Interactive Traffic Analysis and Visualization with Wisconsin Netpy

Cristian Estan

Garret Magin

Computer Sciences Department
University of Wisconsin-Madison
{estan,garret } Qcs.wisc.edu

December 6, 2005

Abstract

Monitoring traffic on important links allows network
administrators to get insights into how their net-
works are used or misused. Traffic analysis based
on NetFlow records or packet header traces can re-
veal floods, aggressive worms, large (unauthorized)
servers, spam relays, and many other phenomena
of interest. Existing tools can plot time series of
pre-defined traffic aggregates, or perform (hierarchi-
cal) “heavy hitter” analysis of the traffic. Wisconsin
Netpy is a software package that goes beyond the ca-
pabilities of other existing tools through its support
for interactive analysis and novel powerful visualiza-
tion of the traffic data. Adaptive sampling of flow
records ensures that the performance is good enough
for interactive use, while the results of the analyses
stay close to the results based on exact data. Among
the salient features of the package are: hierarchical
analyses of source addresses, destination addresses,
or applications within aggregates identified by user-
defined filters; time series plots that separate the traf-
fic into categories specified with ACL-like syntax at
run time; interactive drill-down into analyses of com-
ponents of the traffic mix; “heatmap” visualization
of traffic that describes how two “dimensions” of the
traffic relate to each other (e.g. which sources send to
which destinations, or which sources use which ser-
vice, etc.).

1 Introduction

The unrestricted packet communication supported by
the Internet offers immense flexibility to the endhosts
in how they use the network. This flexibility has en-
abled the deployment of new applications such as the
web long after the IP protocol has been standard-
ized and has contributed significantly to the success
of the Internet. On the other hand network oper-
ators want to monitor and to some extent control
how their networks are used. Firewalls, network ad-
dress translation, and traffic shaping boxes offer a de-
gree of control that helps keep networks manageable.
But even within the constraints of the policies imple-
mented through these devices, the network traffic is
very variable and traffic monitoring is necessary. An
analysis of network traffic can reveal important usage
trends such as the application mix and the identity
of the heaviest traffic sources or destinations. Some-
times these analyses can reveal misuses of the net-
work: compromised desktop computers turned into
spam relays, remote computers scanning the network
for vulnerabilities, network floods directed against a
single victim, or caused by a worm trying to spread
aggressively. It is often the case that the analysis is
urgent because it is carried out to explain a degra-
dation in network service. It is also often the case
that the network administrator does not know in ad-
vance which ports or IP addresses to focus on and he
goes through an iterative process before being able to
find convincing evidence for the cause of the problem.
Fortunately there are many traffic analysis and visu-

alization tools to assist the network administrator in
the task of exploring and understanding the traffic
carried by their network. Wisconsin Netpy is a new
and powerful addition to this large family.

1.1 Related work

Tobias Oetiker’s MRTG [12] is an early traffic visual-
ization tool widely used by network administrators
to track the volume of IP traffic based on SNMP
counters provided by routers and switches. His RRD-
tool [12] provides support for visualizing time series
plots of arbitrary data and it is actually used by all
traffic visualization applications discussed in this sec-
tion. Jeff Allen’s Cricket [1] takes MRTG’s idea one
step further by allowing the user to track a large num-
ber of variables (say the traffic of various links in the
network) using a scalable config tree. These tools of-
fer visual information only about the volume of the
traffic, but nothing on the composition of the traffic
mix.

The NetFlow flow records generated by routers are
an information source much richer than the SNMP
counters. Toolkits such as OSU flow-tools [7] and
SiLK [8] have tools for manipulating and analyzing
NetFlow data. Typical analyses allow finding the top
sources and destinations of traffic. cflowd [2] is a re-
lated package that also supports various types of traf-
fic matrices. Dave Plonka’s FlowScan [13] and Cris-
tian Estan’s AutoFocus [5] also provide time series
of various predefined categories of traffic represented
within the traffic mix. The supercomputing commu-
nity is also interested in IP traffic visualization, and
its members have written tools such as”the spinning
cube of potential doom” [11] and NVisionIP [10].

AutoFocus and Ryo Kaizaki’s aguri [9] employ a
novel type of analysis related to top k reports called
hierarchical heavy hitters or traffic cluster analysis [6,
3]. This type of analysis is used extensively by Netpy
and we describe it in Section 2.3.

