
New Directions in TraÆc Measurement and Accounting

Cristian Estan and George Varghese

February 8, 2002

Abstract

Accurate network traÆc measurement is required for accounting, bandwidth provisioning and detect-

ing DoS attacks. These applications see the traÆc as a collection of
ows they need to measure. As

link speeds and the number of
ows increase, keeping a counter for each
ow is too expensive (using

SRAM) or slow (using DRAM). The current state-of-the-art methods (Cisco's sampled NetFlow) which

log periodically sampled packets are slow, inaccurate and resource-intensive. Previous work showed that

at di�erent granularities a small number of \heavy hitters" accounts for a large share of traÆc. Our

paper introduces a paradigm shift by concentrating on measuring only large
ows | those above some

threshold such as 0.1% of the link capacity.

We propose two novel and scalable algorithms for identifying the large
ows: sample and hold and

multistage �lters, which take a constant number of memory references per packet and use a small amount

of memory. If M is the available memory, we show analytically that the errors of our new algorithms are

proportional to 1=M ; by contrast, the error of an algorithm based on classical sampling is proportional

to 1=
p
M , thus providing much less accuracy for the same amount of memory. We also describe further

optimizations such as early removal and conservative update that further improve the accuracy of our

algorithms, as measured on real traÆc traces, by an order of magnitude. Our schemes allow a new form

of accounting called threshold accounting in which only
ows above a threshold are charged by usage

while the rest are charged a �xed fee. Threshold accounting generalizes usage-based and duration based

pricing.

1 Introduction

If we're keeping per-
ow state, we have a scaling problem, and we'll be tracking millions of ants

to track a few elephants. | Van Jacobson, End-to-end Research meeting, June 2000.

Measuring and monitoring network traÆc is required to manage today's complex Internet backbones
[9, 5]. Such measurement information is essential for short-term monitoring (e.g., detecting hot spots and
denial-of-service attacks [15]), longer term traÆc engineering (e.g., rerouting traÆc and upgrading selected
links[9]), and accounting (e.g., to support usage based pricing[6]).

The standard approach advocated by the Real-Time Flow Measurement (RTFM) [4] Working Group of
the IETF is to instrument routers to add
ow meters at either all or selected input links. Today's routers
o�er tools such as NetFlow [17] that give
ow level information about traÆc.

The main problem with the
ow measurement approach is its lack of scalability. Measurements on MCI
traces as early as 1997 [21] showed over 250,000 concurrent
ows. More recent measurements in [8] using
a variety of traces show the number of
ows between end host pairs in a one hour period to be as high as

1

1.7 million (Fix-West) and 0.8 million (MCI). Even with aggregation, the number of
ows in 1 hour in the
Fix-West used by [8] was as large as 0.5 million.

It can be feasible for
ow measurement devices to keep up with the increases in the number of
ows (with
or without aggregation) only if they use the cheapest memories: DRAMs. Updating the counters in DRAM
is already impossible with today's line speeds and the gap between DRAM speeds (improving 7-9% per year)
and link speeds (improving 100% per year) is only going to increase. Cisco NetFlow [17], which keeps its

ow counters in DRAM solves this problem by sampling: only the sampled packets result in updates. But
this sampling has problems of its own (as we show later) since it a�ects the accuracy of the measurement
data.

Despite the large number of
ows, a common observation found in many measurement studies (e.g., [9, 8])
is that a small percentage of
ows accounts for a large percentage of the traÆc. [8] shows that the top 9%
of the
ows between AS pairs accounts for 90% of the traÆc in bytes between all AS pairs.

For many applications, knowledge of these large
ows is most important. [8] suggests that scalable
di�erentiated services could be achieved by providing selective treatment only to a small number of large

ows or aggregates. [9] underlines the importance of knowledge of \heavy hitters" for decisions about network
upgrades and peering. [6] proposes a usage sensitive billing scheme that relies on exact knowledge of the
traÆc of large
ows but only samples of the traÆc of small
ows.

We conclude that it is not feasible to accurately measure all
ows on high speed links, but many applica-
tions can bene�t from accurately measuring the few large
ows that dominate the traÆc mix. This can be
achieved by traÆc measurement devices that use small fast memories. However, how does the device know
which
ows to track? If one keeps state for all
ows to identify the heavy hitters, our purpose is defeated.

Thus a reasonable goal is to produce an algorithm that identi�es the heavy hitters using memory that

is only a small constant larger than what we need to track the heavy hitters. This is the central question
addressed by this paper. We present two algorithms that identify the large
ows using a small amount
of state. Further, we have low worst case bounds on the amount of per packet processing, making our
algorithms suitable for use in high speed routers.

1.1 Problem de�nition

A
ow is generically de�ned by an optional pattern (which de�nes which packets we will focus on) and an
identi�er (values for a set of speci�ed header �elds)1. Flow de�nitions vary with applications: for example
for a traÆc matrix one could use a wildcard pattern and identi�ers de�ned by distinct source and destination
network numbers. On the other hand, for identifying TCP denial of service attacks one could use a pattern
that focuses on TCP packets and use the destination IP address as a
ow identi�er.

Large
ows are de�ned as those that send more than a given threshold (say 1% of the link capacity) during
a given measurement interval (1 second, 1 minute or even 1 hour). Appendix C gives an alternative de�nition
of large
ows based on leaky bucket descriptors, and investigates how our algorithms can be adapted to this
de�nition.

An ideal algorithm reports, at the end of the measurement interval, the
ow IDs of all the
ows that
exceeded the threshold and their exact size. There are three ways in which the result can be wrong: it
might omit some of the large
ows, it might erroneously add some small
ows to the report or it might give
an inaccurate estimate of the traÆc of some large
ows. We call the large
ows that evade detection false

negatives, and the small
ows that are wrongly included false positives.

1We can also generalize by allowing the identi�er to be a function of the header �eld values (e.g., using pre�xes instead of
addresses based on a mapping using route tables)

2

Note that the minimum amount of memory required by an ideal algorithm is the inverse of the threshold;
for example, there can be at most 100
ows that use more than 1% of the link. We will measure the
performance of an algorithm by its memory (compared to that of the ideal algorithm), and the probability
of false negatives and false positives.

1.2 Motivation

Our algorithms for identifying large
ows can potentially be used to solve many problems. Applications we
envisage include:

� Scalable Threshold Accounting: The two poles of pricing for network traÆc are usage based (e.g.,
a price per byte for each
ow) or duration based (e.g., a �xed price based on duration of access or a
�xed price per month, regardless of how much the
ow transmits). While usage-based pricing [14, 20]
has been shown to improve overall utility by providing incentives for users to reduce traÆc, usage based
pricing in its most complete form is not scalable because we cannot track all
ows at high speeds. We
suggest, instead, a scheme where we measure all aggregates that are above z% of the link; such traÆc
is subject to usage based pricing, the remaining traÆc is subject to duration based pricing. By varying
z from 0 to 100, we can move from usage based pricing to duration based pricing. More importantly,
for reasonably small values of z (say 1%) threshold accounting can o�er a compromise between the
two extremes that is scalable and yet o�ers almost the same utility as usage based pricing. [1] o�ers
experimental evidence based on the INDEX experiment that such threshold pricing could be attractive
to both users and ISPs. 2.

� Real-time TraÆc Monitoring: Many ISPs monitor their backbones to look for hot-spots. Once
a hot-spot is detected one would want to identify the large aggregates that could be rerouted (using
MPLS tunnels or new routes through recon�gurable optical switches) to alleviate congestion. Also
ISPs might want to monitor traÆc to detect (distributed) denial of service attacks. Sudden increases
in the traÆc sent to certain destinations (the victims) can indicate an ongoing attack. [15] proposes a
mechanism that reacts to them as soon as they are detected. In both these settings, it may be suÆcient
to focus on
ows above a certain traÆc threshold.

� Scalable Queue Management: As we move further down the time scale, there are other applications
that would bene�t from identifying large
ows. Scheduling mechanisms aiming to ensure (weighted)
max-min fairness (or an approximation thereof), need to be able to detect the
ows sending above their
fair rate and penalize them. Keeping per
ow state only for these
ows does not a�ect the fairness
of the scheduling and can account for substantial savings. This problem is actually more complicated
because the de�nition of a non-conformant
ow can depend on round-trip delays as well. Several papers
address this issue including [10]. We do not address this application further in the paper, except to
note that our techniques may be useful as a component in solutions to this problem.

The rest of the paper is organized as follows. We describe related work in Section 2, describe our
main ideas in Section 3, and provide a theoretical analysis in Section 4. We theoretically compare our
algorithms with NetFlow in Section 5. After showing how to dimension our algorithms in Section 6, we
describe experimental evaluation on traces in Section 7. We end with implementation issues in Section 8
and conclusions in Section 9.

2Besides [1], a brief reference to a similar idea can be found in [20]. However, neither paper proposes a corresponding
mechanism to implement the idea at backbone speeds. [6] o�ers a mechanism to implement threshold accounting that is
suitable if the timescale for billing is long.

3

2 Related work

The primary tool used for
ow level measurement by IP backbone operators is Cisco NetFlow [17] (see
Appendix E for a more detailed discussion). NetFlow keeps per
ow state in a large, slow DRAM. Basic
NetFlow has two problems: i) Processing Overhead: updating the DRAM slows down the forwarding
rate; ii) Collection Overhead: the amount of data generated by NetFlow can overwhelm the collection
server or its network connection. [9] reports loss rates of up to 90% using basic NetFlow.

The processing overhead can be alleviated using sampling: per-
ow counters are incremented only for
sampled packets. We show later that sampling introduces considerable inaccuracy in the estimate; this is
not a problem for measurements over long periods (errors average out) and if applications do not need exact
data. However, we will show that sampling does not work well for applications that require true lower bounds
on customer traÆc (e.g., it may be infeasible to charge customers based on estimates that are larger than
actual usage) and for applications that require accurate data at small time scales (e.g., billing systems that
charge higher during congested periods).

The data collection overhead can be alleviated by having the router aggregate
ows (e.g., by source and
destination AS numbers) as directed by a manager. However, [8] shows that even the number of aggregated

ows is very large. For example, collecting packet headers for Code Red traÆc on a class A network [16]
produced 0.5GB per hour of compressed NetFlow data and aggregation reduced this data only by a factor
of 4. Techniques described in [6] can be used to reduce the collection overhead at the cost of further errors.
However, it can considerably simplify router processing to only keep track of heavy-hitters (as in our paper)
if that is what the application needs.

Many paper address the problem of mapping the traÆc of large IP networks. [9] deals with correlating
measurements taken at various points to �nd spatial traÆc distributions; the techniques in our paper can
be used to complement their methods. [5] describes a mechanism for identifying packet trajectories in the
backbone, not identifying the networks generating the traÆc.

Bloom �lters [2] and stochastic fair blue [10] use similar but di�erent techniques to our parallel multistage
�lters to compute di�erent metrics (set intersections and drop probabilities). Gibbons and Matias [11]
consider synopsis data structures that use small amounts of memory to approximately summarize large
databases. They de�ne counting samples that are similar to our sample and hold algorithm. However, we
compute a di�erent metric, need to take into account packet lengths and have to size memory in a di�erent
way. In [7], Fang et al look at eÆcient ways of exactly counting the number of appearances of popular items
in a database. Their multi-stage algorithm is similar to the multistage �lters we propose. However, they use
sampling as a front end before the �lter and use multiple passes. Thus their �nal algorithms and analyses
are very di�erent from ours.

3 Our solution

Because our algorithms use an amount of memory that is a constant factor larger than the (relatively small)
number of heavy-hitters, our algorithms can be implemented using on-chip or o�-chip SRAM to store
ow
state. We assume that at each packet arrival we can a�ord to look up a
ow ID in the SRAM, update the
counter(s)3 allocate a new entry if there is no entry associated with the current packet.

The biggest problem is to identify the large
ows. Two simple approaches to identifying large
ows
suggest themselves immediately. First, when a packet arrives with a
ow ID not in the
ow memory, we

3Furthermore, the improvement presented in Appendix E that can be applied to NetFlow and our algorithms increases by
an order of magnitude the amount of time we can spend on a packet

4

could make place for the new
ow by removing the
ow with the smallest measured traÆc (i.e., smallest
counter). It is easy, however, to provide counter examples where a large
ow is not measured because it
keeps being expelled from the
ow memory before its counter becomes large enough.

A second approach is to use classical random sampling. Random sampling (similar to sampled NetFlow
except using a smaller amount of SRAM) provably identi�es large
ows. We show, however, in Table 1 that
random sampling introduces a very high relative error in the measurement estimate that is proportional to
1=
p
M , where M is the amount of SRAM used by the device. Thus one needs very high amounts of memory

to reduce the inaccuracy to acceptable levels.
The two most important contributions of this paper are two new algorithms for identifying large
ows:

Sample and Hold (Section 3.1) and Multistage Filters (Section 3.2). Their performance is very similar, the
main advantage of sample and hold being implementation simplicity and for multistage �lters a slightly
higher accuracy. In contrast to random sampling, the relative errors of our two new algorithms scale with
1=M , whereM is the amount of SRAM. This allows our algorithms to provide much more accurate estimates
for the same amount of memory than random sampling. In Section 3.3 we present improvements to the two
algorithms that further improve their accuracy on actual traces (Section 7). We start by describing the main
ideas behind these schemes.

3.1 Sample and hold

Base Idea: The simplest way to identify large
ows is through sampling but with the following twist. As
with ordinary sampling, we sample each packet with a probability. If a packet is sampled and the
ow it
belongs to has no entry in the
ow memory, a new entry is created. However, after an entry is created for a

ow, unlike in sampled NetFlow, we update the entry for every subsequent packet belonging to the
ow as
shown in Figure 1.

Thus once a
ow is sampled a corresponding counter is held in a hash table in
ow memory till the end
of the measurement interval. While this clearly requires processing (looking up the
ow entry and updating
a counter) for every packet (unlike Sampled NetFlow), we will show that the reduced memory requirements
allow the
ow memory to be in SRAM instead of DRAM. This in turn allows the per-packet processing to
scale with line speeds.

Let p be the probability with which we sample a byte4. Choosing a high enough value for p guarantees
that
ows above the threshold are very likely to be detected. Increasing p too much can cause too many
false positives (small
ows �lling up the
ow memory). The advantage of this scheme is that it is easy to
implement and yet gives accurate measurements with very high probability.

Preliminary Analysis: The following example illustrates the method and the analysis more concretely.
Suppose we wish to measure the traÆc sent by all the
ows that take over 1% of the link capacity in a
measurement interval. There are at most 100 such
ows that take over 1%. Instead of making our
ow
memory have just 100 locations, we will allow oversampling by a factor of 100 and keep 10; 000 locations.
We wish to sample each byte with probability p such that the average number of samples is 10; 000. Thus if
C bytes can be transmitted in the measurement interval, p = 10; 000=C.

For the error analysis, consider a
ow F that takes 1% of the traÆc. Thus F sends more than C=100
bytes. Since we are randomly sampling each byte with probability 10; 000=C, the probability that F will
not be in the
ow memory at the end of the measurement interval (the probability of a false negative)
is (1 � 10000=C)C=100 which is very close to e�100. Notice that the factor of 100 in the exponent is the

4We actually sample packets, but the sampling probability depends on packet sizes. The sampling probability for a packet
of size s is ps = 1� (1� p)s. This can be looked up in a precomputed table or approximated by ps = p � s.

5

F3 2

F1 3

F1 F1 F2 F3 F2 F4 F1 F3 F1

Entry updated

Sampled packet (probability=1/3)

Entry created

Transmitted packets

Flow memory

Figure 1: The leftmost packet with
ow label F1 arrives �rst at the router. After an entry is created for a

ow (solid line) the counter is updated for all its packets (dotted lines)

All

packets
Every xth Update entry or

create a new one
Large flow

packet

Large reports to

management station

Sampled NetFlow

Sample and hold

memory

Yes

No

Update existing entry

Create

Small flow
p ~ size

Pass with
probability

management station

Small reports to

new entry

memory
All packets

Has entry?

Figure 2: Sampled NetFlow counts only sampled packets, sample and hold counts all after entry created

oversampling factor. Better still, the probability that
ow F is in the
ow memory after sending 5% of its
traÆc is, using a similar analysis, 1� e�5 which is greater than 99% probability. Thus with 99% probability
the reported traÆc for
ow F will be at most 5% below the actual amount sent by F .

The analysis can be generalized to arbitrary threshold values; the memory needs scale inversely with the
threshold percentage and directly with the oversampling factor. Notice also that the analysis assumes that
there is always space to place a sample
ow not already in the memory. Setting p = 10; 000=C ensures that
the average number of
ows sampled is no more than 10,000 but some intervals can sample more packets.
However, the distribution of the number of samples is binomial with a small standard deviation equal to
the square root of the mean. Thus, adding a few standard deviations to the memory estimate (e.g., a total
memory size of 10,300) makes it extremely unlikely that the
ow memory will ever over
ow.

When compared to Cisco's sampled NetFlow our idea has three signi�cant di�erences depicted in Figure 2.
Most importantly, we sample only to decide whether to add a
ow to the memory; from that point on, we
update the
ow memory with every byte the
ow sends. As shown in section 5 this will make our results
much more accurate. Second, our sampling technique avoids packet size biases unlike NetFlow which samples

6

Packet with
flow ID F

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

All Large?
Memory

Flow

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

h2(F)

h1(F)

h3(F)
Stage 3

Stage 2

Stage 1

Figure 3: In a parallel multistage �lter, a packet with a
ow ID F is hashed using hash function h1 into
a Stage 1 hash table, h2 into a Stage 2 hash table, etc. Each of the hash buckets contain a counter that
is incremented by the packet size. If all the hash bucket counters are above the threshold (shown bolded),
then
ow F is passed to the
ow memory for more careful observation.

every x packets. Third, our technique avoids the extra resource overhead (router processing, router memory,
network bandwidth) of sending the large amount of sampled information to a management station (assuming
only information about heavy-hitters will be used at the station).

3.2 Multistage �lters

Base Idea: The basic multistage �lter is shown in Figure 3. The building blocks are hash stages that
operate in parallel. First, consider how the �lter operates if it had only one stage. A stage is a table of
counters which is indexed by a hash function computed on a packet
ow ID; all counters in the table are
initialized to 0 at the start of a measurement interval. When a packet comes in, a hash on its
ow ID is
computed and the size of the packet is added to the corresponding counter. Since all packets belonging to
the same
ow hash to the same counter, if a
ow F sends more than threshold T , F 's counter will exceed the
threshold. If we add to the
ow memory all packets that hash to counters of T or more, we are guaranteed
to identify all the large
ows (no false negatives).

