
Automatically Inferring Patterns of Resource Consumption
in Network Traffic

Cristian Estan, Stefan Savage, George Varghese
Computer Science and Engineering Department

University of California San Diego
cestan,savage,varghese@cs.ucsd.edu

ABSTRACT
The Internet service model emphasizes flexibility – any node
can send any type of traffic at any time. While this design
has allowed new applications and usage models to flourish,
it also makes the job of network management significantly
more challenging. This paper describes a new method of
traffic characterization that automatically groups traffic into
minimal clusters of conspicuous consumption. Rather than
providing a static analysis specialized to capture flows, ap-
plications, or network-to-network traffic matrices, our ap-
proach dynamically produces hybrid traffic definitions that
match the underlying usage. For example, rather than re-
port five hundred small flows, or the amount of TCP traffic
to port 80, or the “top ten hosts”, our method might reveal
that a certain percent of traffic was used by TCP connec-
tions between AOL clients and a particular group of Web
servers. Similarly, our technique can be used to automat-
ically classify new traffic patterns, such as network worms
or peer-to-peer applications, without knowing the structure
of such traffic a priori. We describe a series of algorithms
for constructing these traffic clusters and minimizing their
representation. In addition, we describe the design of our
prototype system, AutoFocus and our experiences using it
to discover the dominant and unusual modes of usage on
several different production networks.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring

Keywords
Traffic measurement, Network monitoring, Data mining

1. INTRODUCTION
The Internet is a moving target. Flash crowds, stream-

ing media, CDNs, denial of service (DoS) attacks, network
worms, peer-to-peer applications – these are but a few of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’03, August 25–29, 2003, Karlsruhe, Germany.
Copyright 2003 ACM 1-58113-735-4/03/0008 ...$5.00.

forces that shape traffic on today’s networks. Each year, new
applications and usage models emerge, and from these arise
new communications patterns. This flexibility is a hallmark
of the Internet architecture and can be credited with much
of the Internet’s success. At the same time, this quality
also brings serious challenges for network management. Un-
like the traditional voice networks, which are built around
a single high-level abstraction for application data transfer
(“calls”), managers of IP-based networks are forced to in-
fer the type of traffic and how it relates to applications and
users. Consequently, to understand and react to changes in
network usage, a network manager must first analyze the bit
patterns in individual packets, extract an appropriate traffic
model and then reconfigure network elements to recognize
that model appropriately.

To make this process feasible in practice, managers use a
standard set of pre-defined patterns to identify well-known
aspects of network traffic. For example, network managers
frequently construct a model of application usage by clas-
sifying traffic according to the IP header fields: Protocol
and SrcPort. Such an analysis might determine that 90 per-
cent of traffic uses the TCP protocol, 75 percent of TCP
traffic is for the HTTP service, 10 percent is for SMTP, 5
percent for FTP and so on. Similarly, to identify individ-
ual conversations between pairs of hosts, the five tuple (Sr-
cIP, DstIP, Protocol, SrcPort, DstPort), is used to impart
a “flow” abstraction on traffic. These kinds of analyses,
exemplified by popular monitoring tools such as FlowScan,
and Cisco’s FlowAnalyzer, are a staple of modern network
management [14]. However, they have two significant lim-
itations when used in practice: insufficient dimensionality
and excessive detail.

While network traffic may be characterized by many dif-
ferent criteria, it is easiest to aggregate traffic along one
dimension at a time. Unfortunately, by aggregating traffic
along any single dimension, the network manager inevitably
loses any interesting, but orthogonal, structure. For ex-
ample, by aggregating traffic according to an application-
oriented view (i.e. Protocol and SrcPort), a network man-
ager might conclude that peer-to-peer file sharing applica-
tions are in wide use, when in fact a small set of hosts are
responsible for most of the file sharing traffic [15]. While the
network manager can expose this structure by using finer-
grained representations, such as flows, she then must man-
age the excessive detail contained in such a representation.
Rather than identifying the file-sharing traffic concisely, the
flow-oriented view decomposes it into thousands of individ-
ual network transfers.

1

Consequently, network managers spend considerable time
manually “hunting for needles” in their data – trying to un-
derstand what are the real and significant sources of traffic in
their network and which components of usage are changing
over time. This problem is only exacerbated when there is
a pressing need to understand and respond to sudden traffic
spikes such as network worms or denial-of-service attacks.
Moreover, automated techniques for addressing these issues
– such as network pushback [11] – also require a means to
identify malicious aggregates.

The focus of our work is to help automate these tasks
and this paper makes four contributions in this direction.
First, in Section 2 we motivate the need for a new approach
to traffic monitoring that can automatically classify traffic
into appropriate multi-dimensional clusters. We define a
concrete and practical instance of such traffic clusters and
describe a set of operations for reducing their size and in-
creasing their utility. Based on this definition, Section 3 de-
scribes and evaluates algorithms for cluster construction and
for implementing the key operations described in Section 2.
Finally, in Section 4 we describe AutoFocus, our prototype
system, and in Section 5 we describe our experience using
it on several production networks. At the end of our paper,
we relate our efforts to previous work and then summarize
our results.

2. MULTI-DIMENSIONAL TRAFFIC
CLUSTERS

While the goal of every traffic analysis method is to em-
power the human operator with improved understanding,
there is an inherent contradiction between the level of detail
provided and the capacity of humans to absorb information:
more detail can lead to a deeper understanding but makes
the report harder to read – at one extreme is a bandwidth
meter, at the other extreme are raw packet traces. The sim-
plest solution is to report only the largest flows, so-called
“top ten” reports, but this approach has a serious flaw: ag-
gregates made up of many small flows can be important,
but each individual flow may not be large. For example, a
busy Web server might generate the bulk of the traffic, but
since all of its flows are relatively small, the “top ten” re-
port might only contain transfers from a nearby FTP server
hosting a few large files.