Network administrators are often interested in the
largest sources or destinations as measured in bytes,
packets or flows. One important observation is that
while existing tools give the exact traffic for these
heavy hitters, the user can often accept small errors.
In fact such small errors are already present if one

uses sampled NetFlow. Netpy exploits this obser-
vation by sampling flow records to speed up traffic
analysis and to reduce disk usage. For measuring the
traffic in bytes or packets we use the “smart sam-
pling” of flow records introduced by Duffield et al.[4],
described in Section 4.

2 Traffic analysis with Netpy

The user can direct Netpy to perform traffic analy-
ses through a graphical user interface or through a
console that supports interactive queries as well as
scripts. All analyses use an intermediary database
of flow records (see Section 3 for more details about
Netpy’s structure). But what kind of traffic analyses
can one perform with Netpy? That’s the question we
answer through the rest of this section.

2.1 Time series plots with user de-
fined categories

Time series plots are an easy to read visual represen-
tation of the traffic. Existing tools such as FlowScan
and AutoFocus allow the network administrator to
define various traffic categories based on port num-
bers or network prefixes and have them plotted with
separate colors. This way the plots reveal information
about the cause of various spikes. Furthermore with
separate plots measuring the traffic in bytes, packets,
(and flows in a future version) the user will be able
to detect not only large floods, but also scans that
generate many flows, but not many bytes.

Netpy also supports these types of time series plots.
The user can specify the categories using an ACL-like
syntax: each rule specifies a source and destination
prefix, protocol number and source and destination
port range; flows are mapped to the category associ-
ated with the first rule they match. For FlowScan and
AutoFocus the user needs to specify the categories
of interest before the NetFlow data is “imported”,
whereas with Netpy the user specifies the categories
at run time and it is quicker to recompute the plot
after the user changes the ACL rules defining the cat-
egories because the analysis relies on the database,
not on the large NetFlow files.

hd NetPy 2 v.0.2 - ID: O -
File Edit

Yiew Help

ﬂﬂlumdimensinnal- Text J|Snurce

Jl JIB_-} Submit Guery n

Total Traffic: 28.31GB
e 1 28.31GB
e 0.0.0.0/1: 2.90GE
e 128.0,0.0/4: 4.92GB

e 145.89.0.0/16: 11.30GB

¢ 147.62.64.0/18: 2.45GB

¢ 145.89.0.0/19: 8.40GB
* 145.89.,5.0/25: 2.49GB
e 145.89.5.192/26: 2.87GB

* 208.0.0.0/4: 2.42GB
¢ 200.0.0.0/5: 2.28GB

® 197.7216.34.234/31: 3.32GB

Data Specification 1 | Data Specification 2 |

Eytes J |

Date: |EIT.|‘31.I“ZDE|2 11:30 Ak

= |D?f31fZDDZ 12:30 P

Links

|Src Addr: ¥ | 5rc Port: | Dst Addr: * | Dst Port: * | Protocal: *

|this is the status har

-

Figure 1: Hierarchical heavy hitter analysis on the sources of the traffic. Indentation is used to highlight
prefixes including each other. The analysis finds the appropriate granularity based on the current traffic:
0.0.0.0/1 is half the address space and 197.216.34.234/31 contains just two IP addresses (all addresses are
anonymized), but they are both reported because their traffic is above the threshold.

2.2 The scope of traffic analysis

For time series plots, and all the other analyses, one
needs to define which NetFlow records constitute the
input to the analysis. Existing toolkits often allow
the network administrator to configure separate traf-
fic reports for separate links. Netpy separates Net-
Flow data into different links as data is imported into
the database (see Section 3.1 for more details). When
running an analysis, the user specifies which links’
traffic to work with. The user also specifies the time
interval of interest to the analysis.

The user can also specify a filter to apply to the
data matching the previous two criteria. The filter

consists of one or more rules similar to router ACLs
(each rule specifies a source address prefix, destina-
tion address prefix, source port range, destination
port range, and protocol number) and flow records
that don’t match any of the rules in the filter are
not considered in the analysis. The GUI’s interactive
drill-down feature works by setting the filter to select
only the traffic of interest.