Unfortunately, since the number of counters we can a�ord is signi�cantly smaller than the number of

ows, many
ows will map to the same counter. This can cause false positives in two ways: �rst, small
ows
can map to counters that hold large
ows and get added to
ow memory; second, several small
ows can
hash to the same counter and add up to a number larger than the threshold.

To reduce this large number of false positives, we use multiple stages. Each stage (Figure 3) uses an
independent hash function. Only the packets that map to counters of T or more at all stages get added to
the
ow memory. For example, in Figure 3, if a packet with a
ow ID F arrives that hashes to counters 3,1,
and 7 respectively at the three stages, F will pass the �lter (counters that are over the threshold are shown
darkened). On the other hand, a
ow G that hashes to counters 7, 5, and 4 will not pass the �lter because
the second stage counter is not over the threshold. E�ectively, the multiple stages attenuate the probability
of false positives exponentially in the number of stages. This is shown by the following simple analysis.

Preliminary Analysis: Assume a 100 Mbytes/s link5, with 100,000
ows and we want to identify the

ows above 1% of the link during a one second measurement interval. Assume each stage has 1,000 buckets
and a threshold of 1 Mbyte. Let's see what the probability is for a
ow sending 100 Kbytes to pass the
�lter. For this
ow to pass one stage, the other
ows need to add up to 1 Mbyte - 100Kbytes = 900 Kbytes.

5To simplify computation, in our examples we assume that 1Mbyte=1,000,000 bytes and 1Kbyte=1,000 bytes.

7

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

h1(flowID)

First hashing stage

h2(flowID)

Second hashing stage

h3(flowID)

Third hashing stage

Packets
on the
link

Flow
memory

Figure 4: Serial multistage �lter: packets that hash to large buckets are passed to the next stage

There are at most 99,900/900=111 such buckets out of the 1,000 at each stage. Therefore, the probability
of passing one stage is at most 11.1%. With 4 independent stages, the probability that a certain
ow no
larger than 100 Kbytes passes all 4 stages is the product of the individual stage probabilities which is at most
1:52 � 10�4.

Based on this analysis, we can dimension the
ow memory so that it is large enough to accommodate
all
ows that pass the �lter. The expected number of
ows below 100Kbytes passing the �lter is at most
100; 000 � 15:2 � 10�4 < 16. There can be at most 999
ows above 100Kbytes, so the number of entries
we expect to accommodate all
ows is at most 1,015. Section 4 has a rigorous theorem that proves a
stronger bound (for this example 122 entries) that holds for any distribution of
ow sizes. Note the potential
scalability of the scheme. If the number of
ows increases to 1 million, we simply add a �fth hash stage to
get the same e�ect. Thus to handle 100,000
ows, requires roughly 4000 counters and a
ow memory of
approximately 100 memory locations, while to handle 1 million
ows requires roughly 5000 counters and the
same size of
ow memory. This is logarithmic scaling.

The number of memory accesses at packet arrival time performed by the �lter is exactly one read and
one write per stage. If the number of stages is small enough this is a�ordable even at high speeds since the
memory accesses can be performed in parallel, especially in a chip implementation.6 While multistage �lters
are more complex than sample-and-hold, they have a number of advantages. They reduce the probability of
false negatives to 0 and by decreasing the probability of false positives, they reduce the size of the required

ow memory.

3.2.1 The serial multistage �lter

In this section we brie
y present another variant of the multistage �lter called a serial multistage �lter
(Figure 4). Instead of using multiple stages in parallel, we can put them after each other, each stage seeing
only the packets that passed the previous stage (and all stages preceding it).

Let d be the number of stages (the depth of the serial �lter). We set a threshold of T=d for all the stages.
Thus for a
ow that sends T bytes, by the time the last packet is sent, the counters the
ow hashes to at
all d stages reach T=d, so the packet will pass to the
ow memory. As with parallel �lters, we have no false
negatives. As with parallel �lters, small
ows can pass the �lter only if they are lucky enough to hash to

6We describe details of a preliminary OC-192 chip implementation of multistage �lters in Section 8.

8

counters with signi�cant traÆc generated by other
ows.
The analytical evaluation of serial �lters is somewhat more complicated than for parallel �lters. Since, as

presented in Section 7, parallel �lters perform better than serial �lters on traces of actual traÆc, the main
focus in this paper will be on parallel �lters.

3.3 Improvements to the basic algorithms

The improvements to our algorithms presented in this section further improve the accuracy of the measure-
ments and reduce the memory requirements. Some of the improvements apply to both algorithms, some
apply only to one of them.

3.3.1 Preserving entries across measurement intervals

Measurements show that large
ows also tend to last long. Applying our algorithms directly would mean
erasing the
ow memory after each interval. This means that in each interval, the bytes of large
ows
sent before they are allocated an entry are not counted. By preserving the entries of large
ows across
measurement intervals and only reinitializing the counters, only the �rst measurement interval has this
inaccuracy, so all long lived large
ows are measured exactly.

The problem is that the algorithm cannot distinguish between a large
ow that was identi�ed late and
a small
ow that was identi�ed by error since both have small counter values. A conservative solution is
to preserve the entries of not only the
ows for which we count at least T bytes transferred in the current
interval, but all the
ows whose entries were added in the current interval (since their traÆc might be above
T if we also add their traÆc that went by before the
ow was identi�ed). While more complex rules for
which entries to keep can be devised, we found little advantage in most of them and therefore do not discuss
them here. The next section presents a rare exception.

3.3.2 Early removal of entries

While the simple rule for preserving entries described above works well for both of our algorithms, there
is a re�nement that can help further in the case of sample and hold which has a more false positives than
multistage �lters. If we keep for one more interval all of the
ows that got a new entry, many small
ows
will keep their entries for two intervals. We can improve the situation by selectively removing some of the

ow entries created in the current interval.

The new rule for preserving entries is as follows. We de�ne an early removal threshold R that is less then
the threshold T . At the end of the measurement interval, we keep all entries whose counter is at least T and
all entries that have been added during the current interval and whose counter is at least R.

3.3.3 Shielding the �lter from
ows with entries

Shielding strengthens multistage �lters. Figure 5 illustrates how it works. The traÆc belonging to
ows that
have an entry no longer passes through the �lter. It may not be immediately apparent how this reduces the
number of false positives. Consider large, long lived
ow that would go through the �lter each measurement
interval. Each measurement interval, the counters it hashes to exceed the threshold. If we shield the �lter
from this large
ow, many of these counters will not reach the threshold after the �rst interval. This reduces
the probability that a random small
ow passes the �lters by hashing to counters that are large because of
other
ows.

9

Yes

No

All packets

Has entry?

Update existing entry

new entry

Small flow
memory

Create

Multistage
filter

Figure 5: Shielding: we do not pass through the �lter the traÆc of the
ows with an entry

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

Incoming
packet

Counter 1 Counter 3Counter 2 Counter 1 Counter 3Counter 2

Figure 6: Conservative update: without conservative update (left) all counters are increased by the size of
the incoming packet, with conservative update (right) no counter is increased to more than the size of the
smallest counter plus the size of the packet

3.3.4 Conservative update of counters

We now describe an important but natural optimization for multistage �lters. Conservative update reduces
the number of false positives of multistage �lters by three subtle changes to the rules for updating counters.
In essence, we endeavour to increment counters as little as possible (thereby reducing false positives by
preventing small
ows from passing the �lter) while still avoiding false negatives (i.e., we need to ensure that
all
ows that reach the threshold still pass the �lter.)

The �rst change (Figure 6) applies only to parallel �lters and only for packets that don't pass the �lter.
As usual, an arriving
ow F is hashed to a counter at each stage. We update the smallest of the counters
normally (by adding the size of the packet). However, the other counters are set to the maximum of their

old value and the new value of the smallest counter (counters are never decremented). Since the amount of
traÆc sent by the current
ow is at most the new value of the smallest counter, this change cannot introduce
a false negative for the
ow the packet belongs to.

The second change is very simple and applies to both parallel and serial �lters. When a packet passes
the �lter and it obtains an entry in the
ow memory, no counters should be updated. This will leave the

10

counters below the threshold. Other
ows with smaller packets that hash to these counters will get less
\help" in passing the �lter.

The third change applies only to serial �lters. It regards the way counters are updated when the threshold
is exceeded in any stage but the last one. Let's say the value of the counter a packet hashes to at stage i is
T �x and the size of the packet is s > x > 0. Normally one would increment the counter at stage i to T and
add s� x to the counter from stage i+1. What we can do instead with the counter at stage i+1 is update
its value to the maximum of s� x and its old value (assuming s� x < T). Since the counter at stage i was
below T , we know that no prior packets belonging to the same
ow as the current one passed this stage and
contributed to the value of the counter at stage i+ 1. We could not apply this change if the threshold was
allowed to change during a measurement interval.

4 Analytical evaluation of our algorithms

In this section we analytically evaluate our algorithms. We focus on two important questions:

� How good are the results? We use two distinct measures of the quality of the results: how many of the
large
ows are identi�ed, and how accurately is their traÆc estimated?

� What are the resources required by the algorithm? The key resource measure is the size of
ow memory
needed. A second resource measure is the number of memory references required.

In Section 4.1 we analyze our sample and hold algorithm, and in Section 4.2 we analyze multistage �lters.
We �rst analyze the basic algorithms and then examine the e�ect of some of the improvements presented
in Section 3.3. In the next section (Section 5) we use the results of this section to analytically compare our
algorithms with sampled NetFlow (based on its analysis from appendix E).

Example: We will use the following running example to give numeric instances for the analysis. Assume
a 100 Mbyte/s link with 100; 000
ows. We want to identify and measure all
ows whose traÆc is more than
1% (1 Mbyte) of the link capacity during a one second measurement interval.

4.1 Sample and hold

We �rst de�ne some notation we use in this section.

� p the probability for sampling a byte;

� s the size of a
ow (in bytes);

� T the threshold for large
ows;

� C the capacity of the link { the number of bytes that can be sent during the entire measurement
interval;

� O the oversampling factor de�ned by p = O � 1=T ;

� c the number of bytes actually counted for a
ow.

11

4.1.1 The quality of results for sample and hold

The �rst measure of the quality of the results is the probability that a
ow at the threshold is not identi�ed.
As presented in Section 3.1 the probability that a
ow of size T is not identi�ed is (1 � p)T � e�O. An
oversampling factor of 20 results in a probability of missing
ows at the threshold of 2 � 10�9.

Example: For our running example, this would mean setting p to 1 in 50,000 bytes for an oversampling
of 20 and 1 in 200,000 for an oversampling of 5. With an average packet size of 500 bytes this is roughly 1
in 100 packets and 1 in 400 packets respectively.

The second measure of the quality of the results is the di�erence between the size of a
ow s and our
estimate. The number of bytes that go by before the �rst one gets sampled has a geometric probability
distribution7: it is x with a probability8 (1� p)xp.

Therefore E[s � c] = 1=p and SD[s � c] =
p
1� p=p. The best estimate for s is c + 1=p and its

standard deviation is
p
1� p=p. If we choose to use c as an estimate for s then the error will be larger,

but we never overestimate the size of the
ow. In this case, the deviation from the actual value of s isp
E[(s� c)2] =

p
2� p=p. Based on this value we can also compute the relative error of a
ow of size T

which is T
p
2� p=p =

p
2� p=O.

Example: For our example, with an oversampling factor O of 20, the relative error of the estimate of the
size of a
ow at the threshold is 7% and with an oversampling of O = 5 28%. Applying the correction would
bring down the errors to 5% and 20% respectively.

4.1.2 The memory requirements for sample and hold

The size of the
ow memory is determined by the number of
ows identi�ed. The actual number of sampled
packets is an upper bound on the number of entries needed in the
ow memory because new entries are
created only for sampled packets. Assuming that the link is constantly busy, by the linearity of expectation,
the expected number of sampled bytes is p � C = O � C=T .

Example: Using an oversampling of 20 requires 2,000 entries and an oversampling of 5 500 entries.
The number of sampled bytes can exceed this value. Since the number of sampled bytes has a binomial

distribution, we can use the normal curve to bound with high probability the number of bytes sampled
during the measurement interval. Therefore with probability 99% the actual number will be at most 2.33
standard deviations above the expected value; similarly, with probability 99.9% it will be at most 3.08
standard deviations above the expected value. The standard deviation of the number of sampled packets isp
Cp(1� p).
Example: For our example for an oversampling of 20 and an over
ow probability of 0.1% we need at

most 2,147 entries and with an oversampling of 5, 574 entries. If the acceptable over
ow probability is 1%,
the sizes are 2,116 and 558 respectively.

4.1.3 The e�ect of preserving entries

We preserve entries across measurement intervals to improve accuracy. The probability of missing a large

ow decreases because we cannot miss it if we keep its entry from the prior interval. Accuracy increases
because we know the exact size of the
ows whose entries we keep. To quantify these improvements we need
to know the ratio of long lived
ows among the large ones.

7We ignore for simplicity that the bytes before the �rst sampled byte that are in the same packet with it are also counted.
Therefore the actual algorithm will be more accurate than our model.

8Since we focus on large
ows, we ignore for simplicity the correction factor we need to apply to account for the case when
the
ow goes undetected (i.e. x is actually bound by the size of the
ow s, but we ignore this).

12

The cost of this improvement in accuracy is an increase in the size of the
ow memory. We need enough
memory to hold the samples from both measurement intervals9. Therefore the expected number of entries
is bounded by 2O � C=T .

To bound with high probability the number of entries we use the normal curve and the standard deviation
of the the number of sampled packets during the 2 intervals which is

p
2Cp(1� p).

Example: For our example with an oversampling of 20 and acceptable probability of over
ow equal to
0.1%, the
ow memory has to have at most 4,207 entries and with an oversampling of 5, 1,104 entries. If
the acceptable over
ow probability is 1%, the sizes are 4,164 and 1,082 respectively.

4.1.4 The e�ect of early removal

The e�ect of early removal on the proportion of false negatives depends on whether or not the entries removed
early are reported. Since we believe it is more realistic that implementations will not report these entries, we
will use this assumption in our analysis. Let R < T be the early removal threshold. A
ow at the threshold
is not reported unless one of its �rst T �R bytes is sampled. Therefore the probability of missing the
ow is
approximately e�O(T�R)=T . If we use an early removal threshold of R = 0:2�T , this increases the probability
of missing a large
ow from 2 � 10�9 to 1:1 � 10�7 with an oversampling of 20 and from 0.67% to 1.8% with
an oversampling of 5.

Early removal reduces the size of the memory required by limiting the number of entries that are preserved
from the previous measurement interval. Since there can be at most C=R
ows sending R bytes, the number
of entries that we keep is at most C=R which can be smaller than OC=T , the bound on the expected number
of sampled packets. The expected number of entries we need is C=R+OC=T .

To bound with high probability the number of entries we use the normal curve. If R � T=O the standard
deviation is given only by the randomness of the packets sampled in one interval and is

p
Cp(1� p).

Example: An oversampling of 20 and R = 0:2T with over
ow probability 0.1% requires a
ow memory
with 2,647 entries and with an oversampling of 5, 1,074 entries. If the acceptable over
ow probability is 1%,
the sizes are 2,616 and 1,058 respectively.

4.2 Multistage �lters

In this section, we analyze parallel multistage �lters. We only present the main results. The proofs and
supporting lemmas are in Appendix A. We �rst de�ne some new notation:

� b the number of buckets in a stage;

� d the depth of the �lter (the number of stages);

� n the number of active
ows;

� k the stage strength expresses the strength of the �ltering achieved by a stage of the �lter: the ratio
of the threshold and the average size of a counter. k = T b

C
, where C denotes the channel capacity as

before. Intuitively, this can also be seen as the memory over-provisioning ratio: by what factor do we
in
ate each stage memory beyond the required minimum of C=T ?

9We actually also keep the older entries that are above the threshold. Since we are performing a worst case analysis we
assume that there is no such
ow, because if there were, many of their packets would be sampled, decreasing the number of
entries required.

13

Example: To illustrate our results numerically, we will assume that we solve the measurement example
described in Section 4 with a 4 stage �lter, with 1000 buckets at each stage. The stage strength k is 10
because each stage memory has 10 times more buckets than the maximum number of
ows (i.e., 100) that
can cross the speci�ed threshold of 1%.

4.2.1 The quality of results for multistage �lters

As discussed in Section 3.2, multistage �lters have no false negatives. The error of the traÆc estimates for
large
ows is bounded by the threshold T since no
ow can send T bytes without being entered into the

ow memory. The stronger the �lter, the less likely it is that the
ow will be entered into the
ow memory
much before it reaches T . We �rst state an upper bound for the probability of a small
ow passing the �lter
described in Section 3.2.

Lemma 1 Assuming the hash functions used by di�erent stages are independent, the probability of a
ow

of size s < T (1� 1=k) passing a parallel multistage �lter is at most ps �
�
1

k
T

T�s

�d
.

The proof of this bound formalizes the preliminary analysis of multistage �lters from Section 3.2. Note
that the bound makes no assumption about the distribution of
ow sizes, and thus applies for all
ow
distributions. The bound is tight in the sense that it is almost exact for a distribution that has b(C �
s)=(T � s)c
ows of size (T � s) that send all their packets before the
ow of size s. However, for realistic
traÆc mixes (e.g., if
ow sizes follow a Zipf distribution), this is a very conservative bound.

Based on this lemma we obtain a lower bound for the expected error for a large
ow.

Theorem 2 The expected number of bytes of a large
ow that go undetected by a multistage �lter is bound

from below by

E[s� c] � T

�
1� d

k(d� 1)

�
� ymax (1)

where ymax is the maximum size of a packet.

This bound suggests that we can signi�cantly improve the accuracy of the estimates by adding a correction
factor to the bytes actually counted. The down side to adding a correction factor is that we can overestimate
some
ow sizes; this may be a problem for accounting applications.

4.2.2 The memory requirements for multistage �lters

We can dimension the
ow memory based on bounds on the number of
ows that pass the �lter. Based on
Lemma 1 we can compute a bound on the total number of
ows expected to pass the �lter.

Theorem 3 The expected number of
ows passing a parallel multistage �lter is bound by

E[npass] � max

b

k � 1
; n

�
n

kn� b

�d!
+ n

�
n

kn� b

�d
(2)

14

Example: Theorem 3 gives a bound of 121:2
ows. Using 3 stages would have resulted in a bound of
200:6 and using 5 would give 112:1. Note that when the �rst term dominates the max, there is not much
gain in adding more stages.

