
The Power of Slicing in Internet Flow Measurement

Ramana Rao Kompella
University of California, San Diego

ramana@cs.ucsd.edu

Cristian Estan
University of Wisconsin-Madison

estan@cs.wisc.edu

Abstract
Flow measurement evolved into the primary method for
measuring the composition of Internet traffic. Large ISPs
and small networks use it to track dominant applications,
dominant users, and traffic matrices. Cisco’s NetFlow is
a widely deployed flow measurement solution that uses a
configurable static sampling rate to control processor and
memory usage on the router and the amount of report-
ing traffic generated. Proposed enhancements to the ba-
sic Sampled NetFlow solve some of its problems. Smart
Sampling reduces the overhead of reporting and storing
the flow records generated by NetFlow by sampling them
with probability proportional to their byte counts. Adap-
tive NetFlow limits memory and CPU consumption at the
router by dynamically adapting the sampling rate used by
NetFlow.

In this paper we propose “Flow Slices”, a flow mea-
surement solution that can be deployed through a soft-
ware update at routers and traffic analysis workstations.
Flow Slices, inspired from Smart Sampling and Adap-
tive NetFlow, introduces novel ideas such as – separating
sampling rate adaptation from measurement bins; con-
trolling the three resource bottlenecks at the router (CPU,
memory, reporting bandwidth) using separate “tuning
knobs”; basing smart sampling decisions on multiple fac-
tors; a flow measurement algorithm related to sample and
hold; new estimators for the number of bytes and flows.
The resulting solution has smaller resource requirements
than current proposals and it enables more accurate traf-
fic analysis results. We provide theoretical analyses of
the unbiasedness and variances of the estimators based
on Flow Slices and experimental comparisons with other
flow measurement solutions such as Adaptive NetFlow.

1 Introduction
The role of traffic measurement in operating large scale
IP networks requires little or no introduction. Traf-
fic measurement allows network operators to make in-
formed decisions about provisioning and extending their
networks, and it helps solve many operational problems.
Specialized devices operating on relatively low traffic
links can perform complex security analyses that reveal
malicious activities [18, 20], monitor complex perfor-
mance metrics [6], or simply capture packet (header)
traces with accurate timestamps [7] to be analyzed of-
fline. Much simpler solutions such as SNMP coun-
ters [16] are deployed on even the highest speed links,
but they only give measurements of the total volume of

the traffic. Flow level measurement at routers [2, 3] of-
fers a good compromise between scalability and the com-
plexity of the traffic analyses supported since it can offer
details about the composition of the traffic mix.

In this paper, we propose a new flow measurement so-
lution: Flow Slices. The contributions of this paper are
both practical and theoretical and we summarize the most
important ones here.� Flow Slices has separate parameters controlling the

three possible bottlenecks at the router: process-
ing load, memory, and reporting bandwidth. This
makes it easier to fit this solution into various im-
plementation scenarios.� The flow slicing algorithm at the core of this solu-
tion provides more accurate results than packet sam-
pling using the same amount of memory and it en-
ables new measures of traffic such as estimates for
the number of active flows.� Flow Slices separates sampling rate adaptation from
binning and thus provide a solution with the robust-
ness of Adaptive NetFlow without paying the extra
cost in memory and measurement bandwidth due to
binned measurement. See Table 1 for a comparison
of various flow measurement solutions.� We propose multifactor smart sampling that takes
into account multiple factors such as byte counts,
packet counts, and the existence of SYN flags in the
flow record to determine the sampling probability
for individual flow records. For comparable config-
urations this decreases significantly the variance in
estimates of the number of flow arrivals while in-
creasing only slightly the variance for byte counts
when compared to Smart Sampling.� Optional binned measurement allows us to elimi-
nate binning error in the analysis phase, while still
maintaining the memory and reporting bandwidth
overheads below those of Adaptive NetFlow.� We propose novel estimatorsbb, bf , bA(1), and bA(2)
for various measures of traffic. See Section 4 for a
discussion of these and other estimators.

Before we explain Flow Slices, we briefly review some
of the previous work in this area of Internet flow mea-
surement.

Issue Sampled NetFlow Adaptive NetFlow Flow Slices

Memory usage Variable Fixed Fixed
Volume of flow data reported Variable Fixed Fixed
Behavior under DDoS with spoofed sources Panicky flow Reduction in Small reduction
and other traffic mixes with many flows expiration accuracy in accuracy
Estimates of traffic in small time bins Less accurate Accurate Less accurate
Reporting overhead when using small bins Unaffected Large increase Unaffected
Lifetime of flow record in router memory Min(active timeout, Bin length Min(slice length,

flow length + flow length +
inactive timeout) inactive timeout)

Resource usage at end of time bin N/A Reporting spike or N/A
extra memory

Processing intensive tasks Counting Counting and Counting
renormalization

Counting TCP flow arrivals (using SYNs) Yes Yes Yes
Counting all active flows No Separate flow Yes

counting extension
Counting all active flows at high speeds No Hardware flow No

counting extension

Table 1: Sampled NetFlow, Adaptive NetFlow and Flow Slices differ in the types of measurements they support, in
how they adapt to different traffic mixes, and in their resource consumption (memory usage and reporting traffic).

2 Related work
NetFlow [17], first implemented in Cisco routers, is
the most widely used flow measurement solution today.
Routers maintain flow records collecting various bits of
information. Flows are identified by fields present in the
header of every packet1: source and destination IP ad-
dress, protocol, source and destination port, and type of
service bits. The flow record keeps information such as
the number of packets in the flow, the (total) number of
bytes in those packets, the timestamp of the first and last
packet, and protocol flag information such as whether
any of those packets had the SYN flag set. NetFlow uses
four rules to decide when to remove a flow record from
router memory and report it to the collection station: 1)
when TCP flags (FIN or RST) indicate flow termination,
2) 15 seconds (configurable “inactive timeout”) after see-
ing the last packet with a matching flow ID, 3) 30 minutes
(configurable “active timeout”)’ after the record was cre-
ated to avoid staleness and 4) when the memory is full.

On every new packet, NetFlow looks up the corre-
sponding entry (creating a new entry if necessary) and
updates that entry’s counters and timestamps. Since for
high speed interfaces, the processor and the memory
holding the flow records cannot keep up with the packet
rate, Cisco introduced Sampled NetFlow [22] which up-
dates the flow cache only for sampled packets. For a
configurable value of a parameterN , a packet is sampled
with one inN probability.

1Technically the incoming router interface is also part of the flow
identifier.

One problem with NetFlow is that the memory re-
quired by the flow records and the bandwidth con-
sumed to report them depends strongly on the traffic
mix. In particular, large floods of small packets with
randomly spoofed source addresses can increase mem-
ory and bandwidth requirements by orders of magnitude.
Adaptive NetFlow [10] solves this problem by dynami-
cally adapting the sampling rate. Adaptive NetFlow di-
vides the operation of the flow measurement algorithm
into equally spaced time bins.2 Within each bin, the al-
gorithm starts by sampling aggressively (high sampling
probability). If memory is consumed too quickly, it
switches to less aggressive sampling. It then “renormal-
izes” existing entries so that they reflect the counts they
would have had with the new sampling rate in effect from
the beginning of the bin. At the end of the bin, all entries
are reported.

Using fixed size bins in Adaptive NetFlow increases
the memory utilization and can cause bursty spikes in
bandwidth consumption as compared to Sampled Net-
Flow. Memory utilization is higher because, to oper-
ate seamlessly between bin-boundaries, Adaptive Net-
Flow requires two sets of records (double-buffering),
one for current bin and one for records in the previous
bin while they are being transmitted. Without double-
buffering, flow records that expire at the bin-boundary
need to be transmitted immediately at very high band-
width in order to create space for the next set of entries.

2Typically, traffic statistics are analysed in time bins, andhence, bin
sizes are chosen based on the granularity of traffic statistics.