2.3 Hierarchical heavy hitters

The network administrator cannot always know in
advance what port numbers or IP prefixes will dom-
inate the traffic, so forcing her to specify in advance

LdNetPy 2v.0.2 - 1D: O -
File Edit

View Help

ili”umdimensinnal— Graphicalj}:aﬁnn Source j|

jlﬁ ? Submit@ueryl

L1 |

Src Port: 50100 | Dst Port: 50100 | Protocol: 17 {udp)
Src Port: 50000 | Dst Port: 50000 | Protocol: 17 (udp)

Src Port: 139 | Protocol: & (tcp)
Src Port: 80 | Protocol: & (tcp)

Src Port: (1024 - 63535) | Protoool: 17 (udp)

Src Port: (1024 - 65535) | Protocol: & (tcp)

Src Port: (0 -1023) | Protocol: & (tcp)

*

Data Specification 1

Data Specification 2 |

.I

Bytes i

Doate: IDT-".-’SHZDDZ 11:30 &M

= ID?IS'I.-’ZDDZ 12:30 PR

Links |

"Src addr: " | 5rc Port * | Dst Addr: * | Dst Port: * | Protocol: *

u:utal graph traffic: 29.07GE || Src &ddr: * | Src Port: 80 | Dst Addr: * | Dst Port: ® | Protocal: 6 (top) || Mode traffic: B.1?GEIJ

Figure 2: Hierarchical heavy hitter analysis on the application hierarchy. Based on the traffic the analysis
picked to report the traffic for high UDP source ports, for high and low TCP source ports, for individual
TCP source ports 80 (web) and 139 (Netbios) and two pairs of UDP ports used by a database application.

the ACL rules defining the categories doesn’t always
work. This is especially true after one drills down
into a small, unfamiliar portion of the traffic mix. A
traditional solution to this problem is to use “top K
reports”: one computes the traffic of each source ad-
dress and reports the top K (say top 20). A related
solution is the “heavy hitter report” which reports all
sources whose traffic is above a given threshold in the
data analyzed (say more than 1% of the total traffic).
A problem with both these solutions is that they tell
us nothing about sources that send little traffic: if for
example we have a prefix with many small sources

that nevertheless add up to a large portion of the
traffic (a large modem pool), we would want to find
out about their behavior. Netpy relies on the “hier-
archical heavy hitter” algorithm that finds not just
individual addresses, but also prefixes whose traffic
is above a certain threshold specified as a percentage
of the traffic being analyzed. This algorithm has the
property that it not only identifies the prefixes gen-
erating significant traffic, but it also automatically
finds the right prefix lengths to use when describing
various portions of the traffic.

The hierarchical heavy hitter algorithm works as

follows: first it reports all individual IP addresses
whose traffic is above the threshold, next it aggre-
gates the remaining traffic at the /31 level and re-
ports any prefixes that are above the threshold, next
it aggregates the remaining traffic at the /30 level
and so on until it reaches the root of the IP address
hierarchy. The criterion for reporting more general
prefixes is that the difference between their traffic
and the traffic of more specific prefixes already re-
ported is more than the threshold. However, when
Netpy reports such a prefix, it reports its total traffic
not the difference between its traffic and that of more
specific prefixes. Figure 1 shows the result of a hier-
archical heavy hitter analysis on the source addresses
in the traffic mix using a threshold of 5%. Through
the threshold the user can control the level of detail:
with a lower threshold, more prefixes are reported,
with a higher threshold the user gets a coarser view.

The same type of hierarchical heavy hitter ap-
proach applies to destination IP addresses too. The
approach actually generalizes to any hierarchy we can
define on one or more of the packet header fields
present in the flow record. To capture information
about the applications in use, Netpy defines the fol-
lowing hierarchy: the first level below the root di-
vides the flows by protocol, the second level divides
the flows by source port into flows originating from
low ports (0 to 1023) usually used by servers and
high ports (1024 to 65535) usually used by clients,
the third level divides the flows by actual source port
value and the fourth level divides them by source and
destination port value. The analysis will pick the
granularity of the results based on the actual traf-
fic. For example if there is a large TCP connection
(e.g. a huge backup), the amount of traffic between
its source port and destination port will be reported.
If there is a source port used by many small connec-
tions (e.g. web traffic on port 80), the total traffic
coming from port 80 will be reported. If there is no
dominant source port, but the source ports used are
in the high port range (e.g. traffic coming from a
network of typical desktop computers). An example
of this type of analysis is shown in Figure 2.