This is a bound on the expected number of
ows passing. In Appendix A we derive a high probability
bound on the number of
ows passing the �lter..

Example: The probability that more than 185
ows pass the �lter is at most 0.1% and the probability
that more than 211 pass is no more than 1� 10�6. Thus by increasing the
ow memory from the expected
size of 122 to 185 we can make over
ow of the
ow memory extremely improbable.

4.2.3 The e�ect of preserving entries and shielding

Preserving entries a�ects the accuracy of the results the same way as for sample and hold: long lived large

ows have their traÆc counted exactly after their �rst interval above the threshold. As with sample and
hold, preserving entries basically doubles all the bounds for memory usage.

Shielding has a strong e�ect on �lter performance, since it reduces the traÆc presented to the �lter.
Reducing the traÆc � times increases the stage strength to k � �, which can be substituted in Theorems 2
and 3.

5 Comparison of traÆc measurement methods

In this section we analytically compare the performance of three traÆc measurement algorithms: our two
new algorithms (sample and hold and multistage �lters) and Sampled NetFlow. First, in Section 5.1, we
compare the algorithms at the core of traÆc measurement devices. For the core comparison, we assume that
each of the algorithms is given the same amount of high speed memory and we compare their accuracy and
number of memory accesses. This allows a fundamental analytical comparison of the e�ectiveness of each
algorithm in identifying heavy-hitters.

However, in practice, it may be unfair to compare Sampled NetFlow with our algorithms using the same
amount of memory. This is because Sampled NetFlow can a�ord to use a large amount of DRAM (because
it does not process every packet) while our algorithms cannot (because they process every packet and hence
need to store state in SRAM). Thus we perform a second comparison in Section 5.2 of complete traÆc
measurement devices. In this second comparison, we allow Sampled NetFlow to use more memory than our
algorithms. The comaparisons are based on the algorithm analysis in Section 4 and an analysis of NetFlow
from Appendix E.

5.1 Comparison of the core algorithms

In this section we compare sample and hold, multistage �lters and ordinary sampling (used by NetFlow)
under the assumption that they are all constrained to using M memory entries. We focus on the accuracy of
the measurement of a
ow whose traÆc is zC (for
ows of 1% of the link capacity we would use z = 0:01).

The bound on the expected number of entries is the same for sample and hold and for sampling and is
pC. By making this equal to M we can solve for p. By substituting in the formulae we have for the accuracy
of the estimates and after eliminating some terms that become insigni�cant (as p decreases and as the link
capacity goes up) we obtain the results shown in Table 1.

For multistage �lters, we use a simpli�ed version of the result from Theorem 3: E[npass] � b=k+n=kd. We
increase the number of stages used by the multistage �lter logarithmically as the number of
ows increases

15

Measure Sample Multistage Sampling
and hold �lters

Relative error
p
2

Mz

1+10 r log10(n)

Mz
1p
Mz

Memory accesses 1 1 + log10(n)
1

x

Table 1: Comparison of the core algorithms: sample and hold provides most accurate results while pure
sampling has very few memory accesses

Measure Sample and hold Multistage �lters Sampled NetFlow

Exact measurements / longlived% longlived% 0

Relative error 1:41=O / 1=u 0:0088=
p
zt

Memory bound 2O=z 2=z + 1=zlog10(n) min(n,486000 t)

Memory accesses 1 1 +log10(n) 1=x

Table 2: Comparison of traÆc measurement devices

so that a single small
ow is expected to pass the �lter10 and the strength of the stages is 10. At this point
we estimate the memory usage to be M = b=k + 1 + rbd = C=T + 1 + r10C=T log10(n) where r depends
on the implementation and re
ects the relative cost of a counter and an entry in the
ow memory. From
here we obtain T which will be the error of our estimate of
ows of size zC and the result from Table 1 is
immediate.

The termMz that appears in all formulae in the �rst row of the table is exactly equal to the oversampling
we de�ned in the case of sample and hold. It expresses how many times we are willing to allocate over the
theoretical minimum memory to obtain better accuracy. We can see that the error of our algorithms decreases
inversely proportional to this term while the error of sampling is proportional to the inverse of its square
root.

The second line of Table 1 gives the number of memory accesses per packet that each algorithm performs.
Since sample and hold performs a packet lookup for every packet11, its per packet processing is 1. Multistage
�lters add to the one
ow memory lookup an extra one access per stage; the number of stages in turn increases
as the logarithm of the number of
ows. Finally, for ordinary sampling if one in x packets get sampled, then
the average per packet processing is 1=x.

Table 1 provides a fundamental comparison of our new algorithms with ordinary sampling as used in
Sampled NetFlow. The �rst line shows that the relative error of our algorithms scale with 1=M which is much
better than the 1=

p
M scaling of ordinary sampling. However, the second line shows that this improvement

comes at the cost of requiring at least one memory access per packet for our algorithms. While this allows
us to implement the new algorithms using SRAM, the smaller number of memory accesses (< 1) per packet
allows Sampled NetFlow to use DRAM. This is true as long as x is larger than the ratio of a DRAM memory
access to an SRAM memory access. However, even a DRAM implementation of Sampled NetFlow has some
problems which we turn to in our second comparison.

10Con�guring the �lter such that a small number of small
ows pass would have resulted in smaller memory and fewer memory
accesses (because we would need fewer stages), but it would have complicated the formulae.

11We equate a lookup in the
ow memory to a single memory access. This is true if we use a content associable memory.
Lookups without hardware support require a few more memory accesses to resolve hash collisions.

16

5.2 Comparison of traÆc measurement devices

Table 1 seems to imply that if we increase the DRAM memory size M to in�nity, we can make the relative
error of a Sampled NetFlow estimate arbitrarily small. Intuitively, this assumes that by increasing memory
one can increase the sampling rate so that x decreases to become arbitrarily close to 1. Clearly, if x = 1, the
results for Sampled NetFlow would, of course, have no error since every packet is logged. But we have just
seen that x must at least be as large as the ratio of DRAM speed to SRAM speed; thus Sampled NetFlow
will always have a minimum error corresponding to this value of x.

Another way to see the same e�ect is to realize that for a �xed value of x, there is a limit M 0 to the
amount of DRAM memory that can be accessed during a measurement interval. In the worst case, the
number of packets sampled by ordinary sampling is M 0 out of at most C=ymin packets, where C is the link
capacity and ymin is the minimum size for a packet. Thus x = C=(yminM

0) and so M 0 = C=(xymin). Thus
increasing M beyond M 0 does not help!

With this as the basic insight, we now compare the performance of our algorithms and NetFlow in
Table 2 without limiting the amount of memory made available to NetFlow. Table 2 takes into account the
underlying technologies (i.e., the use of DRAM versus SRAM) and one optimization (i.e., preserving entries)
for both our algorithms.

We consider the task of estimating the size of all the
ows above a fraction z of the link capacity over a
measurement interval of t seconds12. The four characteristics of the traÆc measurement algorithms presented
in the table are: the percentage of large
ows known to be measured exactly, the relative error of the estimate
of a large
ow, the upper bound on the memory size and the number of memory accesses per packet.

Note that the table does not contain the actual memory used but a bound. For example the number
of entries used by NetFlow is bounded by the number of active
ows and the number of DRAM memory
lookups that it can perform during a measurement interval (which doesn't change as the link capacity grows).
Our measurements in Section 7 show that for all three algorithms the actual memory usage is much smaller
than the bounds, especially for multistage �lters. Memory is measured in entries, not bytes13. Note that
the number of memory accesses required per packet does not necessarily translate to the time spent on the
packet because memory accesses can be pipelined or performed in parallel.

We make simplifying assumptions about technology evolution. As link speeds increase, so must the
electronics. Therefore we assume that SRAM speeds keep pace with link capacities. We also assume that
the speed of DRAM does not improve (based on its historically slow pace of progress compared to chip
speeds).

We assume the following con�gurations for the three algorithms. Our algorithms preserve entries. For
multistage �lters we introduce a new parameter expressing how many times larger a
ow of interest is than
the threshold of the �lter u = zC=T . Since the speed gap between the DRAM used by sampled NetFlow
and the link increases as link speeds increase, NetFlow has to decrease its sampling rate proportionally with
the increase in capacity14 to provide the smallest possible error. For the NetFlow error calculations we also
assume that the size of the packets of large
ows is 1500 bytes.

Besides the di�erences (Table 1) that stem from the core algorithms, we see new di�erences in Table 2.
The �rst big di�erence (Row 1 of Table 2) is that unlike NetFlow, our algorithms provide exact measures for

long-lived large
ows by preserving entries. More precisely, by preserving entries our algorithms will exactly

12In order to make the comparison possible we change somewhat the way NetFlow operates: we assume that it reports the
traÆc data for each
ow after each measurement interval, like our algorithms do.

13We assume that a
ow memory entry is equivalent to 10 of the counters used by the �lter because the
ow ID is typically
much larger than the counter.

14If the capacity of the link is x times OC-3, then one in x packets gets sampled. We assume based on [17] that NetFlow can
handle packets no smaller than 40 bytes at OC-3 speeds.

17

measure traÆc for all (or almost all in the case of sample and hold) of the large
ows that were large in
the previous interval. Given that our measurements show that most large
ows are long lived, this is a big
advantage.15

The second big di�erence (Row 2 of Table 2) is that we can make our algorithms arbitrarily accurate at
the cost of increases in the amount of memory used16 while sampled NetFlow can do so only by increasing
the measurement interval t.

The third row of Table 2 compares the memory used by the algorithms. The extra factor of 2 for sample
and hold and multistage �lters arises from preserving entries. Note that the number of entries used by
Sampled NetFlow is bounded by both the number n of active
ows and the number of memory accesses that
can be made in t seconds. Finally, the fourth row of Table 2 is identical to the second row of Table 1.

Table 2 demonstrates that our algorithms have two advantages over NetFlow: i) they provide exact values
for long-lived large
ows (row 1) and ii) they provide much better accuracy even for small measurement
intervals (row 2). Besides these advantages, our algorithms also have three more advantages not shown in
Table 2. These are iii) provable lower bounds on traÆc, iv) reduced resource consumption for collection,
and v) faster detection of new large
ows. We brie
y examine these dvantages.

iii) Provable Lower Bounds: A possible disadvantage of Sampled NetFlow is that the NetFlow
estimate is not an actual lower bound on the
ow size. Thus a customer may be charged for more than
the customer sends. While one can make the average overcharged amount arbitrarily low (using large
measurement intervals), there may be philosophical objections to overcharging. Our algorithms do not have
this problem.

iv) Reduced Resource Consumption: Clearly, while Sampled NetFlow can increase DRAM to im-
prove accuracy, the router has more entries at the end of the measurement interval. These records have
to be processed, potentially aggregated, and transmitted over the network to the management station. If
the router extracts the heavy hitters from the log, then router processing is large; if not, the bandwidth
consumed and processing at the management station is large. By using much smaller logs, our algorithm
avoids these resource (e.g., memory, transmission bandwidth, and router CPU cycles) bottlenecks.

v) Faster detection of long-lived
ows: In a security or DoS application, it may be useful to quickly
detect a large increase in traÆc to a server. Our algorithms can use small measurement intervals and
detect large
ows soon after they start. By contrast, Sampled NetFlow, especially when mediated through
a management station, can be much slower.

6 Dimensioning traÆc measurement devices

Before we describe measurements, we describe how to dimension our two algorithms. For applications
that face adversarial behavior (e.g., detecting DoS attacks), one should use the conservative bounds from
Sections 4.1 and 4.2 that hold for any ditribution of
ow sizes. When we can make some assumptions about
the distribution of
ow sizes, we can arrive to some tighter bounds as in Appendix B does for the case of a
Zipf distribution. Section 7 shows that the performance of our algorithms on actual traces exceeds as much
as tens of thousands of times our conservative analysis. Dimensioning according to the safe, conservative
bounds can be a waste resources for applications such as measurement for accounting purposes, where the

15Of course, one could get the same advantage by using an SRAM
ow memory that preserves large
ows across measurement
intervals in Sampled NetFlow as well. However, that would require the router to root through its DRAM log before the end of
the interval to �nd the large
ows, a large processing load. One can also argue that if one can a�ord an SRAM
ow memory,
it is quite easy to do Sample and Hold.

16Of course, technology and cost impose limitations on the amount of available SRAM but the current limits for on and
o�-chip SRAM are high enough to make this not be an issue.

18

ADAPTTHRESHOLD
usage = entriesused=flowmemsize

if (usage > target)
threshold = threshold � (usage=target)adjustup

else
if (threshold did not increase for 3 intervals)
threshold = threshold � (usage=target)adjustdown

endif
endif

Figure 7: The threshold adapts dynamically to achieve the target memory usage

ability to handle adversarial behavior is less important than the overall accuracy of the results. In this
section we look at more aggressive methods of con�guring the traÆc measurement devices that maximize
the accuracy of the results by making good use of the available memory.

The measurements from section 7 show that the actual performance depends strongly on the traÆc
mix. Since we usually don't have a priori knowledge of
ow distributions, we prefer to dynamically adapt
algorithm parameters to actual traÆc. The main idea we use is to keep decreasing the threshold below the

conservative estimate until the
ow memory is nearly full (totally �lling memory can result in new large

ows not being tracked). We only discuss here the algorithm used for adapting the threshold.Appendix D
gives the heuristics we use to set the con�guration parameters for the multistage �lters that are hard to
adapt dynamically to the traÆc (i.e. the number of counters and stages).

Figure 7 presents our threshold adaptation algorithm. There are two important constants that adapt the
threshold to the traÆc: the \target usage" (variable target in Figure 7) that tells it how full the memory can
be without risking to �ll it up completely and the \adjustment ratio" (variables adjustup and adjustdown in
Figure 7) that the algorithm uses to decide how much to adjust the threshold to achieve a desired increase
or decrease in
ow memory usage. We rely on the measurements from Appendix I to determine the actual
values for these constants.

The usage of the
ow memory oscillates even when the con�guration is �xed. This happens due to
changes in the traÆc mix or simply due to the randomness of our algorithms. The measurements from
Appendix I determine how volatile the number of entries used is and based on them, set the target usage to
90% for both algorithms.

One can argue that intuitively the number of entries should be proportional to the inverse of the threshold
since the number of
ows that can exceed a given threshold is inversely proportional to the value of the
threshold. This corresponds to having an adjustment ratio of 1. In practice it might happen that increasing
the threshold does not reduce the number of used entries by very much because fewer
ows than expected
are between the two values of the threshold. On the other hand decreasing the threshold can cause a collapse
of the multistage �lter increasing very much the number of
ows that pass. To give robustness to the traÆc
measurement device we use two di�erent adjustment ratios: when increasing the threshold we use a large
one (we conservatively assume that we need to increase the threshold by adjustup% to decreases memory
usage by only 1%) and when decreasing we use a small one (we conservatively assume that decreasing the
threshold by only adjustdown% we increase the memory usage by 1%). We use measurements to bound from
above and below the e�ect of the changes of threshold on the number of memory entries used and derive

19

Trace Number of
ows (min/avg/max) Mbytes/interval
5-tuple destination IP AS pair (min/avg/max { link)

MAG+ 93,437/98,424/105,814 40,796/42,915/45,299 7,177/7,401/7,775 201.0/256.0/284.2 { 1483

MAG 99,264/100,105/101,038 43,172/43,575/43,987 7,353/7,408/7,477 255.8/264.7/273.5 { 1483

IND 13,746/14,349/14,936 8,723/8,933/9,081 - 91.37/96.04/99.70 { 370.8

COS 5,157/5,497/5,784 1,124/1,146/1,169 - 14.28/16.63/18.70 { 92.70

Table 3: The traces used for our measurements

the adjustment ratios. Based on the measurements from Appendix I, we use a value of 3 for adjustup, 1 for
adjustdown in the case of sample and hold and 0.5 for multistage �lters.

To give further stability to the traÆc measurement device, the entriesused variable does not contain
the number of entries used over the last measurement interval, but an average of the last 3 intervals. If the
threshold decreased within the last 3 measurement intervals we conservatively consider only the memory
usage values recorded with the low threshold. Since changes of the threshold take 2 measurement intervals
to fully show their e�ects on the memory usage we consider that using a window of 3 measurement intervals
to average over is a good tradeo� between responsiveness to changes in the traÆc mix and fast convergence
to a good value for the threshold.

7 Measurements

Performance cannot be evaluated solely through the use of Zen Meditation. (paraphrased from
Je� Mogul)

In Section 4 and Section 5 we used theoretical analysis to understand the e�ectiveness of our algorithms.
In this section, we turn to experimental analysis to show that our algorithms behave much better on real
traces than the (reasonably good) bounds provided by the earlier theoretical analysis and compare them
with Sampled NetFlow.

We start by describing the traces we use and some of the con�guration details common to all our
experiments. In Section 7.1.1 we compare the measured performance of the sample and hold algorithm with
the predictions of the analytical evaluation, and also evaluate how much the various improvements to the
basic algorithm help. In Section 7.1.2 we evaluate the multistage �lter and the improvements that apply
to it. We conclude with Section 7.2 where we compare complete traÆc measurement devices using our two
algorithms with Cisco's Sampled NetFlow.

We use 3 unidirectional traces of Internet traÆc: a 4515 second \clear" one (MAG+) from CAIDA
(captured in August 2001 on an OC-48 backbone link between two ISPs) and two 90 second anonymized
traces from the MOAT project of NLANR (captured in September 2001 at the access points to the Internet
of two large universities on an OC-12 (IND) and an OC-3 (COS)). For some of the experiments use only the
�rst 90 seconds of the \clear" trace MAG+ and we refer to them as trace MAG.

In our experiments we use 3 di�erent de�nitions for
ows. The �rst de�nition is at the granularity of TCP
connections:
ows are de�ned by the 5-tuple of source and destination IP address and port and the protocol
number. This de�nition is close to that of Cisco NetFlow. The second de�nition uses the destination IP
address as a
ow identi�er. This is a de�nition one could use to identify at a router ongoing (distributed)
denial of service attacks. The third de�nition uses the source and destination autonomous system as the

20

0 5 10 15 20 25 30

Percentage of flows

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 tr

af
fic

MAG 5-tuples
MAG destination IP
MAG AS pairs
IND
COS

Figure 8: Cumulative distribution of
ow sizes for various traces and various
ow de�nitions

ow identi�er. This is close to what one would use to determine traÆc patterns in the network. We cannot
use this de�nition with the anonymized traces (IND and COS) because we cannot perform route lookups on
them.