Large flows spanning multiple bins will be reported sep-
arately for every bin increasing the bandwidth consump-
tion. Table 1 gives a summary comparison of Sampled
NetFlow, Adaptive NetFlow and Flow Slices.

These flow records are then used to estimate the num-
ber of bytes or packets in various traffic aggregates of
interest. This can give network operators information
about dominant applications, the network usage of vari-
ous clients, traffic matrices, and many other useful statis-
tics [12, 19, 1, 14]. Smart Sampling [8] is a way of
reducing the data used by such analyses without signif-
icantly affecting their results. Smart Sampling retains
flow records with probability proportional to the size of
their byte counter. The flow records can also be used to
estimate the number of active flows which is important
when looking for denial of service attacks, scans, and
worms in the traffic mix. Unfortunately, if we use Sam-
pled NetFlow it is impossible to recover the number of
flows in the original traffic from the collected data [5]
unless we use protocol information. By looking at the
SYN flag information in flow records it is possible to ac-
curately estimate the number of TCP flows in the traffic
mix [9].

3 Description of flow slices
The core flow slicing algorithm is based on the sam-
ple and hold algorithm [11]. After presenting the core
algorithm, we discuss four extensions: adding packet
sampling to scale to high speed links, using an inactiv-
ity timeout to reduce memory usage at router, adding
binned measurement to reduce binning error during anal-
ysis, and adding a variant of smart sampling to control
the volume of flow data reported. The version of Flow
Slices described used for Table 1 has the first two exten-
sions. We also discuss the configuration parameters of
the complete flow slicing solution and how they can be
set adaptively based on the current traffic mix.

3.1 Core algorithm
The core flow slicing algorithm addresses the problem
of reducing the memory usage of the flow measure-
ment module. Sampled NetFlow and Adaptive NetFlow
use random packet sampling: they only handle sampled
packets. Just as sample and hold [11], flow slicing uses
sampling only to control the creation of flow entries,
once a sampled packet creates an entry for a flow, all
its subsequent packets are counted (not just the sampled
ones). This increases the accuracy of the estimates of
packet counts, without changing the memory require-
ment. We use the “flow slicing probability”p to control
the creation of flow entries. We expire and report each
entry exactlyt seconds after its creation, irrespective of

the rate at which packets arrive for a particular flow.3.
Just as in the case of NetFlow, the entry associated with
a flow has a byte and packet counter updated at every
packet, timestamps for the first and last packet, and it
stores protocol information such as whether any of the
packets counted against the entry had the SYN flag set.
To ensure unbiasedness of estimators, on creation of an
entry we do not initialize the byte counter to the number
of bytesbfirst in the packet that caused the creation of
the entry, but tobfirst=p (see Section 4.2 for more de-
tails).

The slice lengtht is related to the “active timeout” of
NetFlow which controls for how long an active entry is
kept before expiring and being reported (default 30 min-
utes). Both of these parameters limit the staleness of the
data (i.e. if we have a long-lived flow, we know that its
traffic will be reported with at most this much delay).

By dynamically adapting the flow slicing probability,
we can control the rate at which entries are created and
freed, thus ensuring that the algorithm stays within its al-
located memory budgetM . By keeping the rate at which
entries are created, on average slightly belowM=t, we
can also keep the rate at which flows records are reported
smooth. In contrast Adaptive NetFlow proposes expiring
all active entries at the end of the measurement bin, so
it either has a large peak in reports, or it requires buffers
that increase the memory usage by almost a factor of two
if the reporting of the records is smoothed out over the
next measurement bin. We do not however, discuss dy-
namic adaptation in much detail in this paper, as adap-
tation techniques similar to that in [10] can be applied
in this context using feedback from the current memory
usage. Note however, that in our adaptation, we do not
require the costly operation of renormalization that is re-
quired in Adaptive NetFlow. Next we discuss some of
the tuning knobs we provide to control the three resource
bottlenecks (CPU, Memory, Bandwidth).

3.2 Scaling to high speeds
The flow slicing probabilityp controls the memory
usage, but since we do a lookup in the flow memory for
every packet, flow slicing does not control the process-
ing load. In the presence of limited processing power,
we add a random packet sampling stage in front of the
flow slicing stage (see Figure 1). A simple solution is
to set the packet sampling probabilityq statically to a
value that ensures that the processor performing the flow
measurement can keep up even with worst case traffic
mixes. Based on Cisco recommendations [17] for turn-
ing on NetFlow sampling for speeds higher than OC-3,

3We call our proposal “flow slices” because each entry tracks a
“slice” of lengtht from the flow. We could extend the flow slice termi-
nation condition to protocol specific hints such as FIN or RSTflags, but
since these are not reliable in the presence of packet sampling which we
use as a first stage, we ignore them in this paper.

FLOW MEMORY

CREATE FLOW ENTRY

TIME OUT
AFTER SLICE DURATION

LOOKUP FLOW ENTRY

ENTRY NOT FOUND

Flow Record sent to
Monitoring Station

Packet Arrival

ADAPTIVE
SLICING PROBABILITY

BASED ON MEMORY USAGE

flow slicing

reduces processing overheads

reduces memory usage

packet sampling

reduces volume of reports
multifactor smart sampling

Figure 1: Architecture

we setq to 1=4 for OC-12 links,1=16 for OC-48, etc.
With these packet sampling rates, and with worst case
traffic consisting of the link entirely full with 40 byte
packets, the flow measurement module has more than0:5� per packet and it has time to perform between8
and9 (wide) DRAM accesses on average.

3.3 Adding an inactivity timer
Most flows in the Internet are short-lived. If our only
mechanism for removing an entry is its expiration after
the slice lengtht and we use a large value fort, at any
moment in time, most of the entries in the flow mem-
ory will belong to flows that are no longer active and
just use up memory waiting to expire. On the other hand
having a very short slice length can lead to an increase
in reporting traffic and loss of accuracy. Adding an inac-
tive timeout parametertina
tive to flow slices reduces the
memory spent on obsolete entries. Experimental results
in Section 6.1 show that we could significantly reduce
the memory requirement if we deploy inactivity timers.
An adaptive algorithm for setting the flow slicing rate can
turn this reduction in memory usage into an increase in
accuracy.

3.4 Adding binned measurement
With flow slices we have the same problem as with Net-
Flow if we want to perform traffic analysis using time
bins: for flow slices that span time bins, we can only
guess how many of the flow’s packets were in each bin,
and this introduces errors in the results. This problem
is even more pronounced when analysis is required in
very small time bins to capture more precise traffic dy-
namics. We can extend flow slices to support binned
measurement of traffic by keeping multiple sets of byte

and packet counters, one set for each bin the slice passes
through. By keeping separate counters for each bin, the
binning error is eliminated entirely, at the cost of in-
creasing the size of the flow records. Note that the re-
porting bandwidth costs of this solution are significantly
smaller than those of the solution used by Adaptive Net-
Flow where an entire record is reported for each bin. The
byte and packet counters are 8 bytes whereas a complete
record is 48 bytes.

The number of counters per record has to be one larger
than the number of bins required to fit a slice because the
flow slice can overlap only partially with the first and last
bin. The choice of the size of the measurement bin sup-
ported is a compromise between resource consumption
at the router and accuracy of results. Reasonable choices
can range anywhere from the slice lengtht to 20 times
smaller. For brevity, we do not explore this further in the
paper, but note that depending on the final goal, flow slic-
ing algorithm can be extended with additional resources
to obtain desired accuracy.

3.5 Controlling the reporting bandwidth
Smart sampling has been proposed as a way of reduc-
ing the number of flow records without causing much
error. Smart sampling focuses on measuring the number
of bytes in arbitrary aggregates of traffic and thus smart
sampling favors flow records with large byte counters
over those with small flow counters. Common packet
sizes vary between40 and 1500, so while the packet
counts are not proportional to the byte counts, they are
closely correlated. Thus smart sampling will ensure that
the errors introduced in packet counts are also small. The
situation is different with flow arrival counts. These de-
pend heavily on flow records with the SYN flag set, and
most such records come from small flows which are dis-
criminated against by smart sampling. Thus the errors
introduced by smart sampling in the flow arrival counts
are significant.

