion Prevention Systems (IPS) have become critical com-
ponents of modern network infrastructure. Functionally, at
the core of any IPS there resides a signature matching en-
gine that potentially compares every byte of incoming and
outgoing traffic to a signature database containing known
exploits or misuses. However, steady increases in traffic
volume, growing signature database size, and increased sig-
nature complexity have turned signature matching into a
performance-limiting bottleneck.

IPS performance is limited to the speed at which network
traffic can be matched against a set of signatures. Thus,
the language used to express signatures and, correspond-
ingly, the data structures and procedures used to represent
and match input to strings in that language have a tremen-
dous impact on performance. Modern IPSes use regular ex-
pressions as the language for writing signatures due to their
greater expressiveness over strings [7,19], and Deterministic
Finite Automata (DFAs) are a commonly used representa-
tion for matching to input. In the signature matching con-
text DFAs have two major advantages: matching to input
requires only a single table lookup per input byte, and it is
possible to compose the DFAs corresponding to multiple sig-
natures into a combined DFA that recognizes all signatures
in a single pass over the input.

Unfortunately, regular expressions common to intrusion
detection interact poorly when their DFAs are combined,
yielding a composite DFA that is typically much larger than
the sum of the sizes of the DFAs for individual signatures
and often significantly exceeds available memory. On the
other hand, approaches that use Nondeterministic Finite
Automata (NFAs) have modest memory requirements but
are too slow for high-speed signature matching. Thus, DFAs
and NFAs introduce a space-time trade-off between memory
usage and performance. Many techniques have been pro-
posed in the literature for compressing either the states or
the transitions. Often, these techniques require hardware
support, specialized architectures, or more complex match-
ing procedures.

In this paper, we propose a lightweight transition com-
pression technique for reducing the memory requirements
of combined DFAs. We start from the observation that for
IPS signatures, distinct input symbols often have identical
behavior in their DFAs. In these cases, an Alphabet Com-
pression Table (ACT) [11] can be used to map such groups
of symbols to a single symbol that is retrieved by a table

lookup. Alphabet compression tables were first proposed
for use in compiler-writing tools such as YACC [2, 11] and
have been recently explored in the signature matching con-
text as well [4]. In this work we refine this technique by
introducing multiple alphabet compression tables. Specifi-
cally, we develop heuristics for partitioning the set of states
in a DFA and creating compression tables for each subset in
a way that yields further reductions in memory usage.

Using compression tables does require more processing
time, since the per-byte cost now includes lookups into these
tables. However, our experiments using real-world signature
sets show that once the overhead of the first compression ta-
ble has been paid for, inclusion of additional compression ta-
bles is essentially free. Further, although alphabet compres-
sion tables are not always the fastest and do not always have
the smallest memory footprints, when considering both run-
time and memory usage requirements simultaneously they
consistently yield the best trade-off when compared to other
common transition compression techniques. In summary,
this paper makes the following contributions:

• we introduce the use of multiple alphabet compression
tables to reduce the memory footprint of combined DFAs
by a factor of up to 70 in the best case, without the need
for custom hardware assistance;

• we present efficient heuristics for constructing multiple
alphabet compression tables;

• we perform a comprehensive evaluation comparing our
technique with another recent proposal, D2FAs [13], using
recent real-world signature sets from two popular IPSes,
Snort and Cisco IPS.

The rest of this paper is structured as follows. After the
background and related work in Section 2, Section 3 defines
alphabet compression tables and gives algorithms for their
construction. Section 4 describes another technique, D2FAs,
used extensively in our evaluation. In Section 5, we present
our experimental results. Finally, Section 6 concludes.

2. BACKGROUND AND RELATED WORK
Early signature matching techniques were string-based and

built upon multi-pattern string matching algorithms [1,9,21]
to efficiently match multiple signatures against the payload.
In particular, the Aho-Corasick algorithm [1] constructs an
automaton-like structure that simultaneously matches all
strings in a single pass over the input.

More recently, regular expressions have become the de
facto standard for expressing signatures, in large part be-
cause they are strictly more expressive than strings. Like
strings, though, they have representations and matching
procedures that can match multiple expressions simultane-
ously. Indeed, Sommer and Paxson [19] argue that the in-
creased expressivity of regular expressions combined with
their efficient matching procedures yields fundamental im-
provements in signature matching capabilities. Unfortu-
nately, common representations such as DFAs and NFAs
reside at opposing extremes from a memory-performance
perspective. When combined, DFAs are fast but too large
whereas NFAs are small but too slow.

Many techniques have been proposed in the literature re-
cently to reduce the memory usage of combined automata
while maintaining acceptable matching performance. These
techniques typically fall into one of two categories: state
compression, which reduces the number of states, and transi-

tion compression, which compresses the footprint of a single
state. State compression has the potential for larger memory
savings since total memory is a function of the number of
states. However, in principle, state and transition compres-
sion techniques are orthogonal so that in many cases both
can be applied simultaneously.

Yu et al. proposed DFA Set-Splitting [22], a state reduc-
tion technique that combines signatures into multiple DFAs
(instead of a single DFA) such that total memory usage is
below a supplied threshold. Regular expressions are heuristi-
cally selected for combination until the resulting automaton
exceeds its “fair share” of memory, at which time it becomes
immutable and a new combined automaton is begun. The
process repeats until all expressions have been included. Set-
splitting traces a curve between NFAs and DFAs in space-
time: as the memory threshold is increased, the number
of DFAs that must be simultaneously matched shrinks, de-
creasing the inspection time.