Table 3 gives a summary description of the traces we used. The number of active
ows is given for
all applicable
ow de�nitions. The reported values are the smallest, largest and average value over the
measurement intervals of the respective traces. The number of megabytes per interval is also given as the
smallest, average and largest value. Our traces use only between 13% and 27% of their respective link
capacities.

The best value for the size of the measurement interval depends both on the application and the traÆc
mix. We chose to use a measurement interval of 5 seconds in all our experiments. Appendix F gives the
measurements we base this decision on. Here we only note that in all cases 99% or more of the packets
(weighted by packet size) arrive within 5 seconds of the previous packet belonging to the same
ow.

Since our algorithms are based on the assumption that a few heavy
ows dominate the traÆc mix, we
�nd it useful to see to what extent this is true for our traces. Figure 8 presents the cumulative distributions
of
ow sizes for the traces MAG, IND and COS for
ows de�ned by 5-tuples. For the trace MAG we also
plot the distribution for the case where
ows are de�ned based on destination IP address, and for the case
where
ows are de�ned based on the source and destination ASes. As we can see from the �gure, the top
10% of the
ows represent between 85.1% and 93.5% of the total traÆc validating our original assumption
that a few
ows dominate.

7.1 Comparing Theory and Practice

We present detailed measurements on the performance on sample and hold in and its optimizations in
Appendix G. The detailed results for multistage �lters are in Appendix H. Here we summarize our most
important results that compare the theoretical bounds with the results on actual traces, and quantify the
bene�ts of various optimizations.

21

Algorithm Maximum memory usage / Average error
MAG 5-tuple MAG destination IP MAG AS pair IND 5-tuple COS 5-tuple

General bound 16,385 / 25% 16,385 / 25% 16,385 / 25% 16,385 / 25% 16,385 / 25%

Zipf bound 8,148 / 25% 7,441 / 25% 5,489 / 25% 6,303 / 25% 5,081 / 25%

Sample and hold 2,303 / 24.33% 1,964 / 24.07% 714 / 24.40% 1,313 / 23.83% 710 / 22.17%

+ preserve entries 3,832 / 4.67% 3,213 / 3.28% 1,038 / 1.32% 1,894 / 3.04% 1,017 / 6.61%

+ early removal 2,659 / 3.89% 2,294 / 3.16% 803 / 1.18% 1,525 / 2.92% 859 / 5.46%

Table 4: Summary of sample and hold measurements for a threshold of 0.025% and an oversampling of 4

7.1.1 Summary of �ndings about sample and hold

Table 4 summarizes our results for a single con�guration: a threshold of 0.025% of the link with an over-
sampling of 4. We ran 50 experiments (with di�erent random hash functions) on each of the reported traces
with the respective
ow de�nitions. The table gives the maximum memory usage over the 900 measurement
intervals and the ratio between average error for large
ows and the threshold.

The �rst row presents the theoretical bounds that hold without making any assumption about the distri-
bution of
ow sizes and the number of
ows. These are not the bounds on the expected number of entries
used (which would be 16,000 in this case), but high probability bounds. The second row presents theoretical
bounds assuming that we know the number of
ows and know that their sizes have a Zipf distribution with
a parameter of � = 1. Note that the relative errors predicted by theory may appear large (25%) but these
are computed for a very low threshold of 0:025% and only apply to
ows exactly at the threshold.17

The third row shows the actual values we measured for the basic sample and hold algorithm. The actual
memory usage is much below the bounds. The �rst reason is that the links are lightly loaded and the second
reason (partially captured by the analysis that assumes a Zipf distribution of
ows sizes) is that large
ows
have many of their packets sampled. The average error is very close to its expected value. The fourth row
presents the e�ects of preserving entries. While this increases memory usage (especially where large
ows
do not have a big share of the traÆc) it signi�cantly reduces the error for the estimates of the large
ows,
because there is no error for large
ows identi�ed in previous intervals. This improvement is most impressive
when we have many long lived
ows.

The last row of the table reports the results when preserving entries as well as using an early removal
threshold of 15% of the threshold (our measurements indicate that this is a good value). We compensated for
the increase in the probability of false negatives early removal causes by increasing the oversampling to 4.7.
The average error decreases slightly. The memory usage decreases, especially in the cases where preserving
entries caused it to increase most.

We performed measurements on many more con�gurations, but for brevity we report them only in
Appendix G. The results are in general similar to the ones from Table 4, so we only emphasize some
noteworthy di�erences. First, when the expected error approaches the size of a packet, we see signi�cant
decreases in the average error. Our analysis assumes that we sample at the byte level. In practice, if a
certain packet gets sampled all its bytes are counted, including the ones before the byte that was sampled.

Second, preserving entries reduces the average error by 70% - 95% and increases memory usage by 40%
- 70%. These �gures do not vary much as we change the threshold or the oversampling. Third, an early

17We de�ned the relative error by dividing the average error by the size of the size of the threshold. We could have de�ned it
by taking the average of the ratio of a
ow's error to its size but this makes it diÆcult to compare results from di�erent traces.

22

1 2 3 4

Depth of filter

0.001

0.01

0.1

1

10

100

P
er

ce
nt

ag
e

of
 fa

ls
e

po
si

tiv
es

 (
lo

g
sc

al
e)

General bound
Zipf bound
Serial filter
Parallel filter
Conservative update

Figure 9: Filter performance for a stage strength of k=3

removal threshold of 15% reduces the memory usage by 20% - 30%. The size of the improvement depends
on the trace and
ow de�nition and it increases slightly with the oversampling.

7.1.2 Summary of �ndings about multistage �lters

Figure 9 summarizes our �ndings about con�gurations with a stage strength of k = 3 for our most challenging
trace: MAG with
ows de�ned at the granularity of TCP connections. It represents the percentage of small

ows (log scale) that passed the �lter for depths from 1 to 4 stages. We used a threshold of a 4096th of the
maximum traÆc. The �rst (i.e., topmost and solid) line represents the bound of Theorem 3. The second line
below represents the improvement in the theoretical bound when we assume a Zipf distribution of
ow sizes.
Unlike in the case of sample and hold we used the maximum traÆc, not the link capacity for computing the
theoretical bounds.

The third line represents the measured average percentage of false positives of a serial �lter, while the
fourth line represents a parallel �lter. We can see that both are at least 10 times better than the stronger of
the theoretical bounds. As the number of stages goes up, the parallel �lter gets better than the serial �lter by
up to a factor of 4. The last line represents a parallel �lter with conservative update which gets progressively
better than the parallel �lter by up to a factor of 20 as the number of stages increases. We can see that all
lines are roughly straight; this indicates that the percentage of false positives decreases exponentially with
the number of stages.

Measurements on other traces show similar results. The di�erence between the bounds and measured
performance is even larger for the traces where the largest
ows are responsible for a large share of the traÆc.
Preserving entries reduces the average error in the estimates by 70% to 85%. Its e�ect depends on the traÆc
mix. Preserving entries increases the number of
ow memory entries used by up to 30%. By e�ectively
increasing stage strength k, shielding considerably strengthens weak �lters. This can lead to reducing the
number of
ow memory entries by as much as 70%.

23

7.2 Evaluation of complete traÆc measurement devices

In this section we present our �nal comparison between sample and hold, multistage �lters and sampled
NetFlow. We perform the evaluation on our long OC-48 trace, MAG+. We assume that our devices can use
1 Mbit of memory (4096 entries18) which is well within the possibilities of today's chips. Sampled NetFlow
is given unlimited memory and uses a sampling of 1 in 16 packets. We run each algorithms 16 times on the
trace with di�erent sampling or hashing functions.

Both our algorithms use the adaptive threshold approach. To avoid the e�ect of initial miscon�guration,
we ignore the �rst 10 intervals to give the devices time to reach a relatively stable value for the threshold.
We impose a limit of 4 stages for the multistage �lters. Based on heuristics presented in Appendix D, we use
3114 counters19 for each stage and 2539 entries of
ow memory when using a
ow de�nition at the granularity
of TCP connections, 2646 counters and 2773 entries when using the destination IP as
ow identi�er and
1502 counters and 3345 entries when using the source and destination AS. Multistage �lters use shielding
and conservative update. Sample and hold uses an oversampling of 4 and an early removal threshold of 15%.

Our purpose is to see how accurately the algorithms measure the largest
ows, but there is no implicit
de�nition of what large
ows are. We look separately at how well the devices perform for three reference
groups: very large
ows (above one thousandth of the link capacity), large
ows (between one thousandth and
a tenth of a thousandth) and medium
ows (between a tenth of a thousandth a hundredth of a thousandth
{ 15552 bytes).

For each of these groups we look at two measures of accuracy that we average over all runs and mea-
surement intervals: the percentage of
ows not identi�ed and the relative average error. We compute the
relative average error by dividing the sum of the moduli of all errors by the sum of the sizes of all
ows.
We use the modulus so that positive and negative errors don't cancel out for NetFlow. For the unidenti�ed

ows, we consider that the error is equal to their total traÆc. Tables 5 to 7 present the results for the 3
di�erent
ow de�nitions.

When using the source and destination AS as
ow identi�er, the situation is di�erent from the other two
cases because the average number of active
ows (7,401) is not much larger than the number of memory
locations that we can accommodate in our SRAM (4,096), so we will discuss this case separately. In the �rst
two cases, we can see that both our algorithms are much more accurate than sampled NetFlow for large and
very large
ows. For medium
ows the average error is roughly the same, but our algorithms miss more of
them than sampled NetFlow.

We believe these results (and similar results not presented here for lack of space) do con�rm that our
algorithms are better than sampled NetFlow at measuring the largest of the
ows. The results for multistage
�lters are always slightly better than those for sample and hold despite the fact that we use fewer memory
locations because we have to sacri�ce part of the memory for the counters of the stages. We do not consider
this to be a de�nitive proof of the superiority of multistage �lters, since tighter algorithms for adapting the
threshold can possibly result in further improvements of the performance of both algorithms.

In the third case since the average number of very large, large and medium
ows (1,107) was much below
the number of available memory locations and these
ows were mostly long lived, both of our algorithms
measured all these
ows very accurately. Thus, even when the number of
ows is only a few times larger than
the number of active
ows, our algorithms ensure that the available memory is used to accurately measure
the largest of the
ows and provide graceful degradation in case that the traÆc deviates very much from the
expected (e.g. more
ows).

18Cisco NetFlow uses 64 bytes per entry in cheap DRAM. We conservatively assume that the size of a
ow memory entry
will be 32 bytes (even though 16 or 24 are also plausible).

19We conservatively assume that we use 4 bytes for a counter even though 3 bytes would be enough.

24

Group Unidenti�ed
ows / Average error
(
ow size) Sample Multistage Sampled

and hold �lters NetFlow

> 0:1% 0% / 0.07508% 0% / 0.03745% 0% / 9.020%

0:1 : : : 0:01% 1.797% / 7.086% 0% / 1.090% 0.02132% / 22.02%

0:01 : : :0:001% 77.01% / 61.20% 54.70% / 43.87% 17.72% / 50.27%

Table 5: Comparison of traÆc measurement devices with
ow IDs de�ned by 5-tuple

Group Unidenti�ed
ows / Average error
(
ow size) Sample Multistage Sampled

and hold �lters NetFlow

> 0:1% 0% / 0.02508% 0% / 0.01430% 0% / 5.720%

0:1 : : : 0:01% 0.4289% / 3.153% 0% / 0.9488% 0.01381% / 20.77%

0:01 : : :0:001% 65.72% / 51.19% 49.91% / 39.91% 11.54% / 46.59%

Table 6: Comparison of traÆc measurement devices with
ow IDs de�ned by destination IP

Group Unidenti�ed
ows / Average error
(
ow size) Sample Multistage Sampled

and hold �lters NetFlow

> 0:1% 0% / 0.000008% 0% / 0.000007% 0% / 4.877%

0:1 : : : 0:01% 0% / 0.001528% 0% / 0.001403% 0.002005% / 15.28%

0:01 : : : 0:001% 0.000016% / 0.1647% 0% / 0.1444% 5.717% / 39.87%

Table 7: Comparison of traÆc measurement devices with
ow IDs de�ned by the source and destination AS

25

8 Implementation Issues

In this section we brie
y describe implementation issues for the two algorithms. Sample and Hold is fairly
straightforward to implement even in a network processor because it adds only one memory reference to
packet processing, assuming there is suÆcient SRAM for
ow memory and assuming an associative memory.
For small
ow memory sizes, adding a CAM is quite feasible. Alternatively, one can implement an associative
memory using a hash table and storing all
ow IDs that collide in a much smaller CAM. Sample and Hold
does require a source of random numbers but most routers require this anyway to implement algorithms
such as RED.

Multistage �lters are harder to implement using a network processor because they need multiple memory
references (to stage memories) in addition to the associative lookup of
ow memory. However, multistage
�lters are fairly easy to implement in an ASIC as the following feasibility study shows. [12] describes a chip
designed to implement a parallel multistage �lter with 4 stages of 4K counters20 each and a
ow memory21

of 3584 entries. The chips runs at OC-192 line speeds: it accepts a header every 32 nanoseconds. It has a
cycle time of 8ns. Each entry in the
ow memory is 27 bytes wide and contains the
ow ID, number of bytes
and packets and the timestamp of the �rst and last packet. The chip has an interface to a management
processor that can read and write the
ow memory. The core logic of the chip consists of approximately
450,000 transistors that �t on 2mm x 2mm on a .18 micron process. The hash stage counters would occupy
a further 8.4 mm2 and the
ow memory takes 21 mm2. Including the memories and the overhead, the total
size of the chip would be 5.5mm x 5.5mm and would use a total power of less than 1 watt. Both the size
and the power put the chip at the low end of today's IC designs.

9 Conclusions

Motivated by measurements that show that traÆc is dominated by a few heavy hitters, our paper tackles
the problem of directly identifying the heavy hitters without keeping track of potentially millions of small

ows. Fundamentally, Table 1 shows that our algorithms have a much better scaling of estimate error
(inversely proportional to memory size) than provided by the state of the art Sampled NetFlow solution
(inversely proportional to the square root of the memory size). On actual measurements, our algorithms
with optimizations do several orders of magnitude better than predicted by theory.

However, comparing Sampled NetFlow with our algorithms is more diÆcult than indicated by Table 1.
This is because Sampled NetFlow does not process every packet and hence can a�ord to use large DRAM.
Despite this, results in Table 2 and in Section 7.2 show that our algorithms are much more accurate for small
intervals than NetFlow. In addition, unlike NetFlow, our algorithms provide exact values for long-lived large

ows, provide provable lower bounds on traÆc that can be reliably used for billing, avoid resource-intensive
collection of large NetFlow logs, and identify large
ows very fast.

The above comparison only indicates that the algorithms in this paper may be better than using Sampled
NetFlow when the only problem is that of identifying heavy hitters, and when the manager has a precise
idea of which
ow de�nitions are interesting. NetFlow records allow managers to a posteriori mine patterns
in data they did not anticipate, while our algorithms rely on eÆciently identifying stylized patterns that are
de�ned a priori. To see why this may be insuÆcient, imagine that CNN suddenly gets
ooded with web
traÆc. How could a manager realize before the event that the interesting
ow de�nition to watch for is a
multipoint-to-point
ow (de�ned by destination address and port numbers)?

20The counters are on 32 bits.
21Entries are located in the
ow memory with the help of 3 hash functions in the manner described in [3].

26

The last example motivates an interesting open question. Is it possible to generalize the algorithms in
this paper to automatically extract
ow de�nitions corresponding to large
ows? A second open question is
to deepen our theoretical analysis to account for the large discrepancies between theory and practice.

We end by noting that the measurement problems faced by network managers are extremely similar to the
measurement problems faced by other areas in computer science such as data mining, architecture, and even
compilers. For example, Jim Smith and his co-workers [19] recently proposed using a Sampled NetFlow-like
strategy to obtain dynamic instruction pro�les in a processor (which are used for later optimization). We
have preliminary results that show that the use of multistage �lters with conservative update can improve
the results of [19] for determining instruction pro�les. Thus the techniques in this paper may be of utility
to other areas, and the techniques in these other areas may of utility to us.

References

[1] Jorn Altman and Karyen Chu. A proposal for a
exible service plan that is attractive to users and
internet service providers. In IEEE Proceedings of the INFOCOM, April 2001.

[2] B. Bloom. Space/time trade-o�s in hash coding with allowable errors. In Communications of the ACM,
volume 13, pages 422{426, July 1970.

[3] Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing. In Proceedings of ACM-SIAM

symposium on Discrete algorithms, pages 43{53, January 1990.

[4] N. Brownlee, C. Mills, and G. Ruth. TraÆc
ow measurement: Architecture. RFC 2722, October 1999.

[5] N. G. DuÆeld and M. Grossglauser. Trajectory sampling for direct traÆc observation. In Proceedings

of the ACM SIGCOMM, pages 271{282, August 2000.

[6] Nick DuÆeld, Carsten Lund, and Mikkel Thorup. Charging from sampled network usage. In SIGCOMM

Internet Measurement Workshop, November 2001.

[7] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Je�rey D. Ullman.
Computing iceberg queries eÆciently. In International Conference on Very Large Data Bases, pages
307{317, August 1998.

[8] Wenjia Fang and Larry Peterson. Inter-as traÆc patterns and their implications. In Proceedings of

IEEE GLOBECOM, December 1999.

[9] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer Rexford, and Fred True.
Deriving traÆc demands for operational ip networks: Methodology and experience. In Proceedings of

the ACM SIGCOMM, pages 257{270, August 2000.

[10] Wu-chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shin. Stochastic fair blue: A queue
management algorithm for enforcing fairness. In IEEE Proceedings of the INFOCOM, April 2001.

[11] Phillip B. Gibbons and Yossi Matias. New sampling-based summary statistics for improving approximate
query answers. In Proceedings of the ACM SIGMOD, pages 331{342, June 1998.

[12] John Huber. Design of an oc-192
ow monitoring chip. Class Project, March 2001.

27

[13] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding using eÆcient multi-
dimensional range matching. In Proceedings of the ACM SIGCOMM, pages 203{214, September 1998.

[14] J. Mackie-Masson and H. Varian. Public Access to the Internet, chapter Pricing the Internet. MIT
Press, 1995.

[15] Ratul Mahajan, Steve M. Bellovin, Sally Floyd, John Ioannidis, Vern Paxson, and Scott Shenker.
Controlling high bandwidth aggregates in the network. http://www.aciri.org/pushback/, July 2001.

[16] David Moore. Personal conversation. also see caida analysis of code-red, 2001. http://www.caida.org/

analysis/ security/ code-red/.