We propose a new variant of smart sampling,mul-
tifactor smart samplingwhich takes into consideration
not just byte counts, but also packet counts and SYN
flags. While multifactor smart sampling still favors flow
records with large byte and packet counts, it also favors
records with the SYN flag, thus ensuring that the errors
introduced into the flow arrival counts are not large ei-
ther. Because the exact rule used to determine the mul-
tifactor smart sampling probabilityr depends on estima-
tors of byte and packet counts, we postpone its discussion
to Section 4.5.

3.6 Setting the parameters of flow slicing
Routers or other network devices performing flow mea-
surement have three types of resources that can become
bottlenecks: processing power, flow memory, and re-

Parameter What it controls How it is set

Flow slicing probability Memory usage at router Adaptively based on memory usage
Flow slice length Staleness of reported data Statically based on user preferences
Inactivity timeout Reduces memory usage Statically based on typical inter packet arrival time
Packet sampling probability Processing load at router Statically based on worst case traffic
Bin size (optional) Binning error Statically based on user preferences
Smart sampling thresholds Volume of flow data reported Statically or adaptively based on target volume

Table 2: Configuration parameters for Flow Slices.

porting bandwidth. Flow slices use three different “tun-
ing knobs” to control these three resources: the packet
sampling probabilityq controls the processing load, the
flow slicing probability p controls the memory usage
and the thresholds determining the smart sampling pro-
bability r control the volume of data reported. This
can result in more accurate traffic analysis results than
using a single parameter, the packet sampling probabi-
lity, to control all three resources, as Adaptive NetFlow
does. This distinction would be irrelevant in practice if
the only scarce resource would be the processing power
at the router, so it is useful to perform a quick sanity
check before proceeding any further: can an unfavor-
able traffic mix push the memory requirements or re-
porting bandwidth so high that they become a problem?
Let’s first assume a traffic mix consisting of back to back
minimum sized packets, each belonging to a different
flow (a massive flooding attack with randomly spoofed
source addresses). With the packet sampling rates from
Section 3.2, the traffic measurement module would re-
ceive a packet every0:5�. Even with an aggressive in-
active timeout oftina
tive = 5 seconds, we need a flow
memory that can fit10; 000; 000 flow records, which at64 bytes/record[17] requires610 megabytes. When re-
ported flow records take48 bytes (ignoring overheads),
so at2; 000; 000 flow records/second, which requires768
megabits/second. These numbers are orders of magni-
tude above what one can comfortably afford. The exper-
iments from Section 6 use realistic traffic mixes to eval-
uate the benefits of Flow Slices as compared to Sampled
NetFlow and Adaptive NetFlow as opposed to patholog-
ical traffic scenarios.

For each of the parameters of Flow Slices listed in
Table 2 we need to decide whether to set them statically
as part of the router configuration, or dynamically adapt
them to the current traffic mix. Of the three main tuning
knobs, the flow slicing probabilityp should definitely be
set dynamically to allow the router to protect from mem-
ory overflow when faced with unfavorable traffic mixes.
The thresholds controlling the smart sampling probabi-
lity can also be set adaptively. In this paper we consider
that the packet sampling probabilityq is static based on
recommended values for different link capacities. Flow

Slices would work just as well with a dynamic packet
sampling probability that could go above the conserva-
tive static value, but since it is hard to guarantee the sta-
bility of such approach without pushing the packet sam-
pling rate adaptation logic into hardware (which raises
deployment problems), we chose not to explore such a
solution in this paper.

The observant reader might have noticed that without
the optional binned measurement feature Flow Slices re-
semble Sampled NetFlow. If the dynamic adaptation al-
gorithms set the flow slicing probabilityp and the smart
sampling probabilityr to 1 the two solutions perform ex-
actly the same processing. We consider this to be an im-
portant feature. The difference between Sampled Net-
Flow and Flow Slices is in how they react to unfriendly
traffic mixes and environments with strong constraints
on resources. While both Adaptive NetFlow and Flow
Slices provide robustness to unfavorable traffic mixes,
Adaptive NetFlow forces the user to adopt the binned
measurement model (which can increase memory usage
and the volume of reports) even when the traffic mix is
favorable.

4 Estimators based on flow slices
In this section we discuss formulas for estimating traffic
based on the flow records provided by Flow Slices. In
practice, the user would be interested in the number of
bytes, packets or flows in the entire traffic mix or a por-
tion of it (e.g. the HTTP traffic, the traffic coming from
a certain customer, etc.). All our estimators focus on a
single flow. To compute the total traffic the user has to
sum the contributions of all individual flow records. If
the estimators for individual flows have the property of
unbiasedness, the errors in the estimates for individual
flows will not accumulate, but cancel out (to some ex-
tent). This is the reason why, in this section, we not only
discuss the various estimators, but also show that they are
unbiased.

For the purposes of our analysis, a bin is an arbitrary
interval of time. This is not to be confused with the traf-
fic analysis bins or Adaptive NetFlow’s definition of bin.
We will start by focusing on the simple case of a sin-
gle bin, with slice lengtht and inactive timeouttina
tive

Name Meaningp flow slicing probabilityq packet sampling probabilityr smart sampling probabilitys size of flow (in packets) before flow slicing
s packet counter in flow recordbs estimate of the size of flow before flow slicing (0 if flow not sliced)S original size of flow (in packets) before packet samplingbS estimate of the original size of flow (0 if flow not sampled or not sliced)b size of a flow in bytes before flow slicing
b byte counter in flow recordbb estimate of the number of bytes in flow based on flow slices (0 ifflow not sliced)B original size of flow in bytes before packet samplingbB estimate of the original size of flow in bytes (0 if flow not sampled or not sliced)bf contribution to the estimate of the number of active flows (0 if flow not sliced)ba contribution to the estimate of the number of flow arrivals (0if flow not sliced)bA(1) contribution to first estimator of number of flow arrivals (0 if flow not sampled or not sliced)bA(2) contribution to second estimator of number of flow arrivals (0 if flow not sampled or not sliced)zs smart sampling threshold controlling the influence ofbS onrzb smart sampling threshold controlling the influence ofbB on rza smart sampling threshold controlling the influence ofbA(1) on r
Table 3: Notation used in this paper.

larger than the size of the bin and flow memory empty at
the beginning of the bin.

Next we will look at how the estimators generalize
when we remove these constraints. Table 3 summarizes
notation used throughout the paper.

4.1 Estimating packet counts
The packet counter
s in an entry is initialized to1 when
the first packet of the flow gets sampled, and it is incre-
mented for all subsequent packets belonging to the flow.
Let s be the number of packets in the flow at the input of
the flow slicing algorithm. Equation 1 gives the formula
for our estimatorbs for the number of packets in the flow.bs = 1=p� 1 +
s (1)

Lemma 1 bs as defined in Equation 1 is an unbiased es-
timator ofs.

Proof: By induction on the number of packetss.
Base case:If s = 1, the only packet of the flow is

sampled with probabilityp and in that case it is counted
as1=p�1+1 = 1=p packets. With probability1�p it is
not sampled (and it counts as0). ThusE[bs℄ = p � 1=p+0 = 1 = s.

Inductive step: By induction hypothesis, we know
that for a flow withs0 = s � 1, E[bs0℄ = s0 = s � 1.
Also since the flow slice lengtht and the inactive time-
out tina
tive are larger than the bin size, we know that

once the flow gets an entry, all its packets within the bin
will get counted by
s. There are two possible cases: the
first packet of the flow gets sampled, and we get
s = s,
or it doesn’t and than the value of
s andbs will be the
same as those for a flow withs0 = s � 1 packets for
which the sampling decisions are the same as for the rest
of the packets of our flow.E[bs℄ = p � (1=p� 1 + s) + (1� p)E[bs0℄= 1� p+ ps+ (1� p)(s� 1) = s�

If we sample packets randomly with probabilityq be-
fore applying the flow slicing algorithm, we will want
to estimate the number of packetsS at the input of the
packet sampling stage. SinceE[s℄ = qS, it is easy to
show thatbS = 1=qbs is an unbiased estimator forS.