Several techniques have been proposed recently to reduce
the number of states in a combined automaton. Smith et al.
[17,18] introduced Extended Finite Automata (XFAs), which
augment DFAs with auxiliary variables such as bits and
counters that can track computation state more compactly
than explicit DFA states alone can do. Simple instruc-
tions are attached to states and/or edges for manipulating
these variables and testing their value. By carefully incor-
porating auxiliary variables, DFAs are transformed so that
structurally they look like multi-pattern string-matching au-
tomata and therefore do not blow up when combined. XFAs
perform state compression and are thus orthogonal to the
transition compression technique developed in this work.
Kumar et al. [12] have also performed work incorporating
bits and counters. Alternatively, Becchi and Cadambi [3]
have proposed State Merging, which pushes information from
states themselves into labeled transitions, thereby allowing
states to be combined together.

With regard to transition compression, Kumar et al. [13]
introduced Delayed Input DFAs (D2FAs), based on the ob-
servation that many states had similar (or identical) transi-
tion tables. In their approach, each transition table retains
only the transitions that are distinct to the corresponding
state. Transitions common to many states are stored in a
single transition table linked to via chains of default tran-
sitions that consume no input and eventually lead to the
proper state. This technique is orthogonal to ours. We per-
form extensive comparisons to D2FAs in this work and de-
scribe them in more detail in Section 4. Further work [4,14]
extends this technique to eliminate hardware dependencies
and reduce default transition traversals. Recently, Becchi
and Crowley [4] have also employed alphabet compression
tables to reduce memory requirements, although they limit
compression to a single compression table.

Hardware-based solutions can parallelize the processing
required to achieve high performance by processing many
signatures in parallel rather than explicitly combining them.
Sidhu and Prasanna [16] provide a hardware-based NFA ar-
chitecture that updates the set of states in parallel during
matching. Sourdis and Pnevmatikatos [20] employ content-
addressable memories (CAMs) to increase the performance
further, and Clark and Schimmel [8] present optimization
techniques (such as examining multiple bytes per clock cy-
cle) and achieve regular expression matching at rates of up
to 25 Gbps. Brodie et al. [5] also employ multi-byte transi-

ca c-{c}

0 21 3a b c d

-{a} -{a,b}

-{c,d}
-{c}

4

Figure 1: A DFA recognizing the regular expression
(.*)ab(.*)cd. Starting in state 0, the expression is
accepted whenever state 4 is reached.

tions and apply compression techniques to reduce the mem-
ory requirements. These techniques show promise for high
performance matching. However, replication of NFAs intro-
duces scalability issues as resource limits are reached (Clark
and Schimmel are able to fit only 1500 signatures on their
prototype). In addition, hardware techniques in general lack
the flexibility for evolving signature sets that is implicit to
intrusion detection, and they restrict applicability to those
instances where the hardware cost can be justified and cus-
tom hardware support is available.

Finally, in another context, the compiler construction com-
munity has also investigated compression techniques for reg-
ular expressions. Dencker et al. [10] describe a variety of
techniques for compressing parse tables. Johnson [11] in-
troduced the use of default transitions for DFA compression
during development of the YACC parser generator. Instead
of hashing, Johnson used two auxiliary arrays and performed
careful placement of state identifiers to achieve compression.
Similar techniques to these are currently used by the Flex
Scanner Generator [15]. Our experiments with this tech-
nique using Flex have yielded memory reductions of up to
50×, although the reduction comes at a high execution time
cost involving multiple memory accesses and default tran-
sition lookups that are not suitable for high-speed match-
ing. Furthermore, tools like Flex perform matching using
repeated invocations of the DFA and assume different se-
mantics. Thus, they are not directly applicable without
modification.

3. ALPHABET COMPRESSION TABLES
A DFA is a directed graph with labeled edges used for

efficiently matching regular expressions to input. Nodes are
termed states, edges between nodes are called transitions,
and each edge is labeled with a symbol from the input al-
phabet Σ. For each state S in the DFA, there is an edge
for each input symbol in Σ from S to some state S′ in the
DFA. The set of transitions out of S is referred to as the
transition table for S, and each state has its own table. A
non-empty subset of the states are marked as accepting, and
there is a distinct starting state s0. Figure 1 shows a DFA
that recognizes the regular expression (.*)ab(.*)cd (read
as: an arbitrary number of characters, followed by ab, fol-
lowed by an arbitrary number of characters, followed by cd).
The start state is state 0, and the corresponding regular ex-
pression is recognized when state 4 is reached. In general,
for each regular expression R, there is a DFA D such that
D accepts exactly the language described by R.

The DFA matching procedure keeps a current state vari-
able that is initialized to state s0. During matching, the
DFA reads input characters one at a time and updates the
current state by following the appropriate transition out of

SingleAlphabetPartition(StateSet States):

CrtBestPartition = {Σ}1

foreach state s ∈ States do2

NextPartition = {}3

foreach character group g ∈ CrtBestPartition do4

NextToChars = EmptyHashTable5

foreach character c ∈ g do6

NextToChars[s.next[c]] ∪= {c}7

foreach state n ∈ NextToChars.keys() do8

NextPartition ∪= {NextToChars[n]}9

CrtBestPartition = NextPartition10

return CrtBestPartition11

Algorithm 1. Compression algorithm that finds
the partition of the input alphabet Σ with the
smallest number of equivalence classes.

the current state to the destination state. Reaching an ac-
cepting state indicates that the input thus far is a string in
the language defined by the regular expression.1 Figure 2a
depicts this procedure at a specific state.