2.4 Bidimensional analysis

The analyses looking at simple hierarchies such as the
ones above can tell you that TCP port 80 and UDP
port 53 generate a lot of traffic, and they can also tell
you that servers A and B generate a lot of traffic, but
you won’t be able to tell which one is a web server and
which one is a DNS server. With Netpy’s “unidimen-
sional” reports the user can look at these hierarchies
in isolation. Netpy also has “bidimensional” reports
that look at two hierarchies at once: Netpy computes
the relevant categories for both dimension and re-
ports a crossproduct of the results — for every pair
of categories from the opposite hierarchies, the traffic
matching both categories is reported. For the exam-
ple above, if we run a bidimensional analysis on the
application and source address dimensions, the app-
lication dimension will pick (protocol=TCP,source
port=80) and (protocol=UDP,source port=53) as
relevant categories and the source address will pick
(source address=A) and (source address=B). The
bidimensional report will have the traffic of the fol-
lowing four combined categories of traffic: (proto-
col=TCP,source port==80,source address=A), (pro-
tocol=TCP,source port=80,source address=B), (pro-
tocol=UDP,source port=53,source address=A), and
(protocol=UDP,source port=>53,source address=B).

In the GUI, the two dimensions of a bidimensional
report are the two sides of a square and the categories
defined within individual dimensions are represented
as small segments on the sides of the square. The
rectangles within the square represent the combined
categories. The darkness of the rectangles indicates
the amount of traffic of the combined category with
darker shades indicating more traffic. The GUI dis-
plays the actual amount of traffic in any combined
category when the user moves the mouse over the
corresponding rectangle. Using darkness to convey
the intensity of traffic (or other data) is known as
the “heatmap” representation. Figure 3 shows a bidi-
mensional analysis with the application hierarchy as
the horizontal dimension and the source IP address
hierarchy as the vertical dimension.

The bidimensional reports do not capture all the
information present in the (textual) multidimensional
reports used by AutoFocus that consider all five

hdNetPy 2v.0.2-1D: O -
File Edit ¥iew Help

ﬁli"Bidimensional _dlSource ﬂ;:ation Source _{"8_? .

— =
(=]
=]
=
[=1
_ w
=
o
S 3
= e
[=] ['s]
[} o
= 3
_\.o
~
=3
m:m
@
ol o o)
o o i gl
S| & i
=1 o 0]
gil o i
[=:] oo [=:]
i i i
I 3o 3
—rR
b
™
F
! <A
sl s @
al o 4
=1] [
L a
3] Y]
|
Src Port: 80 | Protocol: 6 (tcp)
| | | |
Src Port: (1024 - 65535) | Protocel: 17 (udp) Src Port: (0 -1023) | Protocol: & (tcp)
Src Port: (1024 - 65535) | Protocol: 6 (tcp)
| J
*
Diata Specification 1 | ‘Specification :--'l IElytes _.f! 2l Eamparesn
Date: ID?:’SUZDDE 11:30 &AM - ID?IS‘IIZDDZ 12:30 PM Lirks |
|Src addr. * | Src Port * | Dst Addr; ® | Dst Port ® | Protocol; *

l|10tal graph traffic: 28.63GE || Src Addr: 197.216.34 234/31 | Src Port: (1024 - 65535) | Dst Addr: * | Dst Port: * | Protocaol: 17 {udp) || Mode trafiic: 3.24GB

Figure 3: The bidimensional Hierarchical heavy hitter analyses on the application hierarchy and source
IP address hierarchy shows more details than the two unidimensional analyses. Note how this shows that
197.216.34.234/31 sends mostly UDP traffic from high ports and that 192.0.0.0/4 sends no TCP traffic from
low ports other than port 80 (all IP addresses are anonymized).

packet header fields at the same time. The advan- reports and yet they can convey much of the infor-
tage of these bidimensional reports is that they can mation present in a multidimensional report.
be computed much faster than the multidimensional

GUI

| |
v

Analysis
Engine

Console

v

Database

Figure 4: Netpy program structure.

3 Structure of Netpy

Netpy has four main parts: the database, the anal-
ysis engine, the console and the GUI. The role of
the database is to store preprocessed NetFlow records
and deliver the records selected for the current anal-
ysis to the engine. The analysis engine runs the hi-
erarchical heavy hitter algorithm, and all other anal-
ysis algorithms supported by Netpy. The console is
a text based interface to the analysis engine and the
only interface that allows the network administrator
to update the database. The GUI is an interface that
visualizes the traffic analysis results and helps the
user navigate the traffic data.