4.2 Estimating byte counts
Before discussing, the solution adopted by flow slices to
estimate the number of bytes in a flow, we show why
a simpler solution does not work. We could have the
byte counter
b in the flow entry just count the total num-
ber of bytes in the packets seen once the flow record is
created. Just like with the packet counter, we need an
additive correction to account for the packets missed be-
fore the creation of the entry. We can get an unbiased
estimate for the number of packets missed, but not for

their total size, because we do not know their sizes. We
could assume that the packet sizes are uniform within
the flow, but this would lead to systematic biases because
they are not. As the proof of Lemma 2 shows, storing the
size of the packet that was sampled and caused the cre-
ation of the entry would solve the problem because using
it to estimate the total number of bytes in the packets
not counted does lead to an unbiased estimator. But this
would require another entry in the flow record. We de-
cided instead to store this information in the byte counter
itself by initializing
b to bfirst=p when the entry is cre-
ated (bfirst is the size in bytes of the sampled packet).
Let b be the number of bytes of the flow at the input of
the flow slicing algorithm.bb =
b (2)

Lemma 2 bb as defined in Equation 2 is an unbiased es-
timator ofb.

Proof: By induction on the number of packets in the
flow s. Let bi for i from 1 to s be the sizes of the indi-
vidual packets. By definition the number of bytes in the
flow is b = Psi=1 bi. For convenience of notation we
index the packet sizes in reverse order, sob1 will be the
size of the last packet andbs the size of the first one.

Base caseIf s=1, the only packet is sampled with pro-
bability p and in that case it is counted
b = b1=p = b=p
bytes. With probability1 � p it is not sampled (and it
counts as0). ThusE[
b℄ = p � b=p+ 0 = b.

Inductive stepBy induction hypothesis we know that
if the first packet is not sampled we are left with the lasts0 = s � 1 packets andE[
b℄ = b0 = b � bs. If the first
packet gets sampled, we count it asbs=p and we count
the rest exactly because the flow slice lengtht and the
inactive timeouttina
tive are larger than the bin size.E[
b℄ = p � (bs=p+ b0) + (1� p)b0= bs + pb0 + (1� p)b0 = bs + b0 = b�

If we sample packets randomly with probabilityq be-
fore applying the flow slicing algorithm, we will want to
estimate the number of bytesB at the input of the packet
sampling stage. SinceE[b℄ = qB, it is easy to show thatbB = 1=qbb is an unbiased estimator forB.

4.3 Estimating the number of active flows
We use two definitions for counting flows: active flows
and flow arrivals. A flow is active during a time bin if
it sends at least one packet during that time bin. Multi-
ple TCP connections that happen to share the same port
numbers are considered a single flow and they will be re-
ported in the same flow record under our current assump-

tions4. Active flows with none of their packets sampled
by the flow slicing process will have no records so at
least some of the flow records we get we should count as
more than one active flow so that the total estimate will
be unbiased. Our rule is to count records with a packet
counter
s of 1 as1=p flows and other records as1 flow
and this gives us unbiased estimates for the number of
active flows. bf = � 1=p if
s = 11 if
s > 1 (3)

Lemma 3 bf as defined in Equation 4 has expectation1.

Proof: There are three possible cases: if a packet be-
fore the last gets sampled,
s > 1, if the last packet
gets sampled
s = 1, and if none of the packets gets
sampled there will be no flow record, so the contribu-
tion of the flow to the estimate of the number of active
flows will be bf = 0. The probability of the first case isps�1 = 1� (1� p)s�1, the probability of the second isp(1� ps�1) and that of the third is(1� p)(1� ps�1).E[bf ℄ = ps�1 � 1 + p(1� ps�1) � 1=p+(1� p)(1� ps�1) � 0 = 1�

The estimators for the number of bytes and packets in
a flow were trivial to generalize to the case where we ap-
ply random packet sampling before flow slicing because
the expected number of packets and bytes after packet
sampling was exactlyq times the number before. For the
number of active flows there is no such simple relation-
ship and actually it has been shown that it is impossible
to estimate without significant bias the number of active
flows once random sampling has been applied [5]. But
by changing slightly the definition of flow counts we can
take advantage of the SYN flags used by TCP flows.

4.4 Estimating flow arrivals
Flow arrivals are defined only for TCP flows which
should start with one SYN packet. A flow is considered
to have arrived in a bin if its SYN packet is in that time
bin. Flows active during a certain bin, but with their SYN
packet before the bin do not count as flow arrivals for that
bin (but they count as active flows). If we look a the core
flow slicing algorithm we can use the following estimator
to compute the number of flow arrivals.bf = � 1=p if SYN flag set0 if SYN flag not set

(4)

4This way of defining flow counts is equivalent to an SQL query
doing “COUNT DISTINCT” on flow identifiers seen during the time
bin.

Given that the SYN flag is set in the flow record if it
was set inanyof the packets counted against the record,
it is trivial to prove thatbf leads to unbiased estimates of
the number of flow arrivals if we make an assumption.

Assumption 1 Only the first packet for the flow can
have the SYN flag set.

The flow arrival information is preserved by random
packet sampling. Duffield et al. propose two estima-
tors of the number of flow arrivals that work based on
flow records collected after random sampling of the traf-
fic [9]. The formulas for the individual contributions of
flow records to the total estimate of the number of flow
arrivals are as follows.
M (1) = � 1=q if SYN flag set0 if SYN flag not set
M (2) = � 1=q if SYN flag set ands = 11 if SYN flag not set ors > 1

Duffield et al. show [9] that both estimators are unbi-
asedE[
M (1)℄ = E[
M (2)℄ = 1 for flows that have ex-
actly one SYN packet (which is implied by assumption
1). Both estimators overestimate the number of flow ar-
rivals if flows have more than 1 SYN packet. For flows
without any SYN packets which according to our defi-
nition of flow arrivals5 should not be counted, we haveE[
M (1)℄ = 0 andE[
M (2)℄ > 0, so to make the second
estimator unbiased we need another assumption.

Assumption 2The first packet within the bin for every
flow has the SYN flag set.

Since the flows retaining SYN packets after the ran-
dom packet sampling stage will retain a single SYN
packet, and
M (1) estimates the number of flow arrivals
based on the number of such flows, we can easily com-
bine it withba to obtain an estimator for the number flows
arrivals for the combined algorithm that does random
packet sampling and flow slicing.bA(1) = � 1=(pq) if SYN flag set0 if SYN flag not set

(5)
M (2) treats separately flows that only have a SYN
packet after packet sampling and the others that sur-
vive it. Fortunately we can differentiate between the two
types of flows even after flow slicing is applied: if a flow
with a single SYN packet is sampled by flow slicing its
record will have
s = 1 and the SYN flag set; if any
other flow is sampled by flow slicing and it has
s = 1
it means that only its last packet was sampled thus it will
not have the SYN flag set because that would put it into
the category of flows with a single SYN packet surviving
the packet sampling. Thus we can combine
M (2) with ba
to obtain another estimator.

5Our definition of flow arrivals differs from that used in [9].

bA(2) = 8<: 1=(pq) if SYN flag set and
s = 11=p if SYN flag not set and
s = 11 if SYN flag not set and
s > 1
(6)

Note that if assumption 1 is violated and we have more
than one SYN packet at the beginning of the flow, say due
to SYN retransmissions, both estimators will be biased
towards overcounting. But if repeated SYNs are a rare
enough occurrence, the effect on a final estimate based
on many flow records will be small.