Alphabet compression tables for DFAs arise from the ob-
servation that for any given transition table, there are often
many input characters that lead to the same next state.
Such identical behavior forms a binary relation between in-
put symbols and partitions them into equivalence classes.
Individual transition tables can then store a single entry for
an entire equivalence class, and a shared lookup table can
be used to map from the observed input character to the
appropriate equivalence class entry in the compressed tran-
sition table (Figure 2b). Since this alphabet compression
table (ACT) is shared by all states, it will be accessed for
every input character, and thus likely reside in the cache of
the processor. Therefore, while alphabet compression adds
one extra lookup to the per-byte processing, it does not have
a significant negative performance impact as there is no need
for an extra off-chip memory access.

Before discussing the algorithm for building alphabet com-
pression tables, we clarify some of the notation used in the
algorithms in this paper. Our notation relies heavily on the
use of sets whose elements can be characters, states, or other
sets (with all elements of a set being of the same type).
We use the standard definition for set equality: {1, 2} =
{2, 1}, but {{1, 2}, {3, 4}} �= {1, 2, 3, 4} (actually two such
sets would never even get compared by our algorithms since
their elements are of different types). As usual, the size of
a set S given by |S| only counts the number of elements in
the top-level set, and does not give a recursive count of all
atomic elements. For sets A and B, the statement A∪ = B
is shorthand for A = A ∪ B. Finally, we represent hash ta-
bles as associative arrays and use standard notations (e.g.
hashtable[key]) for performing lookups, using sets both as
keys and values in some cases. To simplify the algorithms,
we introduce the convention that for hash tables whose val-
ues are sets, looking up a non-existent value returns the
empty set rather than explicitly signaling failure.

We say that a state distinguishes between two characters
if the transitions corresponding to those characters go to dif-
ferent states. Thus in Figure 1, characters b and d are dis-

1In the more traditional definition, a DFA signals a match
only if it is in an accepting state after reading the last input
character. All the results we present apply to that definition
as well.

State 0
12
12
12
4
2
8
2
8

State 1
12
12
12
4
4
4
8
8

State 2
25
25
25
41
41
41
5
5

25
25
25
6

41
5

41
5

State 3

input_char=1

crt_state=1

…

next_state=12

(a) Uncompressed DFA

12
4
2
8
2
8

12
4
4
4
8
8

State 0 State 1
25
41
41
41
5
5

input_char=1

crt_state=1

0
0
0
1
2
3
4
5

Alphabet compression table

State 2
25
6

41
5

41
5

State 3

index=0

…

next_state=12

(b) DFA using a single ACT

ACT 1ACT 0

State 0 State 1

crt_act=1

0
0
0
1
1
1
2
2

State 2 State 3
0 12
1 4
0 8

0 12
1 4
0 2
0 8

0 25
0 41
0 5

…
0 25
1 6
0 41
0 5

next_state=12crt_state=1

0
0
0
1
2
3
2
3

index=0input_char=1

next_act=0

(c) DFA using multiple ACTs

Figure 2: The core operation of DFA matching is to look up the next state based on the current state and the
input character. By using one or more alphabet compression tables, we can reduce the size of the transition
tables attached to individual states.

tinguished between by each of states 1 and 3, but not by 0, 2
and 4. On the other hand, characters e and f are not distin-
guished between by any state. When using a single compres-
sion table there is a unique partition of the symbols in the
input alphabet that minimizes the total memory usage. Al-
gorithm 1 gives the procedure that computes this partition
in a single traversal of the states of the DFA. Starting with a
partition of size one whose single entry is the full set of input
characters, the algorithm progressively refines the partition
to account for distinctions between input characters that
manifest themselves as transitions to distinct states out of
the same source state. Upon completion, the algorithm finds
the fewest number of sets σ of input symbols where all the
elements in each set induce the same sequence of traversed
states in the automata. Per-state transition tables are cor-
respondingly reduced from |Σ| to σ entries. Conversely, for
any two characters that are in different sets, there is at least
one state that has transitions to different states for these
two characters. Given the output of Algorithm 1, building
the actual alphabet compression table and the compressed
transition tables is straightforward. Note that the complex-
ity of this algorithm is O(n|Σ|) where n is the number of
states and |Σ| is the size of the input alphabet.

3.1 Multiple alphabet compression tables
It is often the case that many characters behave identi-

cally for a large fraction of states S but are individually
distinguished between by a small (perhaps overlapping) set
of states. When using a single ACT for all states as in the
previous section, individual characters of such groups will
need separate entries in each of the compressed transition
tables, limiting the memory savings that can be achieved.
If instead we compute an ACT to apply only to the large
subset of states S, the transition tables are smaller since the
groups of characters treated identically are larger and fewer.
Thus, further reductions in memory usage can be obtained
by using multiple ACTs, each over a disjoint subset of states.

To build a DFA with m ACTs, we first divide the states
of an automaton into m subsets (discussed below) and then
compute a separate ACT for each subset. During matching,
the lookup function needs not only the current state and cur-
rent input symbol but also the identity of the correct ACT
to use (in the range {1..m}). Thus, in the transition table
we don’t just encode the next state but also the correspond-

BestStatePartition(StateSet States):

AlphaPartToStates = EmptyHashMap1

foreach state s ∈ States do2

Groups = SingleAlphabetPartition ({s}) // Alg. 13

AlphaPartToStates[Groups] ∪= {s}4

Result = {}5

foreach partition ap ∈ AlphaPartToStates.keys() do6

Result ∪= AlphaPartToStates[ap]7

return Result8

Algorithm 2. Algorithm to partition a set of
states so that the sum of the sizes of transition
tables is minimized when the number of ACTs
is unlimited.

ing ACT. Figure 2c shows the matching process extended
for multiple ACTs. Since the number of ACTs is small (up
to 8 in our experiments), for all currently feasible configura-
tions a 32-bit word can encode both the ACT number and
the pointer to the next state so that sizes of transition ta-
ble entries are not increased. Since entries of the transition
tables are decoded efficiently and all the ACTs are typically
cached, the matching process is not significantly slower than
in the case of a single ACT.