3.1 The database

The Netpy database is an intermediary representa-
tion of the NetFlow flow records. The aim of the
database is to preprocess the flow records in a way
that ensures that when the user asks for an analysis,
one has to read from disk the minimum amount of
data needed to compute the result. Quick analyses
are important for interactive exploration of the traffic
mix. The entire database manipulation code is writ-
ten in C and it links against the flow-tools library.

| Field name | Match |

prefix match
exact match
exact match
prefix match
prefix match
prefix match
exact match
exact match

Exporter address
Engine type
Engine 1D
Source address
Destination address
Next hop addr.
Input interface
Output interface

Table 1: In the links.conf configuration file the user
can define any number of links. The file has a list
of rules with the NetFlow fields in this table. Each
flow record is mapped to the link associated with the
first rule it matches. For all fields, a **’ in the rule
matches all possible values.

3.1.1 Database structure

The Netpy database is actually a hierarchy of files
with simplified flow records. This format has the fol-
lowing four main advantages over just storing Net-
Flow records directly: data reduction and better con-
trol over disk usage through adaptive sampling when
there are too many flow records; storing flow records
for different links in different files; using separate files
for time bins that make it easier to only read in the
records of flows active during the selected time inter-
val; more compact flow records with fewer fields.

Netpy groups flow records into “links” based on
the links.conf configuration file that uses the fields
from Table 1 to select the link a flow record belongs
to. This allows the network administrator to sepa-
rate traffic carried on various links of a router that is
nevertheless reported together. The flow records cor-
responding to different links are then stored in sepa-
rate directories. Thus when the user runs an analysis
on only one of the links, we don’t have to go through
all flow records, but only read those mapping to that
link.

The links.conf file also specifies a cap for each link
on how much hard disk space an hour’s worth of
traffic can take. When the number of flow records
exceeds the allotted space, Netpy applies sampling

using a rate that ensures that the disk usage stays
within budget. The smaller the disk usage allowed,
the more aggressive the sampling has to be and the
less accurate the results of the analyses will be. See
Section 4 for results on the amount of error intro-
duced by sampling.

Each directory corresponding to a link contains in-
dividual files with flow records, each representing a
5 minute time bin. For the current version of Netpy,
this does limit the time intervals. The user can only
request analyses on multiples of 5 minutes, but once
the user specifies the interval, we can read in the right
flow records by just reading the files representing the
5 minute bins included in the interval. Some of the
original NetFlow flow records can span two or more
bins. We handle these by splitting them and storing
the resulting records in their respective bins. This
splitting of records results in an increase of only 2%
in the number of records stored in the database which
is a price worth paying.

The flow records in the database contain only the
fields used in the analyses: source and destination
IP address, protocol, source and destination port and
byte and packet count. We need not store timestamps
because the file a flow record is in identifies which 5
minute time bin it belongs to. We also discard most of
he fields from Table 1 because the useful information
they hold has already been incorporated in the choice
of the link the flow record is mapped to. This way
the size of a flow record is reduced from 60 bytes to
21.

3.1.2 Reading from the database

The analysis engine specifies what data to select for
the analysis. This specification has four parts: the
list of links to include, the time interval, a filter, and
whether the analysis counts bytes, or packets. The
first two parts of the specification determine which
database files are read. As the files are read in, all
records are compared against the filter and the ones
not matching any rule are ignored. The records at
this point represent the traffic the analysis will be run
on, but the database performs two more operations
to help the analysis engine: it samples and sorts the
data.

Analyses that cover a large time interval and don’t
specify very selective filters can read millions of flow
records from the database. Given that the analy-
sis engine implements complex algorithms in python,
it runs slow on this many records. Before pass-
ing the results to the analysis engine, we apply the
same adaptive sampling algorithms used when writ-
ing the database to ensure that the number of flow
records passed to the analysis engine is not very large
(no more than 100,000 in the current version). The
database also sorts the records by the field used in
the analysis.

3.2 The analysis engine

The current version of Netpy has an analysis engine
implemented entirely in python'. It runs the hier-
archical heavy hitter algorithms and all other algo-
rithms doing the analysis of the traffic. Analyses
can complete in under five seconds or take as long
as a minute. Running a destination address hierar-
chy analysis for an hour’s worth of traffic takes 5.3s
to complete. Running a application hierarchy analy-
sis on the same time interval takes 2.7s. On a 24 hour
time period the analysis takes 34.7s and 27.0s, for ad-
dress and application analysis, respectively. We plan
to reimplement most analysis algorithms in C and we
expect a speedup by at least a factor of 100. It hap-
pens quite often that the user asks for the same anal-
ysis again, for example by pushing the “back” but-
ton in the interface. To avoid accessing the database
and doing the computations again, the analysis en-
gine keeps a cache of analysis results and it reads the
results of old analyses out of this cache. The size of
the cache is modest because the results of the analy-
ses are typically quite small. The entries in the cache
are gzipped binary dumps of the analysis data struc-
tures, the average files size is 1K B.