[17] Cisco net
ow. http://www.cisco.com /warp /public /732 /Tech /netflow.

[18] Sampled net
ow. http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/

120limit/120s/120s11/12s sanf.htm.

[19] Subramanya Sastry, Ratislav Bodik, and James E. Smith. Rapid pro�ling via strati�ed sampling. In
28th. International Symposium on Computer Architecture, pages 278{289, June 2001.

[20] S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in computer networks: Reshaping the research
agenda. In ACM Computer Communications Review, volume 26, pages 19{43. April 1996.

[21] K. Thomson, G. J. Miller, and R. Wilder. Wide-area traÆc patterns and characteristics. In IEEE

Network, December 1997.

28

A Details of the analytical evaluation of multistage �lters

This section presents the detailed analytical evaluation of parallel multistage �lters. We use the same notation
as in section 4.2. We �rst derive the bound for the expected number of
ows passing the �lter. After that we
give two high probability bounds on the number of
ows passing the �lter: a loose bound that has a closed
form and a tighter one we specify as and algorithm.

Lemma 4 The probability of a
ow of size s � 0 passing one stage of the �lter is bound by ps � 1

k
T

T�s . If

s < T k�1
k

this bound is below 1.

Proof Let's assume that the
ow is the last one to arrive into the bucket. This does not increase its
chance to pass the stage, on the contrary: in reality it might have happened that all packets belonging to
the
ow arrived before the bucket reached the threshold and the
ow was not detected even if the bucket
went above the threshold in the end. Therefore the probability of the
ow passing the stage is not larger
than the probability that the bucket it hashed to reaches T . The bucket of the
ow can reach T only if the
other
ows hashing into the bucket add up to T � s. The total amount of traÆc belonging to other
ows
is C � s. Therefore, the maximum number of buckets in which the traÆc of other
ows can reach T � s is
bC�s
T�s c. The probability of a
ow passing the �lter is bound by the probability of it being hashed into such

a bucket.

ps �
bC�s
T�s c
b

� C

b(T � s)
=

1

k

T

T � s
�

Based on this lemma we can compute the probability that a small
ow passes the parallel multistage
�lter.

Lemma 5 (1) Assuming the hash functions used by di�erent stages are independent, the probability of a

ow of size s passing a parallel multistage �lter is bound by ps �
�
1

k
T

T�s

�d
.

Proof A
ow passes the �lter only if it passes all the stages. Since all stages are updated in the same way for
the parallel �lter, lemma 4 applies to all of them. Since the hash functions are independent, the probability
of the
ow passing all of the stages equals the product of the probabilities for every stage. �

Before using this lemma to derive a bound on the number of
ows passing a multistage �lter, we can use
it for binding from below the expected error in the estimate of the size of a large
ow.

Corollary 5.1 For a
ow with size s > T and no packets larger than ymax, the probability that the number

of undetected bytes s� c is at least x is bound by P (s� c � x) �
�
1

k

T

T�x�ymax+1

�d
Proof There is a sequence of packets at the beginning of the
ow of length x � ss � x+ ymax� 1. If this
sequence does not pass the �lter than s� c � ss � x. By lemma 1 we can bound this probability and this
gives us this corollary. �

Theorem 6 (2) The expected number of bytes of a large
ow that go undetected by a multistage �lter is

bound from below by

E[s� c] � T

�
1� d

k(d� 1)

�
� ymax (3)

29

Proof

E[s� c] =

T�1X
x=0

P (s� c = x)x =

T�1X
x=1

P (s� c = x)x =

T�1X
x=1

P (s� c � x) �
T
k�1
k
�ymaxX

x=1

P (s� c � x)

=

T
k�1
k
�ymaxX

x=1

1� P (s� c < x) = T
k � 1

k
� ymax�

T
k�1
k
�ymaxX

x=1

P (s� c < x)

� T

�
1� 1

k

�
� ymax�

T
k�1
k
�ymaxX

x=1

P (s� c � x)

Through corollary 5.1 we can give an upper bound for the sum.

T
k�1
k
�ymaxX

x=1

P (s� c � x) �
T
k�1
k
�ymaxX

x=1

�
1

k

T

T � x� ymax+ 1

�d
�
Z T

k�1
k
�ymax+1

x=1

�
1

k

T

T � x� ymax+ 1

�d
dx

=

�
T

k

�d Z T
k�1
k
�ymax+1

x=1

�
1

T � ymax+ 1� x

�d
dx

=

�
T

k

�d
1

d� 1

�
1

T � ymax+ 1� x

�d�1
jT

k�1
k
�ymax+1

x=1

� (T=k)d

d� 1

1

T � ymax+ 1� T k�1
k

+ ymax� 1

!d�1

=
(T=k)d

d� 1

�
1

T=k

�d�1
=

T

k(d� 1)

By substituting this result we obtain E[s� c] � T
�
1� 1

k

�
� ymax� T

k(d�1) = T
�
1� d

k(d�1)

�
� ymax . �

Now we can give the bound on the number of
ows passing a multistage �lter.

Theorem 7 (3) The expected number of
ows passing a parallel multistage �lter is bound by

E[npass] � max

b

k � 1
; n

�
n

kn� b

�d!
+ n

�
n

kn� b

�d
(4)

Proof Let si be the sequence of
ow sizes present in the traÆc mix. Let ni the number of
ows of
size si. hi =

ni si
C

is the share of the total traÆc the
ows of size si are responsible for. It is immediate
that

P
ni = n, and

P
hi = 1. By lemma 1 the expected number of
ows of size si to pass the �lter is

E[nipass] = nipsi � ni max(1; (
1

k

T

T�si)
d) . By the linearity of expectation we have E[npass] =

P
E[nipass] .

To be able to bound E[npass], we will divide
ows in 3 groups by size. The largest
ows are the ones
we cannot bound psi for. These are the ones with si > T k�1

k
. For these E[nipass] � ni =

hiC

si
< hiC

T
k�1
k

,

therefore substituting them with a number of
ows of size T k�1
k

that generate the same amount of traÆc is
guaranteed to not decrease the lower bound for E[npass]. The smallest
ows are the ones below the average

ow size of C

n
. For these psi � pC

n
. The number of below average
ows is bound by n. For all these
ows

taken together E[nsmallpass] � npC
n
.

30

E[npass] =
X

E[nipass] =
X

si>T
k�1
k

E[nipass] +
X

C
n
�si�T k�1

k

E[nipass] +
X
si<

C
n

E[nipass]

�
X

si>T
k�1
k

hiC

si
+

X
C
n
�si�T k�1

k

hiC

si

�
1

k

T

T � si

�d
+ n

1

k

T

T � C
n

!d

� C

0
@ X
si>T

k�1
k

hi
1

T k�1
k

+
X

C
n
�si�T k�1

k

hi
1

si

�
1

k

T

T � si

�d1A+ n

1

k

T

T � C
n

!d

� C max
C
n
�si�T k�1

k

1

si

�
1

k

T

T � si

�d
+ n

1

k

T

T � C

n

!d

Now we will determine the maximum of the function f(x) = 1

x
(1

T�x)
d on the domain [C

n
; T k�1

k
].

f 0(x) = � 1

x2

�
1

T � x

�d
+

1

x

d

(T � x)d+1
=

1

x

1

(T � x)d

�
� 1

x
+

d

T � x

�

Within [C
n
; T k�1

k
] f 0(x) = 0 for x = T

d+1
(if it is in the interval), f 0(x) < 0 to the left of this value and

f 0(x) > 0 to the right of it. Therefore this represents a minimum for f(x). Therefore the maximum of f(x)
will be obtained at one of the ends of the interval CT df(T k�1

k
) = C

T
k�1
k

= b
k�1 or CT df(C

n
) = n(1

k
T

T�C
n

)d =

n(n

kn�b)
d. Substituting these values we obtain the bound. �

For proving our high probability bounds, we use the following result from probability theory.

Lemma 8 Assume we have a sequence of n independent events succeeding with probability p. The probability

that the number of events suceeding i exceeds the expected value by more than � is bound by

Pr(i > np+ �) � e
� �2

2np+2
3
�

Corollary 8.1 If we want to limit the probability of underestimation to psafe for the experiment above we

can bound i by

i � bnp� ln(psafe)

3
+

r
ln(psafe)2

9
� 2np ln(psafe)c

Proof By lemma 8 we have

e
� �2

2np+2
3
� � psafe

We can determine � by solving the resulting quadratic equation.

�2 +
2ln(psafe)

3
�+ 2np ln(psafe) = 0

Since ln(psafe) < 0, the only positive solution is

� = � ln(psafe)

3
+

r
ln(psafe)2

9
� 2np ln(psafe)

�

31

Theorem 9 With probability psafe the number of
ows passing the parallel multistage �lter is bound by

npass � b� 1 + bn
�

1

k � 1

�d
+� ln(psafe)

3
+

s
ln(psafe)2

9
� 2n

�
1

k � 1

�d
ln(psafe)c

ProofWe divide the
ows into two groups:
ows strictly above C
b
and
ows below it. There are at most

b� 1 with s > C
b
and we assume that all of these pass. With lemma 1 we bound the probability of passing

for
ows below C

b
by (1

k

T

T�C=b)
d = (1

k�1)
d . The number of
ows in this group is at most n. By applying

corollary 8.1 we can bound the number of
ows from this group passing the �lter. Adding the numbers for
the two groups gives us exactly the bound we need to prove. �

For our algorithm strengthening this theorem we will divide the
ows above C
b
into k � 2 groups. The

�rst group will contain all
ows of s > T k�2
k

and we will assume that all of these pass. The jth group will

contain
ows of sizes between T k�j�1
k

< s � T k�j
k
. The last (k � 1th) group will contain as in the case

above, the
ows with sizes below C

b
= T

k
.

Lemma 10 The probability of an individual
ow from group j passing the �lter pj and the number of
ows

in group j nj will be bound by

pj �
�
1

j

�d

nj �
�

b b
k�j�1 c if j < k � 1

n for the last group

Proof For group 1 we have p1 � 1, so it is a correct upper bound. For all the other groups we have an
upper bound on the size of
ows. Using lemma 1 we see that no
ow has a probability of passing larger that
the probability for the largest permitted
ow size. The bound for pj is immediate.

For the last group the bound nk�1 � n trivially holds because n is the total number of
ows. All the
other groups have a lower bound on the size of their
ows. We know that the
ows a group can not add up
to more than the capacity of the link C. The bound on nj is immediate. �

Lemma 11 If the distribution of
ow sizes is Zipf, the number of
ows in group j nj will be bound by

nj �

8><
>:

b b
(k�2)ln(n+1)c for the �rst group

b b

(k�j�1)ln(n+1) c � b b

(k�j)ln(2n+1) c if(j > 1 and j < k � 1)

n� b b
(k�j)ln(2n+1) c for the last group

Proof By applying lemma 12, through simple manipulations, we obtain that the number of
ows i larger
than T k�j

k
is bound by

b b

(k � j)ln(2n+ 1)
c � i � b b

(k � j)ln(n+ 1)
c

Using these bounds, the lemma is immediate. �
We can strengthen the bound from theorem 9 by applying lemma 8.1 to these groups. Each group will

have a limit on the number of passing
ows. For the �rst group this will be the number of
ows. The

32

COMPUTEBOUND(psafe)
psafe = psafe=(k � 2)
for j = 1 to k � 1

p[j] = 1=(jd)
n[j] = COMPUTEMAXFLOWCOUNT (j)
expectedpass[j] = n[j] � p[j]
smallest[j] = T � (k � 1� j)=k
if (j == 1)

worstcasepass[j] = n[j]
else

lambda[j] = COMPUTELAMBDA(expectedpass[j]; psafe)
worstcasepass[j] = bmin(expectedpass[j] + lambda[j]; n[j])c

endif
endfor
passingflows = 0
passingtraffic = 0
for j = k � 1 to 1

newtraffic = worstcasepass[j] � smallest[j]
if(newtraffic+ passingtraffic > C)

worstcasepass[j] = (C � passingtraffic)=smallest[j]
newtraffic = worstcasepass[j] � smallest[j]

endif
passingflows+ = worstcasepass[j]
passingtraffic+ = newtraffic

endfor
return passingflows

Figure 10: Algorithm for computing a strong high probability bound on the number of
ows passing a
parallel �lter

probability of the total number of
ows passing the �lter exceeding the sum of these limits will be bound by
the sum of the probabilities of individual groups exceeding their bounds. We divide psafe evenly between
the last k � 2 groups.

There is one further optimization, we can apply in the distribution free case. Since we derive the limits
separately for the groups, it can happen that when we add up all the passing
ows, we obtain a traÆc
larger than C. We can discard the largest
ows until the size of the passing
ows is C. Figure 10 gives the
pseudocode of the resulting algorithm.

33

B Analysis of the memory requirements of our algorithms under

the assumptions that the
ow sizes have a Zipf distribution

In this section we derive bounds on the number of memory entries required by sample and hold and multistage
�lters assuming the
ow sizes have a Zipf distribution with parameter 1.

B.1 Sample and hold with a Zipf distribution of
ow sizes

Lemma 12 If the sizes of
ows have a Zipf distribution, we can bound from above and below the size of the

i-th
ow by C
i ln(2n+1)

� si � C
i ln(n+1)

.

Proof The sizes of
ows are si =
 1

i
. We know that

Pn

i=1
si = C.Z i+1

i

1

x
dx � 1

i
�
Z i+0:5

i�0:5

1

x
dx

Z n+1

1

1

x
dx �

Pn

i=1
si �

Z n+0:5

0:5

1

x
dx

ln(n+ 1) � C �
(ln(n+ 0:5)� ln(0:5)) =
 ln(2n+ 1)

�

Corollary 12.1 If the sizes of
ows have a Zipf distribution, the number of
ows above a certain threshold

T is at most b C

T ln(n+1)
c .

Corollary 12.2 If the sizes of
ows have a Zipf distribution, the number of
ows above a certain threshold

T is at least b C
T ln(2n+1)

c .

Lemma 13 The �rst x
ows represent at least a fraction of
ln(x+1)

ln(2n+1)
of the total traÆc.

Proof

xX
i=1

si �
ln(x+ 1) � C

ln(2n+ 1)
ln(x+ 1)

�
Based on this, we can compute that the total traÆc of the �rst j
ows is at least C ln(j+1)

ln(2n+1)
. The

exepected number of entries needed will be j+Cp(1� ln(j+1)

ln(2n+1)
). By di�erentiating, we se that we obtain the

lowest value for the number of entries by choosing j = Cp

ln(2n+1)
�1.22 By substituting we obtain the number

of entries we need in the
ow memory Cp(1 � ln(Cp)�ln(ln(2n+1))�1
ln(2n+1)

) � 1. The standard deviation of the

number of sampled packets belonging to
ows smaller than the jth is
q
Cp(1� p)(1� ln(j+1)

ln(2n+1)
). Applying

Chebyshev's inequality we obtain that the probability that the number of entries required be larger than

Cp(1� ln(Cp)�ln(ln(2n+1))�1
ln(2n+1)

)� 1 + k
q
Cp(1� p)(1� ln(j+1)

ln(2n+1)
) is less than 1

k2
.

22Actually we have to choose either the integer just below or the one just above this value, but we ignore this detail for
simplicity.

34

B.2 Multistage �lters with a Zipf distribution of
ow sizes

For proving theorem 15 we �rst need a helper lemma.

Lemma 14 For any
 > 0 and
 + 1:5 � i0 < n we have

nX
i=i0

�
1

1�

i

�d
< n+ 1� i0 + d
(ln(n+ 1) +

1

1�

i0�0:5

!d�1

)

Proof

nX
i=i0

�
1

1�

i

�d
=

nX
i=i0

id

(i�
)d
=

n�
X
j=i0�

(j +
)d

jd
=

n�
X
j=i0�

dX
m=0

�
d

m

�
jd�m
m

jd

=

dX
m=0

�
d

m

�

m

n�
X
j=i0�

j�m �
dX

m=0

�
d

m

�
(�
)m

Z n�
+0:5

j=i0�
�0:5
j�mdj

= n+ 1� i0 +
d

Z n�
+0:5

j=i0�
�0:5

1

j
dj +

dX
m=2

�
d

m

�

m
Z n�
+0:5

j=i0�
�0:5
j�mdj

= n+ 1� i0 + d
ln(
n�
 + 0:5

i0 �
 � 0:5
) +

dX
m=2

�
d

m

�
m
m((i0 �
 � 0:5)�m+1 � (n�
 + 0:5)�m+1)

dX
m=2

�
d

m

�
m
m�1(a�m+1 � b�m+1) = d

dX
m=2

�
d� 1
m� 1

�
(
�

a

�m�1
�
�

b

�m�1
) = d

d�1X
r=1

�
d� 1
r

�
(
�

a

�r
�
�

b

�r
)

= d

d�1X
r=0

�
d� 1
r

��

a

�r
� d

d�1X
r=0

�
d� 1
r

��

b

�r

= d

��
1 +

a

�d�1
�
�
1 +

b

�d�1�
= d

 �
a+

a

�d�1
�
�
b+

b

�d�1!

By combining these two results we immediately obtain

nX
i=i0

�
1

1�

i

�d
� n+ 1� i0 + d

ln

�
n�
 + 0:5

i0 �
 � 0:5

�
+

�
i0 � 0:5

i0 �
 � 0:5

�d�1
�
�

n+ 0:5

n�
 + 0:5

�d�1!

< n+ 1� i0 + d

0
@ln(n+ 1) +

1

1�

i0�0:5

!d�11A

�

35

Theorem 15 If the
ows sizes have a Zipf distribution, the expected number of
ows passing a parallel

multistage �lter is bound by

E[npass] � i0 +
n

kd
+

db

kd+1
+

db ln(n+ 1)d�2

k2
�
k ln(n+ 1)� b

i0�0:5

�d�1 (5)

where i0 = dmax(1:5 + b

k ln(n+1)
; b

ln(2n+1)(k�1))e.

Proof We divide the
ows into two groups. As in the general case, for the larger ones we will assume
they will pass. For the smaller ones we will use lemma 14 to bound the expected value of the number of

ows passing. Before deciding where to separate the two groups we will give the general formula for the
second one using lemma 1 (i0 is the rank of the largest
ow in this group).