In constructing multiple alphabet compression tables, we
must first divide the states into subsets that will be covered
by the same ACT. For any of these subsets, we can then
use Algorithm 1 to build the corresponding ACT. If there
are no restrictions on the number of ACTs we can use, the
partition that minimizes the total size of the transition ta-
bles is the one in which all states that distinguish between
the same input symbols use the same ACT. Algorithm 2
finds this best partition of the set of states in O(n|Σ|) time.
Unfortunately, for practical automata, the number of ACTs
required to achieve the optimum is unfeasibly large, so we
need algorithms that can guarantee that the number of state
subsets produced by the partition of the states is bounded
above by a given m.

There are S(n, m) ways to partition n elements into m
disjoint subsets, where S(n, m) is a Stirling number of the
second kind [6], given as:

S(n, m) =
1

m!

mX
i=0

(−1)i

m

i

!
(m − i)n

FastPartitionStates(StateSet States, Int m):

CrtPartition = {}1

RemainingStates = States2

for i = 1 to m − 1 do3

StatesCovered = RemainingStates4

TargetSize = |RemainingStates|/25

Groups=SingleAlphabetPartition (StatesCovered)6

while |StatesCovered| > TargetSize do7

/* Choose the pair of groups distinguished between by
the fewest states, discard the states, combine the
groups. */

StatesCut = StatesCovered8

for j = 0 to |Groups| − 1 do9

for k = j + 1 to |Groups| − 1 do10

Candidates = {}11

foreach state s ∈ StatesCovered do12

if s.next[Groups[j][0]] �= s.next[Groups[k][0]]13

then
Candidates ∪= {s}14

if |Candidates| < |StatesCut| then15

StatesCut = Candidates16

bestj = j17

bestk = k18

if |StatesCut| == |StatesCovered| then19

return CrtPartition ∪ {RemainingStates}20

NewGroup = Groups[bestj] ∪ Groups[bestk]21

Groups = Groups ∪ {NewGroup} -22

{Groups[bestj], Groups[bestk]}
StatesCovered = StatesCovered - StatesCut23

CrtPartition ∪= {StatesCovered}24

RemainingStates = RemainingStates - StatesCovered25

return CrtPartition ∪ {RemainingStates}26

Algorithm 3. Fast heuristic algorithm for parti-
tioning a set of states into m subsets such that
when ACTs are computed separately for each
subset, total memory usage is low.

Note that S(n, m) is bounded above by mn/m!. We found
no criterion for easily determining the optimal partition and
instead focused on heuristic techniques. We evaluated two
methods for partitioning the states into m subsets. First,
a “bottom-up” approach starts with the partition produced
by Algorithm 2 and combine subsets until the total num-
ber of subsets is reduced to m. The combination routine
iteratively combines subsets two at a time, selecting at each
iteration the two subsets that yield the smallest increase in
total memory usage. Unfortunately, this algorithm operates
in O(n3|Σ|) time. We found that for large rule sets typical
to those found in signature matching, this algorithm was un-
acceptably slow (each run required over a day to complete)
with results no better than those from the top-down ap-
proach described below. Thus, we do not consider it further
in this paper.

An alternative method to producing a partition with m
subsets, and the one we employ, is to use a “top-down” ap-
proach that starts with a single set and iteratively subdivides
until m subsets are produced. In Algorithm 3, we present
such a top-down approach that completes in only O(mn|Σ|3)
time. At each step, the algorithm sets a target for the size
of the subset to remove (line 5: we found that setting this
target to half the remaining states works well) and finds a
subset that is large enough and has a small ACT. To do so
it uses a greedy heuristic (lines 7-23) that starts with the set

State 0 State 1 State 2 State 3

2
8
2

12
12
12
4
4
4
8
8

25
25
25
41
41
41
5
5

6

5
41

input_char=1

crt_state=1 next_state=12

…

2 0

Figure 3: For each state, D2FAs employ a default
transition that is followed whenever its transition
table contains no entry for the current symbol.

of all remaining states and removes states from the set until
the desired size is reached.

The greedy heuristic implemented by the loop between
lines 7 and 23 tries to find a large set of states with an
ACT that results in small transition tables. Each iteration
of the loop reduces the size of the transition table by one by
removing all states that distinguish between two groups of
characters. To remove the fewest possible states, the nested
inner loops (lines 9 to 18) go through all pairs of groups of
characters and pick the two groups that can be combined
by removing the fewest states. Note that if at each step
of the outermost loop we chose the smallest subset larger
than the target size (as opposed to the largest below it), the
complexity of the algorithm would reduce to O(n|Σ|3). In
practice the difference between the sizes of the two sets is
not significant, and the actual running times do not depend
much on m since as m increases the loop in lines 7 to 23
works with exponentially smaller sets of states and the pro-
cessing requirements are dominated by the cost of the first
few iterations through the outermost loop.

4. D2FAs
Kumar et al. proposed Delayed Input DFAs (D2FAs) [13]

as another solution for compressing the transition tables
used by DFAs. Whereas alphabet compression exploits the
fact that for a given state the transitions for many input
characters point to the same next state, D2FAs build on the
fact that for a given input character, many states transition
to the same next state. Thus, if two states have the same
transitions for many characters, one can reduce memory by
storing for one of the states only the transitions that differ.
Default transitions that consume no input link states with
elided transitions to states that contain the proper transi-
tion table entry. As shown in Figure 3, if the transition
table entry for the input symbol is not stored in the current
state, the default transition points to the state whose tran-
sition table should be consulted. Multiple states can have
default transitions pointing to the same state, and one may
need to follow multiple default transitions when processing
a single input character. Following chains of default tran-
sitions comes at a processing cost, so the maximum length
of default transition is given and fixed during construction.
Kumar et al. show that D2FAs lead to large reductions in
memory usage, but there are two limitations to consider.