The database and the analysis engine are normally
part of the same process as the GUI or the console.
It is also possible to run the GUI remotely and in
this case the analysis engine runs as a daemon on the
machine with the database.

INetpy’s name comes from the fact that it does network
traffic analysis in python.

3.3 The console and the graphical
user interface

The console and the graphical user interface, both im-
plemented in python, are the two interfaces to Netpy.
The console supports a simple language of commands
for updating the database and performing analyses.
It is the only interface that allows the user to add
new NetFlow data to the database and delete old
flow records. The console can accept commands in-
teractively or as a script. The GUI, built using the
wxPython user interface toolkit, visualizes the traffic
analysis results and helps the user navigate the traf-
fic data. Drill-down through clicks on graphical ele-
ments representing IP address prefixes or port ranges
is integrated with filters. The “back” and “forward”
buttons further facilitate the exploration of the traffic
mix.

4 Sampling algorithms used by
Netpy

There are two measures of traffic that Netpy analyses
can choose to compute: the number of bytes, and the
number of packets within various categories of traffic
that make up the traffic mix. The aim of the sampling
algorithms is to take a large number of flow records
and reduce it to a smaller sample that is an unbi-
ased, low error representation of the original traffic.
By sampling we fundamentally loose information, so
it is unavoidable that there will be errors when we
estimate the traffic of some categories of traffic, and
categories with little traffic are especially vulnerable.

Our aim is to pick a sampling function that en-
sures that the sampling error is small for the large
categories of traffic. Let’s focus on byte counts first.
A simple solution is to sample each flow record with
probability p, and for all sampled flow records to mul-
tiply their byte counts by 1/p to compensate for the
flow records that were not selected in the sample. For
example if p = 1/5 we would multiply by 5 the byte
counts of all the sampled records. This method en-
sures that the number of flow records is reduced by
approximately a factor of p. The errors introduced by
this method are not very high if the sizes of the flows

are close, but if there are a few very large flows the
errors can be significant. Say the traffic mix consists
of 1,000 flows of 10K B each and one flow of 10M B,
and thus the actual total traffic is 20M B. The sam-
ple will contain around 200 of the small flows, each
counted with 50K B of traffic so their contribution
will be estimated correctly at around 10M B, but the
situation is different with the large flow: if it doesn’t
get sampled (and this has a probability of 80%), we
don’t count it at all, if it gets sampled, we count it as
50M B. Thus we either underestimate the total traf-
fic by a factor of (10+0)/20 = 0.5, or we overestimate
it by a factor of (10 4 50)/20 = 3.

The solution to this problem is to use size depen-
dent sampling, also known as smart sampling which
was proposed by Duffield et al.[4]. This methods
picks the sampling probability in a way that favors
the large flows. More exactly the algorithm picks a
threshold z, and the flows with size s > z are kept in
the sample while the ones with s < z are kept with
probability ps = s/z. If one of these small flows is
sampled, its byte count is multiplied by 1/ps; = z/s
which gives us a byte count of s-z/s = z.

Smart sampling has the property that if the orig-
inal set of flow records has a total traffic of T, the
expected number of flow records after sampling is at
most T'/z, irrespective of how many flow records the
original set has, and how their sizes are distributed.
It also has the property that if the total traffic of
a category is C the standard deviation (average er-
ror) of the estimate of the traffic of the category after
sampling is at most v/Cz, but it can be smaller de-
pending on the distribution of the sizes of the flows
that are part of the category. For example if the total
traffic is T = 100,000M B, and we use a threshold of
z = 1M B, the number of flow records in the sample is
expected to be at most 100, 000 (if the original traffic
mix has many flows significantly larger than 1M B,
the number of flow records in the sample will be sig-
nificantly below 100, 000). If we want to estimate the
total traffic T based on the sample, the standard de-
viation of the result will be at most Tz = 316 M B
and the the probability that we overestimate or un-
derestimate the total traffic of 100,000M B by more
than 3v/Tz = 948M B (an error of less than 1%) is
below 0.3%. If we look at a smaller category with a

traffic of C' = 10,000M B, the probability that we un-
derestimate or overestimate its traffic by more than
3v/Cz = 300M B (an error of 3%) is below 0.3%. The
larger z, the smaller the sample size, the larger the
errors. If we increase z by a factor of 100, we reduce
the sample size by a factor of 100, but we increase
the errors by a factor of 10.