E[nsmallpass] =

nX
i=i0

psi �
nX

i=i0

�
1

k

T

T � si

�d
� 1

kd

nX
i=i0

T

T � C
i ln(n+1)

!d

=
1

kd

nX
i=i0

0
@ 1

1�
b

k ln(n+1)

i

1
A
d

For lemma 14 to apply we need i0 � 1:5 + b

k ln(n+1)
. To be able to bound the probability of these
ows

passing the �lter, by lemma 4 we need si0 � T k�1
k
. Through lemma 12 we obtain i0 �
k

T (k�1) �
b

ln(2n+1)(k�1) .

To satisfy both inequalities we set i0 to dmax(1:5 + b
k ln(n+1)

; b
ln(2n+1)(k�1))e.

E[npass] =

nX
i=1

psi =

i0�1X
i=1

psi +

nX
i=i0

psi � i0 +

n+ 1� i0 +
db

k ln(n+1)

ln(n+ 1) + 1�

1� b
k ln(n+1)(i0�0:5)

�d�1

!

kd

� i0 +
n

kd
+

db

kd+1
+

db ln(n+ 1)d�2

k2
�
k ln(n+ 1)� b

i0�0:5

�d�1
�

C De�ning large
ows with leaky buckets

In this appendinx we propose an alternate de�nition of large
ows based on leaky buckets instead of mea-
surement intervals. We also show how to adapt the multistage �lters to this new de�nition and provide an
analytical evaluation of the new scheme.

De�ning large
ows based on measurement intervals can lead to some unfairness. For example if a
ow
sends a burst of size slighlty larger than the threshold T within one measurement interval it is considered
large. However, if the same burst spans two intervals it's not. Even
ows sending bursts of size almost
2T are not considered large if the bursts span measurement intervals a certain way. It can be argued that

36

we should consider to be a large
ow all
ows that send more than T over any time interval no longer
than a measurement interval. While this distinction is arguably not very important for the case of traÆc
measurement, it might matter for other applications.

We use a leaky bucket descriptor (also known as linearly bounded arrival process) to de�ne large
ows: a

ow is large if during any time interval of size t it sends more than r�t+u bytes of traÆc. By properly choosing
the parameters of the leaky bucket descriptor, we can ensure that all
ows that send T bytes of traÆc over
a time interval no longer than a measurement interval are identi�ed. We can adapt the multistage �lters to
this new de�nition by replacing the counters with \leaky buckets" and instead of looking for counters above
the threshold we look for buckets that violated the descriptor. We will �rst discuss how we can implement
these eÆciently at high speeds, and then give an analytical evaluation of the new algorithm.

C.1 Analytical evaluation of the parallel multistage �lter using leaky buckets

Flows sending more than r � t + u in any time interval of length t are large. For the example we used in
section 4.2 by setting r to 0.5 Mbytes/s and u to 0.5 Mbytes, we are guaranteed that
ows that send 1
Mbyte during any second are labeled as large. This guarantees that we catch all
ows that send more than 1
Mbyte during a measurement interval. We can conceptually describe the operation of the buckets as follows.
Each bucket has a counter c initialized to 0. Every 1

r
seconds this counter is decremented by 1 unless it is

already 0 . When a packet of size s arrives, its size is added to the counter, but the value of the counter is
not incresed above u. If the counter is u the incoming packet is considered to belong to a large
ow. We
also use the phrases the bucket is in violation and the packet passes the bucket to describe this situation.
Section C.2 desctribes how this can be implemented eÆciently. Actual implementations would probably use
an approximation of this algorithm (e.g. they might decrement the leaky bucket less often), but we are not
concerned with these details in our analysis. We use the notations below in our analysis.

� r the steady state data rate of the leaky bucket;

� u the burst size of the leaky bucket;

� C the data rate of the link (in bytes/second);

� k the stage strength: the ratio of r average data rate of the traÆc through a bucket k = r b
C

(in our
modi�ed example above k is 5);

� � the drain time for the leaky bucket � = u

r
, for our example � = 1 second;

� c the counter of a certain leaky bucket (see below);

� a the number of \active" buckets in a stage (buckets with non-zero counters);

� A the active traÆc in a particular stage de�ned as the sum of all counters;

� s the size of a packet or a sequence of packets;

We formalize the description of how the leaky buckets of the stages operate in the following two lemmas.

Lemma 16 If cinitial is the initial value of the counter of a bucket, after a time t where the bucket received

no packets the value of the counter will be cfinal = max(0; cinitial � rt).

37

Lemma 17 If cinitial is the initial value of the counter of a bucket when it receives a packet of size s, the

value after the packet was processed is going to be cfinal = min(cinitial + s; u).

Now we can prove a lemma that will help use prove we have no false negatives.

Lemma 18 Let c be the value of the counter of a leaky bucket tracking a
ow. Let c0 be the counter of

another bucket that counts all the packets of our
ow and possibly packets of other
ows. For any moment

in time c � c0

Proof By induction on time using as steps the moments when the packets are received.
Base case The buckets are exactly identical at the beginning of the interval c = c`.
Inductive step Three things can happen: a packet belonging to the
ow arrives, a packet not belonging

to the
ow arrives or no packets arrive for time t. In all three cases we will use the fact that by induction
hypothesis, c � c0 in the beginning. If a packet of size s belonging to the
ow arrives, by lemma 17 we have
cnew = min(c + s; u) and c0new = min(c0 + s; u) therefore cnew � c0new. If a packet of size s not belonging
to the
ow arrives, by lemma 17 we have cnew = c and c0new = min(c0 + s; u) therefore cnew � c0new. If
no packets arrive for time t, by lemma 16 at the end of the interval we have cnew = max(0; c � rt) and
c0new = max(0; c0 � rt), therefore cnew � c0new. �

Corollary 18.1 Let t be the moment in time when a certain
ow exceeds the leaky bucket descriptor. The

violation will be detected by the leaky bucket at time t no matter how many packets belonging to other
ows

hash to the same bucket.

Theorem 19 A parallel multistage �lter will detect any
ow exceeding the leaky bucket descriptor at latest

when it does so.

Proof By corollary 18.1, at all stages, the buckets the
ow hashes to will detect the leaky bucket descriptor
violation for the �rst packet of the
ow that violates it, therefore this packet will pass the �lter causing the

ow to be detected. �

Just as in the case with the measurement intervals, we can have no false negatives and we want to bound
the number of false positives. What we want to bound is the number of
ows passing the �lter during a
certain time interval which gives us the peak rate at which new
ows are added to the
ow memory.

Lemma 20 For any time interval t, if the counter of a bucket at the beginning was cinitialand the traÆc that

hit the bucket during the interval is s, the �nal value of the counter is bound by cfinal � max(0; cinitial�rt)+s.

Proof By induction on time, using as steps the moments when the packets are received.
Base case At the beginning of the experiment, the time passed since the beginning of the experiment

will be t = 0 and the sum of the sizes of the packets sent will be s = 0 therefore c = cinitial = max(0; cinitial�
rt) + s.

Inductive step Two things can happen: a packet arrives or no packets arrive for time t0. In all cases
we will use the fact that by induction hypothesis, c � max(0; cinitial � rt) + s in the beginning where t
is the time that passed since the beginning of the experiment and s is the sum of the sizes of the packets
received so far. If a packet of size s0 arrives, by lemma 17 we have cnew = max(c + s0; u) � c + s0 �
max(0; cinitial � rt) + s+ s0. If no packets arrive for time t0, by lemma 16 at the end of the interval we have
cnew = max(0; c � rt0) � max(0;max(0; cinitial � rt) + s � rt0) � max(0;max(0; cinitial � rt) � rt0) + s �
max(0;max(0; cinitial � rt � rt0)) + s = max(0; cinitial � r(t+ t0)) + s. �

38

Corollary 20.1 The value of the counter of the bucket is not larger than the amount of traÆc that bucket

received during the last � .

Lemma 21 The active traÆc in any stage is bound by A � bu
k
.

Proof By corollary 20.1, the size of each individual bucket will be bound by the traÆc it received during
the last � , therefore A will be bound by the total traÆc received during this interval which is bound by
C� = bu

k
. �

Corollary 21.1 At any moment in time the number of buckets in a stage ax with c � x is bound by

ax � b bu
kx
c.

We will bound the expected number of
ows passing the �lter during an interval of � , the drain time for
the leaky bucket. We cannot directly use corollary 21.1 because a particular
ow might pass the �lter at any
moment during the interval of � .

Lemma 22 The number of buckets of a stage with c � x at any time during an interval of � is bound by

ax � b2 bu
kx
c.

Proof By lemma 21.1, the maximum number of buckets above x at the start of the interval is b bu
kx
c with the

rest of the active traÆc in other buckets. The best way an adversary could use the remaining active traÆc
at the beginning at the interval and the traÆc sent during the interval is to �ll buckets one by one. Since the
amount of traÆc sent during the interval is bound by bu

kx
, by adding the number of buckets that were above

c at the beginning to the ones that got �lled up during the interval we obtain the bound of this lemma.�

Lemma 23 For a
ow that sends a total of s bytes during an interval � and the preceding � seconds, the

probability that any of its packets pass the parallel multistage �lter during the interval is bound by ps ��
2

k

u

u�s

�d
. If s � uk�2

k
this bound is below 1.

Proof By lemma 20.1, the size of the buckets is hashes to is bound by the traÆc they received in the past �
seconds. This traÆc is made up by traÆc of the
ow we are analyzing and traÆc of other
ows c � s+srest.
The amount of traÆc our
ow sends during any window of � seconds ending in the interval is bound by s.
For the
ow to pass the �lter, we need all buckets to pass the
ow s + srest � u. By an argument similar
to the one on lemma 22, the number of bucket at each stage for which srest � u� s at any moment during
the interval is bound by au�s � 2 bu

k(u�s) . Therefore the probability of passing any single stage is bound by
2u

k(u�s) . This gives us the bound on the probability for a
ow passing all of the stages as in the lemma. �
Notice that this lemma is an upper bound, not the actual probability. It is even further from the real

probability for the
ow passing the �lter than lemma 1 because it assumes that for all stages srest reaches
the right value exactly when the last packet of the
ow is sent. This is quite unlikely in practice. Based
on this lemma, we can give our �nal bound for the expected number of
ows passing the �lter during the
interval � .

Theorem 24 The expected number of
ows passing a multistage parallel �lter during any interval of length

� is bound by

E[npass] � max

2b

k � 2
; n

�
2n

kn� 2b

�d!
+ n

�
2n

kn� 2b

�d

39

Proof Let si be the sequence of
ow sizes present in the traÆc mix counting the traÆc sent during the
interval and the � preceding seconds. Let ni the number of
ows of size si. hi =

ni si
2C�

is the share of the
total traÆc the
ows of size si are responsible for. We have

P
ni = n (n is de�ned as the number of
ows

active during the interval, not the interval and the � preceding second), and
P

hi = 1. By lemma 23 the
expected number of
ows of size si to pass the �lter is E[nipass] = nipsi �. By the linearity of expectation
we have E[npass] =

P
E[nipass] .

To be able to bound E[npass], we will divide
ows in 3 groups by size. The largest
ows are the ones
we cannot bound psi for. These are the ones with si > uk�2

k
. For these E[nipass] � ni =

hi2C�

si
< hi2C�

u
k�2
k

,

therefore substituting them with a number of
ows of size uk�2
k

that generate the same amount of traÆc is
guaranteed to not decrease the lower bound for E[npass]. The smallest
ows are the ones below the average

ow size of 2C�

n
. For these psi � p 2C�

n
. The number of below average
ows is bound by n. For all these
ows

taken together E[nsmallpass] � np 2C�
n
.

E[npass] =
X

E[nipass] =
X

si>u
k�2
k

E[nipass] +
X

2C�
n
�si�u k�2

k

E[nipass] +
X

si<
2C�
n

E[nipass]

�
X

si>u
k�2
k

hi2C�

si
+

X
2C�
n
�si�u k�2

k

hi2C�

si

�
2

k

u

u� si

�d
+ n

2

k

u

u� 2C�

n

!d

� 2C�

0
@ X
si>u

k�2
k

hi
1

uk�2
k

+
X

2C�
n
�si�u k�2

k

hi
1

si

�
2

k

u

u� si

�d1A+ n

�
2

k

nu

nu� 2C�

�d

� 2ub

k
max

2C�
n
�si�u k�2

k

1

si

�
2

k

u

u� si

�d!
+ n

�
2n

kn� 2b

�d

As we saw in the proof of theorem 3, the maximum is reached at one of the ends of the interval. By
substituting these values we obtain the bound. �

If we compute the number for our example we obtain a bound of 5; 202:7
ows which is much higher than
the 121:2 theorem 3 gave. But is the comparison fair? Are the problems solved in the two cases equivalent?
In te analysis with measurement intervals the number of
ows that could violate the threshold during the
measurement interval is 100. What is this number in our case? We can have 199
ows that keep their
buckets at 0.5 Mbytes before our interval starts and they send one single small packet during the interval.
These packets are all in violation and they should be detected. After this, we can have 198 other
ows
sending bursts of slightly more than 0.5 Mbytes so that they violate their leaky bucket descriptor. These

ows should also all be passed by the �lter if it is to avoid false negatives. Therefore we have a traÆc pattern
that requires at least 397
ows to be detected during the interval. If we proportionately increase the number
of buckets at each stage from 1000 to b = 4000, theorem 24 gives us a bound of 454:6 which is approximately
4 times the bound of theorem 3. As with that result, we expect that in practice the number of
ows passing
will be much smaller.

C.2 Implementing multistage �lters with leaky buckets

A naive implementation of the leaky buckets that make up the stages would keep decrementing the counters
by 1 every 1=r seconds. This needs a lot of memory accesses and is not necessary. We think of the counters

40

as numbers that move between 0 and u and what matters to the algorithm is where the counters are within
this interval. Instead of decrementing all the counters every 1=r seconds by one, we can move the interval:
we will have a virtual 0 and a virtual u that get incremented every 1=r seconds. Since we can keep these
values in two registers, incrementing them often does not pose problems. With these new de�nitions, the
counters themselves work the following way: when a new packet hashes to the counter, we �rst check if the
value if the counter is below the virtual 0 we update it to 0; we add the size of the packet to the counter
and if it is above the virtual u, we decrement it to virtual u; �nally if the counter reached the virtual u
we declare that the bucket is in violation. While this might sound long, it needs no more memory accesses
than the counters of �lters operating with measurement intervals. With this implementation, we need to
worry about over
ows. We can implement the operations in such a way that when the virtual 0 and virtual
u over
ow, comparisons and arithmetic operations still work correctly. However, after an over
ow an old
counter that received no packets can seem to have a very large value instead of a very small one. To solve
this problem we can use a background process that periodically updates to virtual 0 all the counters below
it. Improvements to the basic parallel �lter such as shielding and conservative update easily generalize to
our �lter using leaky buckets.

D Heuristic rules for tight con�guration of the multistage �lters

Even if we have the correct constants for the threshold adaptation algorithm, there are other con�guration
parameters for the multistage �lter we need to set. Our aim in this section is not to derive the exact optimal
values for the con�guration parameters of the multistage �lters. Due to the dynamic threshold adaptation,
the device will work even if we use suboptimal values for the con�guration parameters. Nevertheless we want
to avoid using con�guration parameters that would lead the dynamic adaptation to stabilize at a value of
the threshold that is signi�cantly higher than the one for the optimal con�guration.

We assume that design constraints limit the total amount of memory we can use for the stage counters
and the
ow memory, but we have no restrictions on how to divide it between the �lter and the
ow memory.
Since the number of per packet memory accesses might be limited, we assume that we might have a limit
on the number of stages. We want to see how we should divide the available memory between the �lter and
the
ow memory and how many stages to use. We base our con�guration parameters on some knowledge of
the traÆc mix.

We �rst introduce a simpli�ed model of how the multistage �lter works. Measurements con�rm this
model is closer to the actual behavior of the �lters than the conservative analysis. Because of shielding the
old large
ows do not a�ect the �lter. We assume that because of conservative update only the counters to
which the new large
ows hash reach the threshold. Let l be the number of large
ows and �l be the number
of new large
ows. We approximate the probability of a small
ow passing one stage by �l=b and of passing
the whole �lter by (�l=b)d. This gives us the number of false positives in each interval fp = n(�l=b)d. The
number of memory locations used at the end of a measurement interval consists of the large
ows and the
false positives of the previous interval and the new large
ows and the new false positives m = l+�l+2�fp.
To be able to establish a tradeo� between using the available memory for the �lter or the
ow memory, we
need to know the relative cost of a counter and a
ow entry. Let r denote the ratio between the size of a
counter and the size of an entry. The amount of memory used by the �lter is going to be equivalent to b�d�r
entries. To determine the optimal number of counters per stage given a certain number of large
ows, new
large
ows and stages, we take the derivative of the total memory with respect to b. Equation 6 gives the
optimal value for b and Equation 7 gives the total amount of memory required with this choice of b.

41

b = �l
d+1

r
2n

r�l
(6)

mtotal = l +�l + (d+ 1)r�l
d+1

r
2n

r�l
(7)

We make a further simplifying assumption that the ratio between �l and l (related to the
ow arrival
rate) doesn't depend on the threshold. Measurements con�rm that this is a good approximation for wide
ranges of the threshold. For the MAG trace, when we de�ne the
ows at the granularity of TCP connections
�l=l is around 44%, when de�ning
ows based on destination IP 37% and when de�ning them as AS pairs
19%. Let M be the number of entries the available memory can hold. We solve Equation 7 with respect to
l for all possible values of d from 2 to the limit on the number of memory accesses we can a�ord per packet.
We choose the depth of the �lter that gives the largest l and compute b based on that value.

E Cisco NetFlow

NetFlow [17] is a feature of Cisco routers that implements per
ow traÆc measurement. It is one of the
primary tools used to collect traÆc data by large transit ISPs today [9]. NetFlow is intended (by Cisco)
to serve as a basis for usage based billing. We brie
y discuss here some details of Cisco NetFlow. We
also present an analytical evaluation of the accuracy of sampled NetFlow and its memory requirements.
At the end of this appendix we propose an alternative implementation solution that could increase by an
order of magnitude the link speeds NetFlow can handle without resorting to sampling. This implementation
procedure can also be used in conjunction with our algorithms.

E.1 Basic NetFlow

NetFlow de�nes
ows as unidirectional streams of packets between two particular endpoints. A
ow is
identi�ed by the following �elds: source IP address, destination IP address, the protocol �eld in the IP
header, source port, destination port, the TOS byte and the interface of the router that received the packet.
In the DRAM of the router interface card there is a
ow cache that stores per
ow information (we call it
ow
memory in this paper). The entry for a
ow holds, besides the
ow identi�er, various types of information
about the
ow: timestamp of when the
ow started and ended, packet count, byte count, TCP
ags, source
network, source AS (Autonomous System), destination network, destination AS, output interface, next hop
router. Various heuristics (e.g.
ows that have been inactive for a particular period of time, the RST and
FIN TCP
ags) are used to determine when a
ow ends.