-\n -\n…-\n

\n a
0 1 2 3 52

\n

\n \n \n

-\n

-{a,\n}

Figure 4: A DFA recognizing the signature
.*\na[ˆ\n]{50} .

First, memory savings achieved by D2FAs can vary widely
among different kinds of signatures. Figure 4 shows the
signature .*\na[^\n]{50} (read as an arbitrary number of
characters followed by a newline and an a followed by 50
non-newline characters) for which D2FAs cannot achieve sig-
nificant memory savings, but ACTs can. Such signatures are
commonly used to detect buffer overflow attacks. States 2 to
52 have very similar transition tables: for the newline char-
acter the next state is 1, and for all others the next state is
the state with the next number. Applying an ACT for these
states can reduce the size of their transition tables to 2, but
D2FAs cannot produce significant memory reductions since
most of transitions are to distinct next states.

Second, software implementations of D2FAs can be slow.
The original D2FA proposal is targeted to custom hardware
environments where content addressable memories can be
used. Software implementations must use a hash table-like
data structure to compress transition tables, but without
careful design this can result in unacceptable run-time and
memory overheads resulting from computing hash functions
and handling collisions.

To adapt to software-based environments, we designed a
solution that combines a bitmap and an array to achieve
good performance and low memory overhead. Each state
has a bitmap as large as the alphabet (256 bits or 8 words)
to indicate whether the transition corresponding to a given
input character is stored or not, and an array to store the ac-
tual transitions. To determine the position of the transition
in this array during matching, we need to count the number
of bits set to 1 in the bitmap prior to the position of the
bit corresponding to the input character. For our signature
sets this solution uses between 0.1% and 148% more mem-
ory compared to an idealized solution that has no memory
overhead. Compared to an idealized solution that performs
array lookups instead of hashed lookups, the runtime is be-
tween 2.6 and 6 times larger.

4.1 Combining D2FAs and ACTs
Since ACTs and D2FAs exploit orthogonal properties of

DFA transitions, it is natural to ask whether it is possible
to combine them into a solution that combines the strengths
of both approaches. We evaluated a straightforward hybrid
of the two methods that applies alphabet compression to
D2FAs. We extend the input alphabet to include a “not
handled here” symbol, and we increase the size of the al-
phabet compression table by one to also include the default
transition. With these extensions, we can directly apply our
procedures for building the alphabet compression tables to
D2FA-compressed automata like that shown in Figure 3. As
in Figure 2c, the entries in the transition table indicate the

Rule Set # of Memory Exec Time Trans.
ACTs (KB) cycles/byte per state

Cisco SMTP
0 630,669 46.3 256
1 231,573 50.6 94
8 165,234 48.8 67

Cisco HTTP
0 106,771 43.0 256
1 81,329 54.7 195
8 24,124 52.0 57

Snort SMTP
0 810,711 22.2 256
1 139,340 30.0 44
8 67,761 29.8 21

Snort HTTP
0 163,114 38.6 256
1 36,955 46.1 58
8 15,150 43.9 23

Table 1: Measuring the cost of multiple compression
tables. The biggest reductions come after the first
table is employed, but additional tables yield further
memory reductions.

next state and the ACT to use. Also as with D2FAs, the
algorithm may need to follow multiple default transitions
when processing an input character. Our experiments show
that for some signature sets this hybrid solution results in
the most compact automata.

5. EXPERIMENTAL RESULTS
We performed a comparative evaluation using multiple

signature sets to better understand the behavior of ACTs in
practice. We extracted regular expressions from the FTP,
HTTP, and SMTP signatures from the Snort and Cisco IPS
rule sets and grouped them by protocol, collecting 1550 reg-
ular expressions in total. In addition to the algorithms and
techniques described in this paper, we also implemented the
DFA Set Splitting algorithm [22] (termed mDFA here, for
“Multiple DFA”) for combining a set of signatures to a group
of DFAs. Finally, our comparative evaluation of D2FAs was
performed using the D2FA source code obtained from its au-
thors. Modifications discussed in Section 4 were built upon
this as well. Test results involving execution time were ob-
tained using a 10GB trace collected on the edge of a univer-
sity departmental network. All experiments were performed
on a Linux workstation with a 3.0 GHz Pentium IV proces-
sor and 3.4 GB of memory that was otherwise idle. We used
cycle-accurate performance counters to measure the number
of cycles required by the matching operations.

5.1 Multiple alphabet compression tables
The first set of experiments looks at the behavior of ACTs

as the number of compression tables is increased. For each
of our rule sets, we combined a subset of the regular expres-
sions and converted them to a large, single DFA. We then
repeatedly invoked Algorithm 3 with values of m (the num-
ber of alphabet compression tables) increasing from 0 to 8.
Table 1 presents the memory requirements, execution time,
and average transitions per state for 0, 1, and 8 compression
tables. Figure 5 presents the results graphically for all tested
values of m. For clarity of presentation, we show detailed
results for only four of the six data sets. The omitted data
sets have similar behavior.