When adding data to the database Netpy uses the
limit imposed on the disk usage of the database to
indirectly determine the threshold z. For example
if the limit for one hour’s data is set to 10M B in
links.conf, this translates to 853K B for each of the
12 files representing a 5 minute bin, and since the
size of a flow record is 21 bytes this translates to
41,600 records. Thus the value of z will be at most
one 41,600th of the total traffic for the 5 minutes.
This translates to a standard error for the estimate
of the total traffic during those five minutes of at most
\/1/41,600 = 0.49%. If we look at a smaller category
of say 1% of the traffic during those five minutes the
standard error of the estimate of the components traf-
fic is at most 4.9%. Of course, if one looks at longer
time periods (an hour, or a day) since there will be
more flow records, the relative errors in the estimates
will go down.

The sampled flow records used for estimating byte
counts can also be used for estimating packet counts.
Since the sampling is biased towards flows with many
bytes it will also catch flows with many packets.
Packet sizes vary between 40 bytes and 1500 bytes
so it will happen that a flow with fewer larger pack-
ets will be preferred over a flow with more but smaller
packets, but since the ratio between the largest and
the smallest packet is only 37.5 the types of patho-
logical errors that are possible with uniform record
sampling are not possible. Let s’ be the number of
packets in a flow record. If s > z, the flow record will
be sampled and s and s’ will remain unchanged. If
s < z and the flow record is sampled we multiply the
packet count by 1/ps and thus have a packet count of
s’ - z/s in the flow record we keep in the sample. The
errors in the estimates for the number of packets in
various categories of traffic are similar to the errors
in the byte counts.

10

5 Future work

While Netpy is the result of a lengthy design and de-
velopment process, we plan to improve it further. A
first thing to do is to add flow counting functional-
ity (partially implemented) because flow counts are
better at revealing many types of traffic a security-
conscious network administrator might want to know
about such as scans and floods with source addresses
spoofed at radom. We can group the improvements
we plan into improvements that will increase the
speed of the analyses, and improvements that will
increase their power.

The current performance bottleneck is the hierar-
chical heavy hitter algorithms in the analysis engine.
We plan to reimplement all hierarchical heavy hit-
ter algorithms in C and based on measurements of
AutoFocus’ C backend that runs similar algorithms
we expect a speedup by at least a factor of 100. The
database read can also become a bottleneck when
reading large amounts of data (e.g. running an anal-
ysis on an entire month). We plan to address this
performance bottleneck by conceptually keeping mul-
tiple versions of the database a very small one with
very aggressive sampling, a medium one and a large
one with mild sampling. An analysis on long time
intervals would use the coarsest database to reduce
the amount of disk reads, while one on short time
scales would use the most detailed one to get accu-
rate results. In practice we can integrate these mul-
tiple conceptual databases into a single file hierarchy.
More compact encodings of flow records or the use of
gzip to compress the flow record files will reduce disk
usage and increase performance since less data will
have to be read.

There are a few directions in which we plan to in-
crease the power of Netpy’s analyses. Due to the 5
minutes bins used currently the analysis cannot look
at a granularity finer than 5 minutes, even though
the original NetFlow data would have allowed it. By
adding small timestamps to the flow records we hope
to be able to support analysis at the granularity of
seconds. Another direction of improvement relies on
the observation that while currently all analyses work
on a portion of the traffic mix, it often makes sense
to compare the current traffic against historical traf-

fic to find the things that have changed. We plan
to extend Netpy with “comparison reports” working
on two data sets at a time. A third direction plans
to address limitations due to the fact that the anal-
ysis of IP addresses relies on the implicit hierarchy
in the IP address space. The problem with this ap-
proach is that because of how the IP address space
is allocated, prefixes are not always meaningful, they
can include portions of unrelated organizations. We
plan to extend Netpy with three more hierarchies for
IP addresses: one based on DNS reverse mappings
of IP addresses, one based on whois data, and one
based on BGP routing table information. Hierarchi-
cal heavy hitter algorithms can be easily adapted to
all of these hierarchies and they can provide valuable
new insights into the traffic mixes on our networks.

Our hope is that many of these improvements will
be implemented and mature enough for widespread
use by the end of the 2005.