4.5 Multifactor smart sampling
To reduce the number of flow records, while maintain-
ing accurate byte counts, smart sampling [8] proposes
sampling the flow records with a size dependent proba-
bility r = min(1; b=z) wherez is a threshold parameter
controlling the tradeoff between the loss in accuracy and
the reduction in the volume of reports. We can adapt
smart sampling to flow slices usingr = min(1; bB=z)
and we could still estimate byte, packet and flow arrival
counts based on the smart sampled flow records usingbS = 1=r bS, bB = 1=r bB, and bA = 1=r bA(1). But using this
formula forr results in a variance forbAmuch larger than
that of bA(1) because it discriminates against flows with
few bytes, and since most flows have few bytes, they will
also produce most flow records with the SYN flag set –
and these are exactly the recordsbA(1) relies on.

We propose a new variant of smart sampling, mul-
tifactor smart sampling which takes into consideration
not just byte counts, but also packet counts and SYN
flags. By picking a smart sampling probability ofr =min(1; bs=zs + bB=zb + bA=za) we can balance the re-
quirements of the three estimators. The three individ-
ual thresholds control the tradeoff between accuracy and
reduction in report volume separately for the three esti-
mators of bytes, packets and flow arrivals.

4.6 Dynamically adjusting the flow slicing
probability

Flow Slices dynamically adjusts the flow slicing probabi-
lity p to the current traffic. This adjustment can happen in
the middle of a time bin. Which one of the many values
of p should we use in our estimators? Are the estimators
still unbiased? Actually none of the proofs depends on
having a single value forp, and they would all work if
we replaced it with a separatepi for every packet. All
the estimators would need to use the value of the packet
slicing probability in effect at the time the sampling of
a packet caused the creation of the entry. This doesn’t
necessarily mean that one needs to extend the flow entry
with one more field, because it already holds the times-
tamp of the first packet and that can be used to determine

the flow slicing rate if the router keeps a small log of
recent adjustments to it.

When the flow record expires and it is reported, the
report should include the value of the flow slicing proba-
bility p in effect at the time the entry was created. Sim-
ilarly if the smart sampling thresholdszs, zb, andza are
adjusted dynamically, the report should include their cur-
rent value so that one can computer during analysis. But
reporting all these parameters doesn’t require an increase
in the flow record size. For example they can be reported
just once in every report packet if their value is the same
for all the records reported together.

4.7 Bins, timeouts, and flow reconstruction
To simplify our discussion of the estimators we started
with some strong assumptions: all records last longer
than the bin length, counters count only packets within
the bin of interest, and the flow memory is empty at the
beginning of the bin. In this section we relax these as-
sumptions and discuss the effects of these relaxations on
the estimators.

4.7.1 Continuous operation
The most elementary relaxation of the assumption is to
consider continuous operation of the algorithm: records
still last longer than the bin length, and we still have
separate counters for each bin, but there can be active
records at the start of our bin, records created earlier.

The simplest case is that of records spanning the entire
bin. The byte and packet counters will reflect the actual
traffic, so we usebS = 1=q
s and bB = 1=q
b. If we do
not have a packet sampling stage we can also computebf = 1 if
s > 0 and bf = 0 otherwise. bA = 0 because
the flow started in an earlier bin.

If a flow record expires within the bin we run the anal-
ysis on, it can be the only record for the flow, but it is
also possible that another record for the same flow would
get created after the first record’s expiration. For byte
and packet counts which are additive we can just add the
counters from the first record to the estimates from the
secondbs = bs1 + bs2 andbb = bb1 + bb2. The analysis
of unbiasedness carries through because we can consider
that the bin is actually two sub-bins, one ending when
the first record ends and the other starting at the same
time. Since we have unbiased byte and packet estimates
for both sub-bins, our estimates for the sum of the bins
will still be unbiased.

If
s1 > 0, we know that the flow sent packets during
the bin, so we setbf to 1, otherwise we use Equation 3
with
s2 since an unbiased estimator for whether the flow
was active in the second sub-bin will tell use whether it
was active overall. This approach preserves overall un-
biasedness, but it makes analysis more complicated be-
cause the two flow records representing the flow cannot

be processed independently anymore: the contribution of
the second record to the flow count of the bin depends on
whether there was a first record with the same flow iden-
tifier. When the router reports the records, they might
not be near each other, so the analysis has to do “flow re-
construction”: keep a hash table with flow identifiers and
find flow records with the same flow identifier covering
parts of the same bin. The consequence of not doing
flow reconstruction is running the risk of double count-
ing such flows with more than one record (which might
be acceptable in many settings).

By our definition of flow arrivals from Section 4.4, as
long as assumption 1 holds, if a flow has a record that
starts before the start of the bin, we should usebA = 0, ir-
respective of whether we have a second flow record (pos-
sibly with a SYN flag) or not. If we have a second flow
record with the SYN flag set we can clearly say that as-
sumption 1 does not hold, but if we do not do flow recon-
struction we might count it separately against the flow
arrival count. In many setting this type of overcounting
is not a big concern.

4.7.2 Slices shorter than bins
When the inactive timeouttina
tive is short or when the
analysis is over long time bins (say hours), flow slices
can be shorter than the bin size. It can happen that we
have more than two records for the same flow within the
same bin. For byte and packet counts we can just add
the individual estimates for the different records and we
get an unbiased estimator for the entire bin. For active
flows we cannot get an unbiased estimate, not even with
flow reconstruction. For flow arrivals, by usingbA(1) for
the individual records6 and summing the contributions
without any flow reconstruction gives unbiased estimates
as long as assumption 1 is not violated.

4.7.3 Binning errors
So far we assumed that Flow Slices uses binned mea-
surement. This guarantees that as long as the analysis is
on time intervals that are exact multiples of the measure-
ment bins used, it will be easy to determine exactly how
many of the packets and the bytes counted by the record
were within the bin. But by default Flow Slices doesn’t
use bins, and for records that span bin boundaries, the
user will have to guess how the packets and bytes were
actually divided between the bins. We can prove that
our reconstruction of how the traffic divides between the
bins is unbiased only if we make an assumption about
the spacing of the packets.

Assumption 3For every flow at the input of the flow
slicing algorithm, the time between the arrivals of all

6For a record started before the beginning of the bin, even if it
has the SYN flag set we consider that the SYN packet was one of the
flow’s packets that arrived before the beginning of the bin and thus havebA(1) = 0.

pairs of its consecutive packets is the same.
We use the following algorithm for distributing the

packets of reported by a flow record that spans bins be-
tween the bins covered by the record. We consider
s
packet arrival events, the first one is the timestamp of the
first packet counted by the entry, the last one the times-
tamp of the last packet counted by the entry and the re-
maining
s � 2 evenly spaced between them. We con-
sider that1 packet arrived at every packet arrival event,
except for the first event which has1=p packets, and dis-
tribute the packets between bins accordingly. This can
be shown to be an unbiased way of distributing pack-
ets between bins under assumption 3. We recommend
distributing the
b bytes of the flow between bins pro-
portionally with the number of packets counted against
each bin. Assumption 3 is not enough to prove this dis-
tribution of bytes between the bins to be unbiased, we
would need an additional assumption about uniformity of
packet sizes. For flow arrivals, we do not have a binning
problem because we assume that the first packet counted
by the flow record is the one with the SYN, so we count
the flow arrival against the bin the first packet is in.

We cannot achieve provably unbiased binning for
bytes and packets under realistic assumptions about inter
packet arrival times and packet size distributions within
flows. We turn to measurements instead to see how much
the binning error is on typical traffic. We recommend us-
ing such experimental results to decide whether increas-
ing the size of the flow record by adding multiple coun-
ters to do binned measurement is worth it.