The NetFlow data captured by at the router is exported via UDP packets to computers that process it
further. The raw NetFlow data can be processed in a variety of ways and can give all kinds of information
about the traÆc. There are two major problems with the basic NetFlow: for interfaces faster than OC3
updating the
ow cache slows down the operation of the interface and the amount of data generated by
NetFlow can be so large that it overwhelms the collection server or its network connection ([9] reports loss
rates of up to 90%). Cisco's solution to the �rst problem is sampling packets and to the second aggregating
the measurement data on the router.

42

E.2 NetFlow Aggregation

Many applications are not interested in the raw NetFlow data, but in an aggregated form of it. For example
when deriving traÆc demands one is interested by traÆc between networks (more exactly IP pre�xes), not
individual endpoints: all NetFlow records of individual
ows whose two endpoints are in the same two
networks are aggregated together. One can also imagine arrangements between ISPs with payment based
on traÆc that would require a similar type of aggregation.

Cisco's solution to the problem of NetFlow generating too much data was introduced in IOS 12.0(3)T .
The aggregation of raw data is performed at the router. One or more extra caches called aggregation caches
are maintained at the router. Only the aggregate data is exported thereby reducing substantially the amount
of traÆc generated. Five aggregation schemes are currently supported: based on source and destination AS,
based on destination pre�x, based on source pre�x, based on source and destination pre�x and based on
source and destination ports.

E.3 Sampled NetFlow

Cisco introduced a feature called sampled NetFlow [18] with high end routers. The performance penalty
of updating the
ow cache from DRAM is avoided by sampling the traÆc. For a con�gurable value of a
parameter x, one of every x packets is sampled. The
ow cache is updated only for the sampled packets.
Even though the update operation is not performed any faster, since it is performed less often it does not
a�ect the performance of the router. Cisco recommends that sampling is turned on for interfaces above
OC-3. The advantage of this solution is that it is very simple and requires no signi�cant changes to the
hardware of the line card.

E.4 The accuracy of sampled NetFlow

The actual sampled NetFlow works by counting every x-th packet irrespective of packet sizes. To simplify
the analysis we will assume that all packets have the same size y and are sampled with probability p = 1=x.

Let c be the number of packets counted for a given
ow and s the actual size of the
ow (in packets).
The probability distribution of c is binomial. The probability that a
ow of size s is missed is the same as
the probability that no packets get sampled which is (1 � p)s. By the linearity of expectation we obtain
that E[c] = sp. Therefore the best estimate for s is c=p. Since the probability distribution for c is binomial,
its standard deviation will be SD[c] =

p
sp(1� p). The standard deviation of our estimate of s will be

1=p
p
sp(1� p).

To compare the accuracy of sampled NetFlow with our algorithms we compute the standard deviation
of the estimate of the size of the
ow that is at the threshold T = s � y (in bytes). By substituting in the
formula above, this is y=p

p
p(1� p)T=y =

p
y(1� p)T=p. Based on this number we can also compute the

relative error of a
ow of size T which is
p
y(1� p)=Tp. We can substitute actual numbers into this formula.

Since sampling is recommended above OC-3 (155.52 Mbits/s=19,440,000 bytes/s), if the line speed is x times
OC-3, then the sampling probability is at most p = 1=x. Smaller sampling probabilities can be used to reduce
the memory requirements at the cost of accuracy. Let the measurement interval be i seconds. Assuming a
threshold of T = zC = xiz19; 440; 000 and a packet size of 1500 bytes (which is common for large
ows), the
relative error of the estimate of a
ow at the threshold is

p
1500(1� 1=x)x=T �

p
1; 500=(19; 440; 000iz) =

0:0087841=
p
zi.

43

E.5 The memory requirements of sampled NetFlow

To be able to compare NetFlow to our algorithms, for the purpose of thia analysis we change somewhat the
way NetFlow operates: we assume that it reports the traÆc data for each
ow after each measurement inter-
val, like our algorithms do. The number of entries used by NetFlow is bound by both the maximum number
of packets sampled during a measurement interval and the number of active
ows n. Assuming the link is
fully utilized with minimum size packets of 40 bytes, the number of packets sampled in i seconds is exactly
ipC=40. As we saw in section E.4, the maximum sampling that doesn't slow down the packet forwarding is
p = 19; 440; 00=C. If we use this sampling rate, the maximum number of updates per measurement interval
is i19; 440; 000=CC=40 = 486; 000i.

E.6 Keeping a queue of packet headers

The improvement presented in this section signi�cantly increases the amount of time NetFlow can spend
with each packet. It involves addition of a simple SRAM bu�er.

In [13] Lakshman and Stiliadis argue that packet forwarding and classi�cation decisions have to be made
at line speed even for the smallest of packets. We argue that this does not extend to traÆc measurement. We
can keep the packet headers and other relevant information in a small queue and process that information
(for traÆc measurement purposes) at somewhat lower speeds after the packet was sent on the wire. This
does not cause any delay for the actual packet. We are basically decoupling the forwarding of packets from
the traÆc measurement device. We argue that the bene�ts far outweigh the costs of this improvement.

Practically all of the packets from the traces we used are at least 40 bytes large. However the average size
is around 550 bytes. If we were to dimension the traÆc measurement device to handle at line speeds packets
of 240 bytes instead of 40 bytes, this would give us 6 times as much time to process each packet. Since the
average time the traÆc measurement device has to process a packet is more than twice what it needs, the
SRAM bu�er holding the queue of packet headers need not be very large to make it very unlikely that it
ever over
ows. This is very similar to how packet headers are bu�ered on cards used for traÆc capture until
the driver can handle them.

F Choosing a suitable measurement interval

In this appendix we choose the size of the measurement interval based on the traces we have. The optimal
size for the measurement interval depends on both the application for our algorithms and the traÆc mix.
The purpose of the measurements from this appendix is not to derive a size for the measurement interval
that we recommend for all applications. We only want to derive a size for the measurement interval that is
close enough to what applications would use to make the results from section 7 relevant.

The task of choosing an appropriate measurement interval is further complicated by the lack of objective
criteria for deciding what a good value is. If the measurement intervals are too large the data collected
might be too coarse for the purposes of the application. If the interval is too small than
ows that have gaps
between some of their packets larger than the measurement interval can appear as repeatedly going inactive
and starting to send again. This might be undesirable for the application and it can reduce the e�ectiveness
of optimizations to our algorithms that rely on the persistence of the
ows (such as preserving entries in the

ow memory across measurement intervals).

What do we measure in order to determine what a good value for the measurement interval is? One
would want as many as possible of the
ows to send their packets spaced apart by less than the size of
the measurement interval. An obvious measure of how good a size for the measurement interval is is the

44

Interval MAG IND COS

0.1 s 4.482% /1.617% /67.261% 5.899% /7.068% /81.572% 9.923% /4.101% /77.623%

0.2 s 13.801%/7.829% /78.805% 8.809% /19.935%/87.162% 15.415%/10.481%/86.326%

0.5 s 35.556%/31.206%/91.939% 16.471%/44.679%/93.601% 23.659%/29.416%/93.629%

1.0 s 49.682%/45.012%/95.362% 27.896%/58.222%/96.651% 36.707%/48.031%/96.614%

2.0 s 56.683%/58.119%/97.224% 32.022%/67.509%/97.979% 41.659%/61.148%/97.850%

5.0 s 67.685%/76.528%/98.969% 57.919%/83.102%/99.250% 51.282%/80.745%/99.043%

10.0 s 90.056%/87.086%/99.611% 79.765%/91.705%/99.723% 63.092%/86.705%/99.483%

Table 8: Comparing measurement intervals for
ows de�ned by 5-tuples

Interval MAG IND COS

0.1 s 1.085% / 4.481%/75.160% 1.419% /13.136%/86.458% 2.373% /18.597%/89.663%

0.2 s 2.906% /10.246%/85.209% 2.884% /27.138%/91.339% 3.889% /34.595%/94.541%

0.5 s 9.683% /23.896%/95.373% 6.178% /51.617%/96.293% 6.262% /50.827%/97.919%

1.0 s 16.660%/33.579%/97.728% 11.195%/65.484%/97.871% 10.943%/60.578%/99.081%

2.0 s 21.377%/43.254%/98.780% 14.309%/73.635%/98.739% 15.162%/70.080%/99.535%

5.0 s 32.745%/59.495%/99.579% 49.080%/86.646%/99.493% 38.860%/82.997%/99.856%

10.0 s 71.205%/72.380%/99.854% 76.436%/92.668%/99.829% 61.964%/89.363%/99.941%

Table 9: Comparing measurement intervals for
ows de�ned by destination IP

Interval MAG

0.1 s 2.260% / 60.499% / 95.969%

0.2 s 3.975% / 73.242% / 98.031%

0.5 s 9.003% / 82.135% / 99.408%

1.0 s 14.522% / 87.148% / 99.727%

2.0 s 19.154% / 89.814% / 99.857%

5.0 s 29.707% / 94.430% / 99.947%

10.0 s 54.700% / 96.999% / 99.979%

Table 10: Comparing measurement intervals for
ows de�ned by the pair of ASes

percentage of
ows that send all their packet closer than the size of the measurement interval. But often
there are many small
ows that send their packets far apart while large
ows send them closer. We obtained
a less biased measure if we weigh the
ows by the total traÆc they send. While this is a good measure if
ows
are de�ned at the granularity of a TCP connection it is not that good if we look at coarser aggregates such as
all packets sent to a given IP address. The reason is that there might be multiple distinct connections with
packets close to each other, but spaced far apart. Even though most of the packets of such an aggregate are
close some are far and it would be classi�ed as a
ow that has packets further apart than the measurement
interval. We introduce the third measure as the percentage of packets (weighted by packet sizes) that arrived
within a measurement interval of the previous packet of the same
ow.

45

Table 8 shows our results for
ows de�ned at the granularity of TCP connections by source and destination
IP address and port and by protocol number, Table 9 shows our results for
ows de�ned by the destination IP
address and Table 10 shows our results for
ows de�ned by the source and destination autonomous system.
The �rst two tables show the results of measurements on the traces MAG, COS and IND and the third one
only on trace MAG (because the other two traces are anonymized and we cannot perform route lookups on
them). The values in the cells of the tables represent the 3 measures we discussed: the percentage of
ows
that have all their packets closer than the given interval, the same percentage weighted by the total amount
of traÆc transferred by the
ows and the percentage of packets weighted by their size that arrived within
the interval of the previous packet of the same
ow. We can see that for all granularities and for all traces,
a measurement interval of 5 seconds assures that 99% or more of the packets (weighted by their size) arrive
within a measurement interval of the previous packet of the same
ow. Based on these results we will use a
measurement interval of 5 seconds in all our experiments.

G Measuring sample and hold

We �rst compare the measured performance of the sample and hold algorithm to the values predicted by our
analysis. Next we measure the improvement introduced by preserving entries across measurement intervals.
We measure the e�ect of early removal and determine a good value for the early removal threshold. We
conclude by summarizing our �ndings about the sample and hold algorithm. We have 3 measures for the
performance of the sample and hold algorithm: the average percentage of large
ows that were not identi�ed
(false negatives), the average error of the traÆc estimates for the large
ows and the maximum number of
locations used in the
ow memory.

G.1 Comparing the behavior of the base algorithm to the analytic results

We �rst look at the e�ect of oversampling on the performance of sample and hold. We con�gure sample and
hold to measure the
ows above 0.01% of the link bandwidth and vary the oversampling factor from 1 to 7
(corresponding to a probability of between 37% and less than 0.1% of missing a
ow at the threshold (see
Section 4.1.1)). We perform each experiment for the trace MAG, IND and COS and for the trace MAG we use
all 3
ow de�nitions. For each con�guration, we perform 50 runs with di�erent random functions for choosing
the sampled packets. Figure 11 shows the percentage of false negatives (large
ows not identi�ed). We also
plot the probability of false negatives predicted by our conservative analysis (the Y axis is logarithmic). The
measurement results are considerably better than predicted by the analysis. The reason is that the analysis
assumes that the size of the large
ow is exactly equal to the threshold while most of the large
ows are
much above the threshold making them much more likely to be identi�ed. The measurements con�rm that
the probability of false negatives decreases exponentially as the oversampling increases. Figure 12 shows the
average error in the estimate of the size of an identi�ed large
ow. We also plot the analytic estimate for
the di�erence between the estimate and the actual traÆc of a large
ow from Section 4.1.1. The measured
error is slightly below the error predicted by the analysis. The explanation is that the analysis assumed
that the size of the error is unbounded. In practice, the size of the error is bounded by the size of the

ow. The measurements con�rm that the average error of the estimates is proportional to the inverse of the
oversampling. Figure 13 shows the maximum over the 900 measurement intervals for the number of entries
of
ow memory used. The measurement results are more than an order of magnitude lower than the bound
from Section 4.1.2. There are two main reasons. The most obvious one is that the links are lightly loaded
(between 13% and 27%) so the number of packets sampled is much smaller than for a congested link as

46

Figure 11: Percentage of false negatives as the oversampling changes

1 2 3 4 5 6 7

Oversampling

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 e
rr

or
 (

as
 p

er
ce

nt
ag

e
of

 th
re

sh
ol

d)

MAG 5-tuples
MAG destination IP
MAG AS pairs
IND
COS
Analytical estimate

Figure 12: Average error in the traÆc estimates for large
ows

47

1 2 3 4 5 6 7

Oversampling

0

1000

2000

3000

4000

5000

6000

7000

M
ax

im
um

 n
um

be
r

of
 fl

ow
 m

em
or

y
en

tr
ie

s MAG 5-tuples
MAG destination IP
MAG AS pairs
IND
COS

Figure 13: Maximum number of
ow memory entries used

assumed by the bound. The other reason is that many of the sampled packets do not create new entries
in the
ow memory. This explains why the number of entries increases sub-linearly with the oversampling
and not roughly linearly as predicted by the analysis. The results also show that the number of entries
used depends on the number of active
ows and the dependence is stronger as the sampling probability (the
oversampling) increases.

The next set of experiments look at how the choice of the threshold in
uences the performance of the
sample and hold algorithm. We run the algorithm with a �xed oversampling of 5 for thresholds between
0.005% and 0.1% of the link bandwidth. Figure 14 shows the percentage of false negatives. As in the previous
case, the actual percentage is on average between 3 and 8 times lower than the one predicted by the analysis
(depending on the trace and the de�nition of the
ow ID). The only value that is suspiciously high is the one
for the MAG trace with a
ow de�nition at the TCP granularity. Upon closer analysis of the trace we found
out that there are only 3
ows (all 3 netnews transfers between the same two hosts but on di�erent ports)
that are above the threshold in all intervals and they are within 15% of the threshold. This explains why
in this case the observed rate of false negatives so closely matches the prediction of the analysis. Figure 15
shows the average error in the estimate of the size of an identi�ed large
ow. As expected, the actual values
are usually slightly below the expected error of 20% of the threshold. The only signi�cant deviations are
for the traces IND and especially COS at very small values of the threshold. The explanation is that the
threshold approaches to the size of a large packet (e.g. a threshold of 0.005% on an OC3 (COS) corresponds
to 4860 bytes while the size of most packets of the large
ows is 1500 bytes). Our analysis assumes that we
sample at the byte level. In practice, if a certain packet gets sampled all its bytes are counted, including the
ones before the byte that was sampled. This results in smaller error as illustrated by our results. Figure 16
shows the maximum number of entries of
ow memory used. As before the actual number is much smaller

48

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Threshold (as percentage of link capacity)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

ag
e

of
 fa

ls
e

ne
ga

tiv
es

MAG 5-tuples
MAG destination IP
MAG AS pairs
IND
COS
Analythical estimate

Figure 14: Percentage of false negatives as the threshold changes

Figure 15: Average error in the traÆc estimates for large
ows

49

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Threshold (as percentage of link capacity)

0

1000

2000

3000

4000

5000

6000

7000

8000

M
ax

im
um

 n
um

be
r

of
 fl

ow
 m

em
or

y
en

tr
ie

s

MAG 5-tuples
MAG destination IP
MAG AS pairs
IND
COS

Figure 16: Maximum number of
ow memory entries used

than the bound from Section 4.1.2. As the threshold decreases, the number of entries increases much faster
for the traces with many
ows than for the ones with few.

Findings: Sample and hold performs better than predicted by our conservative analysis. The percentage
of false negatives is roughly one order of magnitude smaller than predicted in section 4.1.1 because most large

ows are considerably above the threshold. The average error of the estimates is slightly below the expected
value. When the threshold is the same order of magnitude as the size of the packets, the improvement is
stronger. The memory requirement of the algorithm can be orders of magnitude below what Section 4.1.2
predicts. The main reasons: links are lightly loaded and large
ows are sampled repeatedly.

G.2 The e�ect of preserving entries

In this section we measure the improvement introduced by preserving entries from one measurement interval
to the next one. We compare the results with the ones from the measurements of the base algorithm. For the
false negatives and average error we omit from the computation the �rst measurement interval because there
no entries are preserved from the previous interval, making the behaviour of the algorithm identical to the
original sample and hold. We perform two sets of experiments: with �xed threshold and varying oversampling
and with �xed oversampling and varying the threshold. The improvement introduced by preserving entries
is not in
uenced much by the oversampling but it is in
uenced considerably by the choice of the threshold.
We conjecture that this happens because the magnitude of the improvement depends on the distribution
of the durations for large
ows and this changes as we change the threshold because the mix of large
ows
changes. Figures 17 to 19 show the the number of false negatives, the average error of the estimate and the
memory usage with preserving entries. All the plots present ratios to the values obtained without preserving

50

Figure 17: E�ect of preserving entries on false negatives

Figure 18: E�ect of preserving entries on average error

51

Figure 19: E�ect of preserving entries on memory usage

entries. As shown in Figure 17 the number of false negatives is generally reduced to between 15% and 50%
. The exact amount of the improvement depends strongly on the actual trace, the
ow de�nition and the
threshold. The huge spike for the MAG trace with
ows de�ned based on destination IP address for a
threshold of 0.07% of the link bandwidth is due to the fact that the original algorithm has a single false
positive in 900 intervals while when preserving entries we have 2. We don't consider this an indication that
preserving entries can increase the number of false negatives. The average error decreases to between 30%
and 5% strongly depending on the trace and
ow de�nition. We consider this the most important gain of
preserving entries. The increase in memory usage is between 30% and 80% and depends strongly on the
trace and
ow de�nition. We can see that traces dominated by few very heavy very long lived
ows such as
MAG with
ows de�ned by AS pairs have both a low cost (small increase in memory) and a high bene�t
(large decrease in error) for preserving entries. For the COS trace where few very heavy but not very long
lived
ows dominate, the cost of preserving entries is still low but the bene�ts are not as high.