The case m = 0 is the combined DFA without any al-
phabet compression applied and serves as the baseline for
comparison. Consequently, the number of transitions per
state is 256, the size of the alphabet. As m is increased,

 0

 50

 100

 150

 200

 256

 0 1 2 3 4 5 6 7 8

A
vg

. T
ra

ns
 p

er
 S

ta
te

Alphabet Compression Tables

Cisco SMTP
Cisco HTTP
Snort SMTP
Snort HTTP

(a) Average transitions per state

 0

 100000

 200000

 300000

 400000

 500000

 600000
 640000

 0 1 2 3 4 5 6 7 8

M
em

or
y

us
ag

e
(K

B
)

Alphabet Compression Tables

Cisco SMTP
Cisco HTTP
Snort SMTP
Snort HTTP

(b) ACT memory requirements

 20

 25

 30

 35

 40

 45

 50

 55

 0 1 2 3 4 5 6 7 8

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Alphabet Compression Tables

(c) Execution time

Figure 5: Effect of multiple ACTs on memory usage and matching execution time. Incorporating ACTs
induces an initial runtime cost, but subsequent increases in the number of tables is free.

the memory requirements (also counting the memory used
by the compression tables themselves) decreases. With 8
tables, the Cisco signature sets exhibit approximately a 4×
reduction in memory usage, whereas for the Snort signature
sets a 12× to 15× reduction is observed. As Figures 5a and
5b show, the memory usage experiences the largest decreases
after the first alphabet compression table is applied, but us-
ing multiple ACTs reduces memory requirements further.

ACTs do carry an increased execution cost, adding 5 to
10 cycles per byte to the execution time on average. Fortu-
nately, in Figure 5c we see that this cost is incurred only
when the first alphabet compression table is introduced;
adding multiple ACTs does not incur significant additional
run-time costs. Thus, even though we observe diminishing
returns in memory savings as the number of ACTs increases,
the increased savings come for free, essentially, after the ini-
tial cost of including compression tables has been paid. For
the remainder of the experiments, we use m = 8 ACTs.

5.2 ACTs, D2FAs and uncompressed DFAs
Next, we compare ACTs to D2FAs, D2FAs + ACTs, and

uncompressed DFAs. Combining all regular expressions into
a single DFA exceeds feasible memory limits, so we used set
splitting [22] to produce sets of combined DFAs that cover all
the rules. For the construction, we supplied memory budgets
ranging from 4 MB to 128 MB.2 As shown in columns 2 and 3
of Table 2, smaller memory budgets result in large numbers
of DFAs to match. We use the term protocol set to refer
to the set of DFAs produced by the algorithm for a given
protocol and a given total memory setting. We then built
a distinct set of eight alphabet compression tables for each
protocol set. Thus, for example, a rule set such as Snort
SMTP combined into six DFAs would contain eight ACTs
that are shared among the six DFAs. Finally, we repeated
the construction process to produce D2FAs for each of the
DFAs in the protocol sets.

We performed signature matching using protocol sets with
uncompressed DFAs, DFAs with ACTs, D2FAs, and D2FAs
with ACTs, recording execution time and memory usage.
Table 2 shows the results for three memory settings: 16

2Although 128 MB may seem rather small in relation to
modern memory capacities, our tests are performed using a
single protocol. In reality, DFAs for many protocols must
reside in memory simultaneously.

MB, 48 MB, and 128 MB. Execution times are higher in
these results principally because we must repeat the match-
ing procedure for each DFA in a protocol set. Note also
that in some cases (Cisco SMTP), increasing the amount of
available memory does not decrease execution time. This be-
havior is an artifact of the greedy algorithm [22] for building
the protocol sets. In general, the table shows that increasing
total available memory reduces the number of DFAs in the
protocol set, decreasing execution time.

Compared to uncompressed DFAs (column 4 in Table 2),
the table shows a sharp reduction in memory costs when
eight ACTs are employed (column 5). For 16 MB total mem-
ory, ACTs are between 66× smaller (Snort SMTP) and 4×
smaller. At 128 MB, DFAs with ACTs are between 19×
and 4× smaller. As expected, however, there is a slight in-
crease in execution time: execution times with ACTs are
typically between 35% to 85% slower, the largest slowdown
approaches a factor of 3×. Figure 6 (Cisco rules) and Fig-
ure 7 (Snort rules) show the memory usage (top graph) and
execution time (bottom graph) for all supplied values of
available memory for three signature sets.

D2FAs (column 6) exhibit wider variability in their perfor-
mance and memory usage than ACTs. For Cisco rule sets,
our tests give an 11× to 17× reduction in memory usage.
These results are generally consistent with those reported
in [13]. For the Snort signature sets, however, which were
not included in the original D2FA evaluation, the memory
reduction is always less than a factor of 8 and often less than
a factor of 2. This is consistent with our observation that
D2FAs are designed to optimize DFAs in which certain sym-
bols in the alphabet (almost) always go to the same state.
This is not characteristic of the Snort sets, and thus there
is little opportunity for compression.

The hybrid algorithm that combines D2FAs and ACTs
(rightmost column in Table 2) always achieves low memory
(often the lowest of all solutions), and run-times that are
close to, but larger than those of ACTs. ACTs are faster
because the matching algorithm does not need to follow de-
fault transitions. Interestingly, in one of the signature sets
D2FAs use less memory than the hybrid approach. The rea-
son is that after applying ACTs to D2FAs, for a given state
there may be multiple entries in the actual transition table
storing the “not handled here” symbol, resulting in higher
memory usage than D2FAs that do not store these entries.