5 Variances of estimators
The estimators discussed in the previous section were all
defined on an individual flow and to compute a measure
(say the number of packets) for a larger aggregate, the
analyst would sum the values of the estimators for the
flow records matching the aggregate. The sampling de-
cisions for different flows are fortunately independent7

and thus the variance of the estimates for aggregates are
the sum of the respective variances for the estimators for
individual flows. In this section we focus on studying the
variances of the various estimators for individual flows.
We also show that the variances of the estimators based
on the core flow slicing algorithm are lower than those of
estimators based on random sampling used by Adaptive
NetFlow to control memory usage. As in Section 4, we
start with a simplified setting of a single bin in isolation
and then proceed to more realistic settings. The proofs
for the variance results from this section can be found
aprefvarianceproofs.

7Strictly speaking once we add algorithms that adapt varioussam-
pling parameters dynamically based on resource consumption we in-
troduce small correlations between decisions, but these correlations are
so small we can safely ignore them.

5.1 Packet count variance
For the core flow slicing algorithm we can compute the
variance of the packet count estimator.V AR[bs℄ = 1=p(1=p� 1)(1� (1� p)s) (7)

Note how this variance is strictly lower than the vari-
ance of results based on random packet sampling(1=p�1)s except for the case ofs = 1 when the two variances
are equal since in this case both algorithms have proba-
bility p of estimating the packet count as1=p and proba-
bility 1� p of estimating it as0. The highers, the larger
the difference between the variance of results based on
flow slicing when compared with packet sampling. Since
using the same sampling probability will give the same
memory usage for flow slicing and ordinary sampling,
this comparison of variances shows us that flow slicing
is a superior solution. The advantage is most apparent
when estimating the traffic of aggregates with much traf-
fic coming from large flows.

The same conclusion holds if we compare the combi-
nation of packet sampling and flow slicing used by Flow
Slices to the pure packet sampling used by Adaptive Net-
Flow and Sampled NetFlow. Here the fair comparison is
with Sampled NetFlow using a packet sampling proba-
bility of pq. We can conceptually divide this into a first
stage of packet sampling that samples packets with pro-
bability q and a second one that samples them with pro-
bability p. The first stage has identical statistical proper-
ties for the two solutions, thus the difference in the accu-
racy is given by the second stage, but comparing the sec-
ond stages reduces to comparing flow slicing and packet
sampling using the same probabilityp.

5.2 Byte count variance
We can also compute the variance of the estimates for the
number of bytes8.V AR[bb℄ = 1=p sXi=1(1� p)i�s+1b2i (8)

Note how this variance is strictly lower than the vari-
ance of results based on random packet sampling(1=p�1)Psi=1 b2i (except for the case of a single packet flow).
This shows that for byte counts too, flow slices are a bet-
ter solution than ordinary sampling.

5.3 Flow count variance
We can also compute the variance of the estimates for the
number of active flows, but we cannot compare against
packet sampling because there are no unbiased estimates
for the number of active flows based on packet sampled
data.

8Remember that we number the packet sizesbi in reverse order withb1 being the size of the last packet andbs that of the first one.

V AR[bf ℄ = (1� p)s�1(1=p� 1) (9)

5.4 Continuous operation
If we consider continuous operation for the algorithm,
we can have at the beginning of the bin a record for our
flow. If the slice spans the entire bin, it counts every-
thing exactly and thus the variance of all estimator is0.
If the slice ends in the current bin, we can divide the flow
into two parts: one covered by this older record and the
rest. For the first part we have0 variance for the byte
and packet counts and for the second part we can apply
formulas 7 and 8, but instead ofs being the number of
packets of the flow in the bin, it should be only the num-
ber of packets in this second part and thebi be the sizes
of those packets. For the flow count estimate, if the num-
ber of packets in the first record is0 (whether it is0 or
not is not something that depends on the random flow
slicing decisions in the current bin), the variance of the
estimate is0, otherwise formula 9 applies. Thus hav-
ing flow records active at the beginning of the bin does
not increase the variance of the packet, byte and flow
count estimates, on the contrary, it can reduce them sig-
nificantly.

6 Experimental evaluation
We divide the experimental evaluation section into two
parts. In the first group of experiments, we evaluate the
efficacy of the core flow slicing algorithm. Later, we
compare flow slicing with Adaptive NetFlow to show the
efficacy of Flow Slices both in terms of memory usage
and accuracy of estimates. For our evaluations, we ob-
tained real OC-48 traces from Cooperative Association
of Internet Data Analysis (CAIDA[4]).

6.1 Accuracy of the core flow slicing algo-
rithm

In this section, we evaluate the core flow slicing algo-
rithm against the “full-state” approach. These experi-
ments provide more insight into the efficacy of the flow
slicing algorithm and the reaction to changing various
variables such as flow slicing probability, slice length on
the memory usage and the mean relative error.

First, we fixed the slicing probability to 0.008 (equal to
1 in 125 flows) and the slice duration to 60 seconds. Fig-
ure 2 shows the scatter plot of ratio of the estimated flow
size (in number of packets) and the actual true flow slice
on the y-axis and the true flow size on the y-axis. Note
that the plot only shows flows that have more than 5000
packets throughout the duration of the trace (1 hour).
From this scatter plot, we can see that most of the flows
have been accurately estimated within 10% error mar-
gin. Also, as the flow sizes became bigger, the estimate
converges to the true estimate as these flows are more

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 10000 100000 1e+06

R
at

io
 o

f E
st

im
at

ed
/A

ct
ua

l #
 o

f p
ac

ke
ts

of packets in a flow

Figure 2: Scatter plot for accuracy of flow slices.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
 5000

 10000

 15000

 20000

 25000

 30000

 35000

M
ea

n
R

el
at

iv
e

E
rr

or
 (

F
lo

w
s

>
 5

00
0)

M
em

or
y

U
sa

ge

Sampling Probability

Mean Relative Error
Theoretical Error

Memory Usage

Figure 3: Trade-off between Mean Relative Error and
Memory Usage as we increase sampling probability

rapidly sampled and once sampled counted fully. Note
also the presence of two-sided errors clearly depicting
the “unbiased-ness” of our estimates using Flow Slices.

What is the affect of flow slicing probability on the ac-
curacy of these estimates ?According to the theory in
Section 5.1, increasing slicing probability increases the
accuracy of estimated flow sizes. In other words, the
mean relative error as defined as ratio of the mean of the
error to the actual value should decrease. Also, clearly
as the slicing probability increases, the memory usage
should increase almost linearly. In Figure 3, the mean
relative error for flows larger than 5000, and the corre-
sponding memory usage have been plotted with varying
slicing probability on the x-axis. Apart from the empiri-
cal value of the mean relative error, we also plot the the-
oretical value for this based on the formula obtained in
Section 5.1. From this figure, we can see that the results
are as calculated theoretically. Increasing slicing proba-
bility decreases the mean relative error although amount
of memory usage increases almost linearly.

Extrapolating Bins from Flow Slices:The goal of this
experiment is to study the affect of binning from flow

Flow Size ANF Flow Slices(60s) Flow Slices (180s) Flow Slices (300s)
Pkts. Bytes Pkts. Bytes Pkts. Bytes Pkts. Bytes> 1% 0.025 0.048 0.023 0.021 0.02 0.020 0.0140 0.038

0.1-1% 0.113 0.158 0.06 0.079 0.055 0.064 0.045 0.059
0.01-0.1% 0.31 0.406 0.21 0.303 0.183 0.265 0.179 0.244

Web (80) 0.0121 0.0464 0.0074 0.0177 0.0215 0.0101 0.0071 0.0567
Mail (25) 0.0003 0.0326 0.0670 0.0376 0.0141 0.0307 0.0176 0.0252
SSH (22) 0.1894 0.1916 0.1033 0.5267 0.0020 0.0381 0.0088 0.5670

News (119) 0.0381 0.0167 0.0214 0.0139 0.0032 0.0149 0.0001 0.0028
FTP (20) 0.0294 0.0233 0.0475 0.0005 0.0238 0.0123 0.0485 0.1061

Table 4: Results comparing Adaptive Netflow and Flow Slices with different Slice durations. The total number of
packets are about 35 Million.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1000 2000 3000 4000 5000 6000 7000 8000 9000

E
st

im
at

ed
/A

ct
ua

l #
 o

f p
ac

ke
ts

of packets in a flow

Figure 4: Scatter Plot that depicts the errors introduced
in extrapolating bin measures from slices.

slices. We plot in Figure 4, the ratio of estimated to the
actual size of the flow in a given bin to the flow size on
x-axis. For this experiment, we used a slice length of 90
seconds and divided it up equally into 10 bins of size
9 seconds each. Figure 4 shows that larger the flows,
binning error is insignificant. However, for relatively
smaller flows extrapolating from flow slices results in
much higher error. Since we divide up the entire volume
of traffic for a particular flow equally among all the bins
(except the first bin which gets a slightly higher amount),
error can be dependent on the burstiness of the traffic.
Of course, to capture the fine grained traffic slices, the
extension proposed in Section 3.4 could be applied but
that would result in higher memory requirement. An-
other important thing to note here is the unbiased-ness of
the estimate as we can see two-sided errors.