Findings: Preserving entries reduces the probability of false negatives by 50% - 85%. It reduces the
average error by 70% - 95%. The reduction is strongest when large
ows are long lived. Preserving entries
increases memory usage by 40% - 70%. The increase is smallest when large
ows make up a larger share of
the traÆc. The value of the oversampling does not a�ect the magnitude of the improvements of preserving
entries.

G.3 The e�ect of early removal

To measure the e�ect of early removal, we choose 9 con�gurations with oversampling of 1, 4 and 7 and with
thresholds of 0.005% 0.025% and 0.1% of the link bandwidth. For each of these con�gurations, we measure

52

0 0.1 0.2 0.3 0.4 0.5 0.6

Ratio of early removal threshold to threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
um

be
r

of
 fa

ls
e

ne
ga

tiv
es

 (
ra

tio
)

0.005 - 1
0.005 - 4
0.005 - 7
0.025 - 1
0.025 - 4
0.025 - 7
0.1 - 1
0.1 - 4

Figure 20: E�ect of early removal on false negatives

0 0.1 0.2 0.3 0.4 0.5 0.6

Ratio of early removal threshold to threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 e
rr

or
 (

ra
tio

)

0.005 - 1
0.005 - 4
0.005 - 7
0.025 - 1
0.025 - 4
0.025 - 7
0.1 - 1
0.1 - 4
0.1 - 7

Figure 21: E�ect of early removal on error

53

0 0.1 0.2 0.3 0.4 0.5 0.6

Ratio of early removal threshold to threshold

0.7

0.8

0.9

1.0

1.1

1.2

1.3

M
em

or
y

us
ag

e
(r

at
io

)
0.005 - 1
0.005 - 4
0.005 - 7
0.025 - 1
0.025 - 4
0.025 - 7
0.1 - 1
0.1 - 4
0.1 - 7

Figure 22: E�ect of early removal on memory usage

Trace +
ow de�nition False negatives Average error Memory

MAG 5-tuple 0% - 95.2% - 200% 77.4% - 90.6% - 92.6% 64.5% - 69.3% - 81.0%

MAG destination IP 0% - 90.5% - 100% 79.9% - 90.4% - 98.2% 66.0% - 72.3% - 87.3%

MAG AS pairs 50% - 92.4% - 100% 78.7% - 88.9% - 93.2% 74.8% - 80.5% - 91.8%

IND 5-tuple 55.6% - 92.0% - 160% 81.4% - 89.5% - 96.2% 73.6% - 80.5% - 91.4%

COS 5-tuple 0% - 84.5% - 104% 77.5% - 85.0% - 92.3% 78.6% - 82.6% - 92.5%

Table 11: Various measures of performance when using an early removal threshold of 15% of the threshold

54

a range of values for the early removal threshold. We adjust the oversampling such that the probability of
missing a
ow at the threshold stays the same as without early removal (e.g. if the early removal threshold
is one third of the threshold, we increase the oversampling by half, see Section 4.1.4 for details). The point
of this experiment is to obtain the value for the early removal threshold that results in the smallest possible
memory usage. Figures 20 through 22 show our results for the COS trace with 50 runs for each con�guration.
We can see that the probability of false negatives decreases slightly as the early removal threshold increases.
This con�rms that we compensated correctly for the large
ows that might be removed early by increasing
the oversampling. Figure 21 con�rms our expectation that the average error decrease roughly linearly as
the early removal threshold increases. Figure 22 shows that there is an optimal value for the early removal
threshold (as far as memory usage is concerned) around 15% of the threshold. From these results we can also
conclude that the larger the threshold the more memory we save but the less we gain in accuracy with early
removal. Also the larger the oversampling, the more we gain in accuracy and memory. The results for other
traces and other
ow de�nitions have very similar trends, but the actual improvements achieved for various
metrics are sometimes di�erent. For brevity we do not present them in full. Instead we present in Table 11
the minimum, median and maximum values (among the 9 con�gurations) for the 3 metrics of interest when
using an early removal threshold of 15% of the threshold. As in the �gures, all values are reported as ratios
to the values obtained without early removal.

Findings: A good value for the early removal threshold is 15% of the threshold. For this value, with
oversampling is adjusted to compensate, the percentage of false negatives generally decreases slightly, the
average error always decreases slightly and the memory requirements decrease typically by 20% to 30%. The
decrease in memory usage is strongest when the number of
ows considerably below the threshold is large.
The larger the oversampling the stronger the bene�ts of early removal are.

G.4 Summary of �ndings about sample and hold

On our traces, basic sample and hold has a probability of false negatives an order of magnitude smaller
than predicted in section 4.1.1. The memory requirements are also one to two orders of magnitude below
what the conservative analysis predicts. Preserving entries with an early removal threshold of 15% of the
threshold increases the memory requirements by rougly 20% but reduces the error in the estimates by an
order of magnitude.

H Measuring multistage �lters

We �rst compare the performance of serial and parallel multistage �lters to the bound of Theorem 3. We
measure the bene�ts of conservative update. Next we measure the e�ect of preserving entries and shielding.
We conclude by summarizing our �ndings about multistage �lters.

H.1 Comparing the behavior of basic �lters to the analytic results

First we compare the number of false positives for serial and parallel �lters with the bound of Theorem 3.
While the number of
ow memory locations used might seem like a more meaningful measure of the per-
formance of the algorithm we use the number of false positives because for strong �lters, the number of
entries is dominated by the entries of the actual large
ows making it harder to distinguish changes of even
an order of magnitude in the number of entries occupied by false positives. To make it easier to compare
results from di�erent traces and di�erent
ow de�nitions (therefore di�erent numbers of active
ows) we

55

1 2 3 4

Depth of filter

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

P
ro

po
rt

io
n

of
 fa

ls
e

po
si

tiv
es

 (
lo

g
sc

al
e)

MAG serial
MAG destIP serial
MAG ASpair serial
IND serial
COS serial
MAG parallel
MAG destIP parallel
MAG ASpair parallel
IND parallel
COS parallel
Strongest bound

Figure 23: Actual performance for a stage strength of k=1

1 2 3 4

Depth of filter

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

P
ro

po
rt

io
n

of
 fa

ls
e

po
si

tiv
es

 (
lo

g
sc

al
e)

MAG serial
MAG destIP serial
MAG ASpair serial
IND serial
COS serial
MAG parallel
MAG destIP parallel
MAG ASpair parallel
IND parallel
COS parallel
Strongest bound

Figure 24: Actual performance for a stage strength of k=2

56

1 1.5 2 2.5 3 3.5 4

Depth of filter

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

P
ro

po
rt

io
n

of
 fa

ls
e

po
si

tiv
es

 (
lo

g
sc

al
e)

MAG serial
MAG destIP serial
MAG ASpair serial
IND serial
COS serial
MAG parallel
MAG destIP parallel
MAG ASpair parallel
IND parallel
COS parallel
Strongest bound

Figure 25: Actual performance for a stage strength of k=3

1 2 3 4

Depth of filter

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

P
ro

po
rt

io
n

of
 fa

ls
e

po
si

tiv
es

 (
lo

g
sc

al
e)

MAG serial
MAG destIP serial
MAG ASpair serial
IND serial
COS serial
MAG parallel
MAG destIP parallel
MAG ASpair parallel
IND parallel
COS parallel
Strongest bound

Figure 26: Actual performance for a stage strength of k=4

57

actually report the percentage of false positives, not their number. Another important detail is that we
express the threshold as a percentage of the maximum traÆc, not as a percentage of the link capacity. While
actual implementations do not know the traÆc in advance, this choice of thresholds gives us information
about how the �lters would behave under extreme conditions (i.e. a fully loaded link). In this �rst set of
experiments, we �x the threshold to a 4096th of the maximum traÆc and vary the stage strength from 1
to 4 and the depth of the �lter from 1 to 4 (the number of counters used by the �lter is between 4K and
64K). For each con�guration we measure 10 runs with di�erent random hash functions. Figures 23 to 26
present the results of our measurements for stage strengths from 1 to 4. We also represent the strongest
bound we obtain from Theorem 3 for the con�gurations we measure. Note that the y axis is logarithmic.
We can see from the results that the �ltering is in general at least an order of magnitude stronger than the
bound. Parallel �lters are stronger than serial �lters with the same con�guration. The di�erence grows from
nothing in the degenerate case of a single stage to up to two orders of magnitude for four stages. The actual
�ltering also depends on the trace and
ow de�nition. We can see that the actual �ltering is strongest for
the traces and
ow de�nitions for which the large
ows strongly dominate the traÆc. We can also see that
the actual �ltering follows the straight lines that denotes exponential improvement with the numbering of
stages. For some con�gurations, after a certain point, the �ltering doesn't improve as fast anymore. This
corresponds to the false positives being dominated by a few
ows close to threshold. Since the parallel �lters
clearly outperform the serial ones we use them in all of our subsequent experiments.

Findings: Multistage �lters outperform Theorem 3 by up to 4 orders of magnitude (varies with the
number of stages and stage strength). The percentage of false positives decreases exponentially with the
number of stages. Parallel �lters are much better than serial �lters. The performance of the �lter depends
on the traÆc mix.

H.2 The e�ect of conservative update

Our next set of experiments evaluates the e�ect of conservative update. We run experiments with �lter
depths from 1 to 4. For each con�guration we measure 10 runs with di�erent random hash functions. For
brevity we only present in �gures 27 and 28 the results for stage strengths of 1 and 3. The improvement
introduced by conservative update grows to more than an order of magnitude as the number of stages
increases. For the con�guration with 4 stages of strength 3 we obtained no false positives when running on
the MAG trace with
ows de�ned by AS pairs and that is why the plotted line \falls o�" so abruptly. Since
by extrapolating the curve we would expect to �nd approximately 1 false positive, we consider that this data
point does not invalidate our conclusions.

Findings: Conservative update reduces the number of false positives by approximately an order of mag-
nitude (depending mostly on the number of stages).

H.3 The e�ect of preserving entries and shielding

Our next set of experiments evaluates the e�ect of preserving entries and shielding. We run experiments
with �lter depths from 1 to 4 and stage strengths of 0.5 and 2. We measure the largest number of entries
of
ow memory used and the average error of the estimates. The improvement in the average error does
not depend much on the �lter con�guration. Table 12 shows the results for each trace and
ow de�nition.
Usually for the weak �lters (few, weak stages) the reduction in the average error is slightly larger than for
the strong ones.

There are two con
icting e�ects of preserving entries on the memory requirements. On one hand by
preserving entries we increase the number of entries used. On the other hand shielding increases the strength

58

1 2 3 4

Depth of filter

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

P
ro

po
rt

io
n

of
 fa

ls
e

po
si

tiv
es

 (
lo

g
sc

al
e)

MAG parallel
MAG destIP parallel
MAG ASpair parallel
IND parallel
COS parallel
MAG conservative
MAG destIP cons.
MAG ASpair cons.
IND conservative
COS conservative

Figure 27: Conservative update for a stage strength of k=1

Figure 28: Conservative update for a stage strength of k=3

59

Trace +
ow de�nition Error when preserving entries

MAG 5-tuple 19.12% - 26.24%

MAG destination IP 23.50% - 29.17%

MAG AS pairs 16.44% - 17.21%

IND 5-tuple 23.46% - 26.00%

COS 5-tuple 30.97% - 31.18%

Table 12: Average error when preserving entries compared to the average error in the base case

1 2 3 4

Depth of filter

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

C
ha

ng
e

in
 m

em
or

y
us

ag
e

MAG k=0.5
MAG destIP k=0.5
MAG ASpair k=0.5
IND k=0.5
COS k=0.5
MAG k=2
MAG destIP k=2
MAG ASpair k=2
IND k=2
COS k=2

Figure 29: Change in memory usage due to preserving entries and shielding

60

Trace + Sample and hold Multistage �lters

ow ID o=1 o=4 o=7 d=2 d=3 d=4

MAG 78.0%/92.8% 87.2%/94.4% 91.0%/95.0% 72.6%/91.3% 76.4%/92.1% 81.5%/93.0%

MAG destIP 73.6%/93.1% 88.6%/94.8% 90.2%/95.7% 65.1%/92.8% 65.7%/94.3% 85.5%/94.7%

MAG ASpair 82.3%/92.1% 87.1%/93.0% 87.8%/93.7% 63.9%/92.1% 69.5%/93.4% 70.0%/93.8%

IND 78.0%/92.5% 88.8%/94.2% 87.9%/94.4% 75.5%/91.7% 67.0%/92.4% 32.0%/92.0%

COS 83.9%/90.0% 85.7%/90.7% 86.6%/91.6% 72.1%/89.0% 66.7%/89.2% 52.1%/89.2%

Table 13: The average to maximum memory usage ratios for various con�gurations

of the �lter (see section 4.2.3 for details) which leads to a decrease in the number of false positives. Figure 29
shows how memory usage is in
uenced by preserving entries. The �rst e�ect predominates for strong �lters
leading to an increase in memory usage while the second one predominates for weak �lters leading to a
decrease. The increases in memory usage are small while the improvements due to shielding can be signi�cant.
When computing the maximum memory requirement we ignored the �rst two measurement intervals in each
experiment because the e�ect of shielding is fully visible only from the third measurement interval on.

Findings: Preserving entries reduces the average error of the estimates by 70% to 85%. The e�ect
depends on the traÆc mix. Preserving entries increases the number of
ow memory entries used by up to
30%. Shielding considerably strengthens weak �lters. This can lead to reducing the number of
ow memory
entries by as much as 70%.

H.4 Summary of �ndings about multistage �lters

Multistage �lters outperform Theorem 3 by many orders of magnitude (varies with con�guration and traÆc
mix). Parallel �lters are better than serial ones and conservative update helps a lot. Shielding further
increases the strength of weak �lters. Preserving entries improves the accuracy of results by almost an order
of magnitude (depends on traÆc mix) causing an increase of up to 30% in the number of
ow memory entries
used.

I Calibrating the threshold adaptation algorithm

In this section we use measurements to determine the right constants to be used by the algorithm for dynam-
ically adapting the threshold. We will determine di�erent parameters for sample and hold and multistage
�lters. We �rst determine the safety margin and then the range of adjustment ratios.

I.1 Finding the right target usage

We use a brute force approach to �nding the right measurement interval: we run the algorithms with a
large number of con�gurations and thresholds on all traces and with all
ow de�nitions and record the ratio
between the average and maximum memory usage for each con�guration. The results in table Table 13 show
the minimum and average values (over all con�gurations). We tested thresholds between 0.005% and 1% of
the link bandwidths in increments of around 40%. For sample and hold we preserved entries, used an early
removal threshold of 15% and used oversampling of 1, 4 and 7. For multistage �lters we used parallel �lters
with conservative update, preserving entries and shielding. The number of counters goes from less than the

61

Trace + Perfect Sample and hold Multistage �lters

ow ID knowledge o=1 o=4 o=7 d=2 d=3 d=4

MAG 0.34/1.48 1.00/1.78 1.18/1.98 1.25/2.13 0.24/7.78 0.16/10.2 0.12/12.5

MAG destIP 0.45/2.86 1.00/2.78 1.21/2.97 1.31/3.06 0.15/9.67 0.10/12.9 0.08/17.5

MAG ASpair 0.80/3.30 1.09/3.40 1.38/3.63 1.56/3.81 0.34/10.2 0.16/18.3 0.12/30.0

IND 0.95/2.27 1.23/2.97 1.38/3.64 1.35/3.76 0.35/14.0 0.17/15.9 0.17/21.4

COS 0.77/3.02 1.17/2.23 1.35/2.31 1.44/2.80 0.58/7.31 0.58/9.19 0.37/10.9

Table 14: The range of measured adjustment ratios

number of new large
ows per interval for the smallest threshold up to 8 to 64 times more in increments
of a factor of 2 (4 to 7 con�gurations) and for each number of counters we measure �lters with depths of
2, 3 and 4 stages. To avoid pathological cases we do not consider the con�gurations where the average
number of memory locations used is less than 100. We can see that for all algorithms and all traces the
average ratio between the average and maximum memory usage is between 89% and 96%, but the worst
case numbers are much smaller. Furthermore these numbers do not depend signi�cantly on the number of
stages or oversampling. We can also see that the minimum ratios are smaller for multistage �lters than
for sample and hold especially as the number of stages goes up. A conservative way to choose the target
usage would be the smallest ratio seen. Since the consequence of occasional memory over
ows is not that
severe (especially not for sample and hold that uses early removal, so most of the entries created towards
the end of the measurement interval are not reported on anyway), we use the bolder values of 90% for traÆc
measurement devices using sample and hold and 85% for the ones using multistage �lters.

I.2 Finding the right adjustment ratios

We used the same measurements as above to get minimum and maximum values for the adjustment ratio.
We it based on the ratio of the average memory usage for consecutive thresholds (approximately 40% apart).
Table 14 contains our maximum and minimum values for the adjustment ratio over all thresholds and
con�gurations. We also added the perfect knowledge algorithm (it decides which
ows to add to the
ow
memory based on knowledge of their exact traÆc) to be able to separate the e�ects of the peculiarities of the
distributions of
ows sizes from the behaviors introduced by our algorithms. We can see that sample and
hold is much more robust than multistage �lters (adjustment ratios closer to 1) and that it is very close (from
this point of view) to the perfect knowledge algorithm. For certain settings (e.g. the MAG trace with
ow ID
destination IP and an oversampling of 1) it is even more robust than the perfect knowledge algorithm. We can
see that the robustness of sample and hold does not depend signi�cantly on the oversampling factor. Based
on these results we use a value of 1 for adjustdown and 3 for adjustup for traÆc measurement devices using
sample and hold. Multistage �lters have huge maximum adjustment ratios, especially when the number of
stages is large. This is because when �lters are overwhelmed with traÆc they quickly go from strong �ltering
to very little �ltering. Based on the results we would use the following values for adjustdown and adjustup:
0.24 and 10 for 2 stage �lters; 0.16 and 16 for 3 stage �lters and 0.12 and 21 for 4 stage �lters. However,
after a number of sample runs it turns down that these adjustment ratios are too conservative, so we use an
adjustdown of 0.5 and an adjustup of 3 instead.

62