6 Conclusions

IP traffic can be unpredictable and traffic analysis can
help with incident response as well as with long term
planning of network growth. This paper presents
Wisconsin Netpy, an application for analyzing and
visualizing NetFlow traffic data. While Netpy is cer-
tainly not the first application in this space, we be-
lieve that it incorporates important new ideas that
enable powerful exploratory analyses of the traffic
mix not supported by other tools currently used by
network administrators. The use of a small database
of sampled traffic enables prompt analyses that allow
the network administrators to refine their queries it-
eratively. The unidimensional and the novel bidimen-
sional hierarchical heavy hitter analyses can provide
a detailed view of the traffic. The visualization of
analysis results in the form of time series plots and
heatmaps makes it easier for a human observer to ab-
sorb information about the composition of the traffic
mix. We hope that Netpy will contribute to a better
understanding of how networks are used and through
this understanding to better managed networks that
offer more reliable service to millions of Internet users
worldwide.

11

7 Acknowledgments

We thank John Henry, Fred Moore, Jaeyoung Yoon,
Brian Hackbarth, Ryan Horrisberger, Pratap Ra-
mamurthy, Dan Wendorf, Steve Myers, and Dhruv
Bhoot who were part of the teams that worked on
Netpy as a class project in Fall 2004 and 2005. Early
conversations with Glenn Fink and Chris North at
Virginia Tech lead to the use of heatmaps as visu-
alization metaphor. We thank Mike Hunter for sug-
gestions for features in Netpy and Dave Plonka for
providing us with generous amounts of NetFlow data
to test on and valuable feedback.

Author Information

Cristian Estan graduated from the Technical Univer-
sity of Cluj-Napoca, Romania in 1995 with a degree
in Computer Science. His first real job, was as net-
work /system administrator, and it taught him that
configuring software or networking gear always takes
longer than expected. After moving to the U.S. in
1998 he worked at two startups and eventually man-
aged to get a Ph.D. at U.C. San Diego. Currently he
is an assistant professor at U. W. Madison and can
be reached at estan@cs.wisc.edu.

Garret Magin graduated from the University of
Wisconsin Madison in May of 2005 with degrees in
computer science, computer engineering, and math.
He recently started working in the embedded net-
working space on the Windows CE core networking
team. When he is not at work and its not raining he
is off riding his Honda Superhawk. He can be reached
at garret.magin@microsoft.com.

References

[1] Jeff R. Allen. Driving by the rear-view mir-
ror: Managing a network with cricket. In
USENIX 1st Conference on Network Adminis-
tration, April 1999.

[2] cflowd: Traffic flow analysis tool.
http://www.caida.org/ tools/measurement/
cflowd/.

Graham Cormode, Flip Korn, S. Muthukrish-
nan, and Divesh Srivastava. Finding hierarchical
heavy hitters in data streams. In VLDB, Decem-
ber 2003.

Nick Duffield, Carsten Lund, and Mikkel Tho-
rup. Charging from sampled network usage.
In SIGCOMM Internet Measurement Workshop,
November 2001.

Cristian Estan. Autofocus: A tool for automatic
traffic analysis. In 29th meeting of NANOG, Oc-
tober 2003.

Cristian Estan, Stefan Savage, and George
Varghese. Automatically inferring patterns of
resource consumption in network traffic. In Pro-
ceedings of the ACM SIGCOMM, August 2003.

Mark Fullmer and Steve Roming. The osu flow-
tools package and cisco netflow logs. In USENIX
LISA, December 2000.

Carrie Gates, Michael Collins, Michael Duggan,
Andrew Kompanek, and Mark Thomas. More
netflow tools for performance and security. In
USENIX LISA, November 2004.

Ryo Kaizaki. Aguri: An aggregation-based
traffic profiler. http://www.csl.sony.co.jp/
person/kjc/kjc/ software.html#aguri.

Kiran Lakkaraju, William Yurcik, and Adam J.
Lee. Nvisionip: Netflow visualizations of system
state for security situational awareness. In ACM
VizSEC/DMSEC04, October 2004.

Stephen Lau. The spinning cube of potential
doom. In Communications of the ACM, vol-
ume 47, June 2004.

Tobias Oetiker. Mrtg - the multi router traffic
grapher. In USENIX LISA, December 1998.

David Plonka. Flowscan: A network traffic flow
reporting and visualization tool. In USENIX
LISA, pages 305-317, December 2000.

12