6.2 Comparison with Adaptive NetFlow
In this subsection, we compare Flow Slices with Adap-
tive NetFlow, a previously proposed solution that is
based on packet sampling. For the purposes of evalua-
tion, we fix the packet sampling probability to 1 in 1024

for Adaptive NetFlow. To be fair in our comparisons
with Flow Slices, we split the1=1024 probability into
two parts consisting of packet sampling (1=16 for our
OC-48) and flow slicing probability (1=64). We picked a
random 5 minute OC-48 trace obtained from CAIDA for
our comparisons. Also, instead of monitoring individual
flows, we aggregated based on the destination IP address
in the flow as they tend to be much larger and hence sig-
nificantly farther from statistical noise. This also allows
for a fairer comparison between the two schemes as the
final aggregates instead of individual flows are usually
most important for traffic analysis.

Table 4 illustrates the comparison of error obtained
by Adaptive NetFlow and Flow Slices both for packet
counts and byte counts. Clearly, in the first group of
flows that are larger than 1% of the total traffic volume,
Flow Slices performs slightly better than Adaptive Net-
Flow. When we used the slice length of 300s, we found
that Flow Slices has about 11% less mean relative error
than that of Adaptive NetFlow. We believe this is due
to the fact that once a flow is sampled by Flow Slices,
it remains in the memory until the slice expires hence
leading to more accurate results. In the second group
of flows that contained traffic volume between 0.1% and
1% of total traffic, once again Flow Slices provide better
accuracy than Adaptive NetFlow by about 4-7%. Finally,
as expected for really small flows, sample and hold based
algorithms perform better than ordinary sampling and we
can see that Flow Slices performs better than Adaptive
NetFlow by almost 7-13%.

In the second part of the Table 4, we show how Adap-
tive NetFlow and Flow Slices estimated the individ-
ual traffic breakdown for common traffic types such as
WWW, Email etc. Both Flow Slices and Adaptive Net-
Flow estimated close to the actual packet counts for Mail,
News, Web traffic, SSH and FTP. For SSH, the case when
slice duration was 60 seconds and 300 seconds had sig-
nificant error but, slice length of 180 seconds produced
more accurate byte counts. Too few connections (only

Slice Memory Volume ANF
60 7122 21056 21526
180 15917 22979 21526
300 21587 21587 21526

Table 5: Comparing memory used and volume of records
generated by Flow Slices and Adaptive NetFlow (ANF).
Here, we used 300 seconds for bin size of Adaptive Net-
Flow. We did not use any inactivity time-out for flow
slices here.

Slice/ Memory Volume
Bin Slices ANF Slices ANF
60 3233 5484 27589 27491
180 4022 13983 24602 23859
300 4617 21526 23398 21526

Table 6: Memory used and Volume of Records generated
by Flow Slices and Adaptive NetFlow (ANF) for similar
Adaptive NetFlow binning and Flow Slice durations. We
used an inactivity timeout of 15 seconds for these exper-
iments

74) found in the trace, coupled with very little volume
(0.03% traffic) could be attributed to this error in accu-
racy. In general, however, we can see that byte counts
and packet count errors are fairly low to show that flow
slices helps obtain accurate estimates to flows. Unbiased
errors statistically equate out as the constituent number
of flows increases as well as size of the aggregate.

Memory Requirements: The total volume of flow
records generated by Adaptive NetFlow and Flow Slices
was found to be roughly comparable. Adaptive NetFlow
generated about 21526 records, while Flow Slices de-
pending on the slice length, generated about 21000 to
24000 records. However, the key gain that Flow Slices
have in comparison to Adaptive NetFlow is in the area
of run time memory. We saw that if we used 60 seconds
as the slice length, Flow Slices operate within a third of
the number of records that Adaptive NetFlow requires
thus making it more memory efficient than Adaptive Net-
Flow. The second key observation from Table 5 is the
fact that the total volume of records output by Adaptive
NetFlow and Flow Slices is roughly comparable. This is
expected since both Adaptive NetFlow and Flow Slices
are run with similar final probabilities (1 in 1024).

Effect of Inactivity Timeouts:In Table 6, we show the
effect of introducing “Inactivity Timeouts” on the mem-
ory usage for the Flow Slices algorithm. A flow record
that sees no activity for a pre-defined inactivity period is
immediately flushed out of the memory. The inactivity
timeout we used for this experiment is 15 seconds. So,
short flows that last for less than 15 seconds typically get
flushed out much faster than the rest of the flows thus

saving memory usage. As expected, with this inactivity
timeout, we see that Flow Slices gain an order of magni-
tude memory savings in comparison with Adaptive Net-
Flow. Note also the slight increase in run-time memory
as we increase the slice length relative to the case when
inactivity timeouts are not used (Compare column 2 of
Table 5 and Table 6). The reason is that only really long
flows tend to occupy space when we increase the slice
length. Short flows are not affected by the slice dura-
tion. Since the number of long flows tends to be small,
memory is re-used more efficiently than when inactivity
timeouts are not applied. For Adaptive NetFlow, reduc-
ing the bin size has a similar affect that increases the vol-
ume of flow records but reduces the operational mem-
ory footprint. Clearly, for comparable volumes of flow
records, Flow Slices operate with a much smaller mem-
ory footprint when inactivity timers are enabled. This
is much more pronounced when we use larger values of
slice lengths. For example, when a slice length of 300 is
used, we see that Flow Slices generate only 10% more
flow records, but operates with a memory footprint 5
times smaller than the Adaptive NetFlow counterpart.

From these results, we have empirically verified the
efficacy of the Flow Slices in comparison with Packet
Sampling based algorithms such as Adaptive NetFlow.
When we apply inactivity timeouts to the Flow Slices,
it results in much better spatial re-use of memory while
suffering little loss in accuracy and little increase in the
total volume of flow records.

7 Conclusions and future work
Processing, memory, and bandwidth constraints make it
impossible for high speed routers to provide full flow
measurements thus forcing us to consider some type of
data reduction. Different flow measurement solutions
perform this data reduction differently, and one can com-
pare them by comparing their resource consumption and
the amount of error the data reduction causes in various
analyses one wants to perform on the flow data. We mo-
tivated our design of Flow Slices with the desire to sup-
port accurate estimates for the number bytes, packets and
flows in arbitrary large aggregates within the traffic.

Flow Slices offer a unique mix of qualities among flow
measurement solutions: dynamic adaptation of sampling
parameters to keep resource usage within limits, separate
parameters for controlling the three potential resource
bottlenecks, efficient use of available resources, and al-
gorithmic solutions for minimizing the errors introduced
by the data reduction. These qualities are possible due to
novel algorithms such as the core flow slicing algorithm
and multifactor smart sampling and various new estima-
tors. Our experiments also confirm that compared to the
currently used Sampled NetFlow and to another solution
that can be deployed by a simple software upgrade at rou-

ters, Adaptive NetFlow, Flow Slices constitute a better
flow measurement solution.