 0

 20000

 40000

 60000

 80000

 100000

 120000

4M 16M 32M 48M 64M 96M 128M

M
em

or
y

us
ag

e
(K

B
)

Memory Budget

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

4M 16M 32M 48M 64M 96M 128M

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory Budget

(a) Cisco HTTP

 0

 20000

 40000

 60000

 80000

 100000

 120000

4M 16M 32M 48M 64M 96M 128M

M
em

or
y

us
ag

e
(K

B
)

Memory Budget

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

 0

 500

 1000

 1500

 2000

 2500

 3000

4M 16M 32M 48M 64M 96M 128M

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory Budget

(b) Cisco SMTP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

4M 16M 32M 48M 64M 96M 128M

M
em

or
y

us
ag

e
(K

B
)

Memory Budget

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

 0

 200

 400

 600

 800

 1000

 1200

 1400

4M 16M 32M 48M 64M 96M 128M

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory Budget

(c) Cisco FTP

Figure 6: Comparing memory (top) and performance (bottom) of ACTs to mDFAs and D2FAs with Cisco
rule sets.

Memory Number Uncompressed multiple ACT D2FA mult. ACT+D2FA
Signature budget of Runtime Memory Runtime Memory Runtime Memory Runtime Memory

set (MB) DFAs (cycles/byte) (KB) increase decrease increase decrease increase decrease

Snort 16 15 266 9,667 1.84× 65.96× 12.70× 1.10× 4.24× 75.43×
SMTP 48 13 236 30,058 1.82× 70.66× 12.25× 1.04× 4.51× 73.66×

128 11 209 98,236 1.79× 17.26× 12.31× 2.20× 3.94× 28.52×
Snort 16 45 1,103 14,065 2.92× 6.74× 10.58× 2.83× 5.90× 15.17×
HTTP 48 28 651 23,693 1.62× 6.71× 9.98× 4.00× 5.33× 14.44×

128 23 543 73,988 1.59× 9.11× 9.60× 6.81× 3.78× 16.88×
Snort 16 18 434 11,127 1.56× 50.50× 9.47× 1.32× 3.36× 62.10×
FTP 48 14 374 37,920 1.45× 33.28× 9.23× 1.67× 3.02× 40.99×

128 4 131 94,288 1.35× 19.13× 8.76× 7.92× 2.97× 23.71×
Cisco 16 4 72 15,316 1.78× 3.92× 13.98× 15.04× 3.85× 6.03×
SMTP 48 3 57 40,367 1.72× 3.79× 14.22× 16.38× 3.98× 6.05×

128 3 57 110,063 1.72× 3.78× 14.34× 17.34× 3.86× 5.92×
Cisco 16 19 432 15,015 1.64× 3.81× 8.66× 11.03× 3.16× 6.42×
HTTP 48 12 282 43,389 1.62× 4.06× 8.76× 13.37× 3.12× 7.12×

128 9 220 116,352 1.64× 3.87× 8.98× 14.08× 3.11× 6.57×
Cisco 16 3 83 13,308 1.34× 16.41× 9.38× 15.43× 2.61× 31.56×
FTP 48 2 66 22,254 1.19× 16.97× 8.76× 16.92× 2.44× 33.95×

128 2 70 83,162 1.14× 16.09× 8.26× 19.29× 2.23× 42.86×
Table 2: Comparison of run times and memory usage for uncompressed DFAs, DFAs using multiple ACTs,
D2FAs, and D2FAs using multiple ACTs.

Both execution time and memory usage are critical re-
sources in signature matching and induce a space-time trade-
off. Figure 8 depicts a space-time comparison for all six of
our test sets, directly showing the trade-offs that occur be-
tween memory usage (the x-axis) and execution time (the
y-axis). We have truncated the axes in some sets to more
clearly highlight the data in the lower left-hand quadrant;
this does not influence the interpretation. Each point on the
plot refers to an observed total available memory setting.
Data points belonging to the same compression technique
trace out a curve that shows the trade-offs between execu-
tion time and memory for that technique. In the limit, large

memory yields fast execution, and small memory requires
large execution times. Entries toward the origin (the bot-
tom left corner) require reduced resources in space and time
and are thus preferred.

Most importantly, for all protocol sets ACTs provide the
most favorable trade-offs between run time and memory
usage. Admittedly, it may be surprising that ACTs can be
faster than uncompressed DFAs despite the overhead of the
compression table mapping. In reality, large available mem-
ory sizes (resulting in bigger but fewer DFAs) combined with
excellent ACT memory reduction yields a memory footprint
that is smaller than for uncompressed DFAs, and the time

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

4M 16M 32M 48M 64M 96M 128M

M
em

or
y

us
ag

e
(K

B
)

Memory Budget

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

4M 16M 32M 48M 64M 96M 128M

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory Budget

(a) Snort HTTP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

4M 16M 32M 48M 64M 96M 128M

M
em

or
y

us
ag

e
(K

B
)

Memory Budget

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

4M 16M 32M 48M 64M 96M 128M

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory Budget

(b) Snort SMTP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

4M 16M 32M 48M 64M 96M 128M

M
em

or
y

us
ag

e
(K

B
)

Memory Budget

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

4M 16M 32M 48M 64M 96M 128M

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory Budget

(c) Snort FTP

Figure 7: Comparing memory (top) and performance (bottom) of ACTs to mDFAs and D2FAs with Snort
rule sets.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000 12000 14000

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory usage (KB)

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

(a) Cisco SMTP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory usage (KB)

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

(b) Cisco HTTP

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2000 4000 6000 8000 10000

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory usage (KB)

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

(c) Cisco FTP

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10000 20000 30000 40000

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory usage (KB)

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

(d) Snort SMTP

 0

 2000

 4000

 6000

 8000

 10000

 0 5000 10000 15000 20000

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory usage (KB)

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

(e) Snort HTTP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s/

by
te

)

Memory usage (KB)

Uncompressed DFAs
ACTs
D2FAs
ACTs+D2FAs

(f) Snort FTP

Figure 8: Comparing memory usage vs. run-time performance on several techniques. In all cases, multiple
ACTs yield the best trade-offs between memory usage and run-time performance.

savings obtained from executing fewer DFAs more than com-
pensates for the ACT overhead. Thus, a small number of
highly compressed DFAs can be both smaller and faster than
other alternatives.

6. CONCLUSION
In this paper we introduced multiple alphabet compres-

sion tables (ACTs) for reducing the memory footprint of
DFA-based signature matching. This technique uses heuris-
tics to partition the states of a DFA, computing a distinct
ACT for each partition. Multiple ACTs achieves increased
memory reduction over single ACTs with no additional run-
time cost. We present algorithms for constructing multi-
ple ACTs and demonstrate their effectiveness using signa-
tures found in Cisco IPS and Snort. ACTs are applicable
in software-only environments, although they may be easily
included in hardware-based solutions.

Compared to uncompressed DFAs, multiple ACTs achieve
memory savings of between a factor of 4 and a factor of 70
at the cost of an increase in run time that is typically be-
tween 35% and 85%. Compared to D2FAs, multiple ACTs
are between 2 and 3.5 times faster in software, and for some
signature sets they use less than one tenth of the memory.
Overall, for all signature sets and compression methods eval-
uated, ACTs offer the best memory versus run-time trade-
offs.

Acknowledgments
This work is sponsored by NSF grants 0546585 and 0716538
and by a gift from the Cisco University Research Program
Fund at Silicon Valley Community Foundation. We thank
the anonymous reviewers for suggestions that improved this
paper.

7. REFERENCES
[1] Alfred V. Aho and Margaret J. Corasick. Efficient

string matching: An aid to bibliographic search. In
Communications of the ACM, June 1975.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison Wesley, 1986.

[3] Michela Becchi and Srihari Cadambi. Memory-efficient
regular expression search using state merging. In
Proceedings of IEEE Infocom, Anchorage, AK, May
2007. ACM.

[4] Michela Becchi and Patrick Crowley. An improved
algorithm to accelerate regular expression evaluation.
In Proceedings of the 2007 ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems (ANCS), Orlando, FL, December 2007. ACM.

[5] Benjamin C. Brodie, Ron K. Cytron, and David E.
Taylor. A scalable architecture for high-throughput
regular-expression pattern matching. SIGARCH
Comput. Archit. News, 34(2):191–202, 2006.

[6] Richard M. Brualdi. Introductory Combinatorics, 2nd
edition. Prentice Hall, 1992.

[7] David Brumley, James Newsome, Dawn Song, Hao
Wang, and Somesh Jha. Towards automatic
generation of vulnerability-based signatures. In IEEE
Symposium on Security and Privacy, Oakland,
California, May 2006.

[8] Christopher R. Clark and David E. Schimmel.
Scalable pattern matching for high-speed networks. In
IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 249–257, Napa,
California, April 2004.

[9] Beate Commentz-Walter. A string matching algorithm
fast on the average. In Proc. 6th International
Cooloquium on Automata, Languages, and
Programming, pages 118–132, 1979.

[10] Peter Dencker, Karl Durre, and Johannes Heuft.
Optimization of parser tables for portable compilers.
ACM Trans. Program. Lang. Syst., 6(4):546–572, 1984.

[11] S.C. Johnson. Yacc – yet another compiler compiler.
Computing Science Technical Report 32, AT&T Bell
Laboratories, 1975.

[12] Sailesh. Kumar, Balakrishnan. Chandrasekaran,
Jonathan. Turner, and George Varghese. Curing
regular expressions matching algorithms from
insomnia, amnesia, and acalculia. In ANCS 2007,
pages 155–164.

[13] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu,
Patrick Crowley, and Jonathan Turner. Algorithms to
accelerate multiple regular expressions matching for
deep packet inspection. In Proceedings of the ACM
SIGCOMM, September 2006.

[14] Sailesh Kumar, Jonathan Turner, and John Williams.
Advanced algorithms for fast and scalable deep packet
inspection. In ANCS ’06: Proceedings of the 2006
ACM/IEEE symposium on Architectures for
networking and communications systems, pages 81–92,
New York, NY, USA, 2006. ACM Press.

[15] Vern Paxson. The flex fast scanner generator, 1995.
Available at http://flex.sourceforge.net/.

[16] Reetinder Sidhu and Viktor Prasanna. Fast regular
expression matching using FPGAs. In IEEE
Symposium on Field-Programmable Custom
Computing Machines, April 2001.

[17] Randy Smith, Cristian Estan, and Somesh Jha.
Deflating the big bang: Fast and scalable deep packet
inspection with extended finite automata. In
SIGCOMM, August 2008.

[18] Randy Smith, Cristian Estan, and Somesh Jha. XFA:
Faster signature matching with extended automata. In
IEEE Symposium on Security and Privacy, May 2008.

[19] Robin Sommer and Vern Paxson. Enhancing
byte-level network intrusion detection signatures with
context. In ACM CCS, Washington, DC, Oct. 2003.

[20] Ioannis Sourdis and Dionisios Pnevmatikatos.
Pre-decoded CAMs for efficient and high-speed NIDS
pattern matching. In FCCM, April 2004.

[21] Sun Wu and Udi Manber. A fast algorithm for
multi-pattern searching. TR 94-17, Department of
Computer Science, University of Arizona, 1994.

[22] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman,
and Randy H. Katz. Fast and memory-efficient regular
expression matching for deep packet inspection. In
ANCS ’06: Proceedings of the 2006 ACM/IEEE
symposium on Architecture for networking and
communications systems, pages 93–102, 2006.