But the fact that Flow Slices support well the traffic
analyses discussed in this paper, does not mean there is
no room for improvement. There are many useful anal-
yses of unsampled flow data that we haven’t considered.
For example correlation between various flows has been
used to classify data transfers: the existence of a con-
trol connection on the ftp port between two IP addresses
can help identify a highport to highport connection as
a passive ftp transfer, the existence of a prior connec-
tion to the central Napster servers has been used to iden-
tify subsequent highport to highport connections as Nap-
ster traffic [19], connections to computers that use well
known peer to peer ports and the existence of both UDP
and TCP connections between computers have been used
to identify highport to highport p2p traffic [13]. Addi-
tional metrics such as flow duration and the variability of
packet inter arrival times have been used to divide flows
into different application categories [21]. We are confi-
dent that progress in data reduction solutions by traffic
measurement solutions for high speed links might some-
day enable these and many other useful analyses and turn
the Internet into a better understood and more reliable
network.

8 Acknowledgments
We wish to thank Nick Duffield for discussions that con-
tributed to the idea of thebf estimator and Ken Keys for
helping us with the code of Adaptive NetFlow.

References
[1] Ipmon - packet trace analysis.

http://ipmon.sprintlabs.com/ packstat/

packetoverview.php.
[2] N. Brownlee, C. Mills, and G. Ruth. Traffic flow

measurement: Architecture. RFC 2722, Oct. 1999.
[3] N. Brownlee and D. Plonka. IP flow information

export (ipfix). IETF working group.
[4] Cooperative association for internet data analysis.

http://www.caida.org/.
[5] S. Chaudhuri, R. Motwani, and V. Narasayya. Ran-

dom sampling for histogram construction: How
much is enough? InProceedings of the ACM SIG-
MOD, 1998.

[6] C. Cranor, T. Johnson, O. Spatschek, and
V. Shkapenyuk. Gigascope: A stream database for
network applications. Inp-sigmod, June 2003.

[7] The DAG project.
http://dag.cs.waikato.ac.nz/.

[8] N. Duffield, C. Lund, and M. Thorup. Charging
from sampled network usage. InSIGCOMM Inter-
net Measurement Workshop, Nov. 2001.

[9] N. Duffield, C. Lund, and M. Thorup. Proper-
ties and prediction of flow statistics from sampled
packet streams. InSIGCOMM Internet Measure-
ment Workshop, Nov. 2002.

[10] C. Estan, K. Keys, D. Moore, and G. Vargh-
ese. Building a better netflow. InProceedings of
the ACM SIGCOMM, Aug. 2004.

[11] C. Estan and G. Varghese. New directions in traffic
measurement and accounting: Focusing on the ele-
phants, ignoring the mice. InACM Trans. Comput.
Syst., Aug. 2003.

[12] A. Feldmann, A. Greenberg, C. Lund, N. Reingold,
J. Rexford, and F. True. Deriving traffic demands
for operational ip networks: Methodology and ex-
perience. InProceedings of the ACM SIGCOMM,
pages 257–270, Aug. 2000.

[13] T. Karagiannis, A. Broido, M. Faloutsos, and
K. claffy. Transport layer identification of p2p
traffic. In Internet Measurement Conference, Oct.
2004.

[14] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch,
and k claffy. The architecture of CoralReef: an
Internet traffic monitoring software suite. In
PAM2001 — A workshop on Passive and Active
Measurements. CAIDA, RIPE NCC, Apr. 2001.
http://www.caida.org/outreach/papers/2001/CoralArch/.

[15] R. R. Kompella and C. Estan. The power of slic-
ing in internet flow measurement. Technical report,
UCSD Technical Report, May 2005.

[16] K. McCloghrie and M. T. Rose. Rfc 1213, Mar.
1991.

[17] Cisco NetFlow. http://www.cisco.com /warp

/public /732 /Tech /netflow.
[18] V. Paxson. Bro: a system for detecting network in-

truders in real-time. InComputer Networks (Am-
sterdam, Netherlands: 1999), volume 31, pages
2435–2463, 1999.

[19] D. Plonka. Flowscan: A network traffic flow report-
ing and visualization tool. InUSENIX LISA, pages
305–317, Dec. 2000.

[20] M. Roesch. Snort - lightweight intrusion detection
for networks. InProceedings of the 13th Systems
Administration Conference. USENIX, 1999.

[21] M. Roughan, S. Sen, O. Spatscheck, and
N. Duffield. Class-of-service mapping for QoS:
A statistical signature-based approach to IP traf-
fic classification. InInternet Measurement Confer-
ence, Oct. 2004.

[22] Sampled NetFlow.
http://www.cisco.com/ univercd/cc/td/

doc/product/software/ ios120/120newft/

120limit/120s/120s11/12s sanf.htm.

A Proofs of variance results

A.1 Proof of Equation 7V AR[bs℄ = 1=p(1=p� 1)(1� (1� p)s)
We first prove thatE[bs2℄ = 1=p(1=p � 1)(1 � (1 �p)s) + s2 by induction on s.

Base caseIf s=1,E[bs2℄ = p(1=p)2 + 0 = 1=p. Also1=p(1=p� 1)(1� (1� p)1) + 12 = 1=p� 1+ 1 = 1=p.

Inductive stepBy induction hypothesis we know that
for s0 = s� 1, E[bs02℄ = 1=p(1=p� 1)(1� (1� p)s0) +s02 = 1=p(1=p� 1)(1� (1� p)s�1) + (s� 1)2.E[bs2℄ = p(1=p� 1 + s)2 + (1� p)E[bs02℄= 1=p+ 2(s� 1) + p(s� 12) + (1� p)(s� 1)2+(1� p)1=p(1=p� 1)(1� (1� p)s�1)= 1=p� 1 + 1 + 2(s� 1) + (s� 12)+(1� p)1=p(1=p� 1)� 1=p(1=p� 1)(1� p)s= 1=p(1=p� 1)(p+ 1� p) + s2�1=p(1=p� 1)(1� p)s= 1=p(1=p� 1)(1� (1� p)s) + s2
V AR[bs℄ = E[bs2℄�E[bs℄2 = 1=p(1=p� 1)(1� (1� p)s)
A.2 Proof of Equation 8V AR[bb℄ = 1=p sXi=1(1� p)i�s+1b2i

We prove this by induction on the number of packetss.
Base caseFor s = 1, the packet is sampled with

probability p, in which case the estimate of the num-
ber of bytes isbb = b1=p, otherwisebb = 0. V AR[bb℄ =E[bb2℄�E[bb℄2 = pb21=p2 � b21 = (1� p)=pb21.

Inductive step From the induction hypothesis we
know that if the first packet is not sampled, the vari-
ance in the estimatebb0 of the number of bytes in the
next s � 1 packets isV AR[bb0℄ = E[bb02℄ � E[bb0℄2 =1=pPs�1i=1 (1� p)i�sb2i .

V AR[bb℄ = E[bb2℄�E[bb℄2= p(bs=p+ b0)2 + (1� p)E[bb02℄� (bs + b0)2= pb2s=p2 + 2bsb0 + pb02 � b2s � 2bsb0 � b02+(1� p)E[bb02℄= (1=p� 1)b2s + (1� p)(E[bb02℄� b02)= (1� p)=pb2s + (1� p)(E[bb02℄�E[bb0℄2)= (1� p)=pb2s + 1=p s�1Xi=1(1� p)i�s+1b2i= 1=p sXi=1(1� p)i�s+1b2i
A.3 Proof of Equation 9
Let ps�1 = 1 � (1 � p)s�1 be the probability that flow
slicing selects one of the packets of the flow before the
last one.E[bf2℄ = ps�1 � 1 + (1� ps�1)(p(1=p)2 + (1� p) � 0)= ps�1 + (1� ps�1)1=pV AR[bf ℄ = E[bf2℄�E[bf ℄2 = ps�1 + (1� ps�1)1=p� 1= (1� ps�1)(1=p� 1) = (1� p)s�1(1=p� 1)