Another solution is to aggregate the individual flows into a
common category (e.g. by source or destination port, source
or destination address, prefix or Autonomous System num-
ber). However, if we chose the wrong dimension to aggregate
over then we may miss the interesting characteristics of the
traffic. For example, if we aggregate traffic by port num-
ber, we may miss the importance of traffic generated by a
denial-of-service attack using random port numbers. In this
case, aggregating traffic by destination address would likely
be a more useful approach.

However, in some cases there is significant information
that is hidden by aggregating on any single field, but is re-
vealed by aggregating according to a combination of fields
(multi-dimensional aggregates). For example, aggregating
traffic by IP address might identify a set of popular servers
and aggregating traffic by port might identify popular ap-
plications, but to identify which server generates which kind
of traffic requires aggregating according to two fields simul-
taneously.

Our way out of this impasse is to focus on dynamically-
defined traffic clusters instead of individual flows or other
predefined aggregates. Our aim is to define the clusters so
that any meaningful aggregate of individual flows is a traf-
fic cluster. For example, a single cluster might represent all
TCP client traffic originating from America Online’s net-
work destined for a cluster of replicated Web servers on
Google’s network. Another cluster might represent signif-
icant amounts of traffic originating from a host infected by
the Sapphire worm destined to random addresses at UDP
port 1434. While the goal is clearly attractive, automati-
cally building such clusters is quite challenging. In practice,
creating effective clusters requires balancing three key re-
quirements:

• Dimensionality. The dimensionality of the problem
is defined by how many distinct properties are consid-
ered in constructing a traffic cluster. If there is too
little dimensionality then important traffic categories
can be masked, while if there is too much, the compu-
tational overhead of computing cluster combinations
can become infeasible.

• Detail. While multi-dimensional clusters allow us to
capture the structure of the traffic being analyzed, this
does nothing to reduce the magnitude of data that
must be evaluated – one can easily create thousands of
clusters from a traffic trace. To make such data useful,
a clustering algorithm must carefully prune this set to
remove “unimportant” clusters and tradeoff the loss in
detail for corresponding gains in conciseness.

• Utility. In the end, network managers are not merely
passive observers of traffic, but are active parties who
attempt to control and react to changes in traffic load
and usage. Therefore, while we could construct traffic
clusters using arbitrary combinations of packet header
bit patterns, it is far more useful to restrict our choices
to header fields that are already well-classified by net-
work hardware and can therefore be acted upon.

2.1 Defining Traffic Clusters
Based on these principles, we define our traffic clusters in

terms of the five fields typically used to define a fine-grained
flow: source IP address, destination IP address, protocol,
source port and destination port. Unlike individual flows
defined by unique values for each of these fields, clusters are
defined by sets of values for each of these fields. These sets
can contain a single value, all possible values (we use * to
denote this case) or restricted subsets of possible values.

Evaluating all possible subsets of the values for each field
would have made the problem of finding all large clusters
unnecessarily difficult. Instead, we use the natural hierar-
chies that exist for each field. For IP addresses a cluster can
be defined by prefixes of length from 8 to 32 (for individual
IP addresses) or (*) for all IP addresses. For port num-
bers, clusters can be defined by a particular port number
(e.g. port 80) or the set of all possible values (*). Because
well known ports statically allocated for services are below
1024 and ephemeral ports allocated on-demand to clients
are above 1023 the set of high (> 1023) port numbers and
that of low (< 1024) ones can also define clusters. Finally,
the protocol field can take on exact values or (*).

For example, the cluster defined as (SrcIP=10.8.200.3,
DstIP=*, Proto=TCP, SrcPort=80, DstPort=*) represents

2

Web traffic from the server with address 10.8.200.3. (Sr-
cIP=*, DstIP=172.27.0.0/16, Proto=TCP, SrcPort=low, Dst-
Port=high) represents TCP traffic coming from low ports
and going to high ports destined to a certain prefix. Finally,
(SrcIP=*, DstIP=*, Proto=ICMP, SrcPort=*, DstPort=*)
represents all ICMP traffic. Notice that the first two clusters
overlap with each other while the third cluster is unique.

There are many ways to further generalize the definition
of traffic clusters. For example, we could define a hierar-
chies based on Autonomous System number, integer ranges
of port numbers, or arbitrary user-defined categories (e.g.
Universities, Broadband Access, Data Centers, etc.). We
could also employ heuristics such as those for identifying
passive FTP and Napster traffic (that use random ports)
in [14]. While these additions may provide greater value in
some settings, they do not require any fundamental changes
in our approach, merely a different set of aggregation criteria
when constructing clusters. For the remainder of this paper
we restrict our discussion to the “vanilla” cluster definitions
we have described previously.

There are three advantages to this cluster definition. First,
our definition is sufficiently general to capture much of the
usage structure in existing applications and networks. Sec-
ond, our definition is consistent with current packet clas-
sifiers [8] and consequently a manager can apply controls,
such as policy routing and hardware rate limiting, to the
clusters we dynamically identify. Third, our definition al-
lows a simple visually appealing rule-based display of clus-
ters (Section 4). Finally, initial results on several distinct
networks (Section 5) indicate that clusters defined in this
way do identify interesting resource consumption patterns
that managers care about.

Our definition of clusters satisfies two of the requirements:
the need for multi-dimensional clusters (dimensionality) and
field selection constrained by existing field hierarchies (util-
ity). However, satisfying the remaining requirement, reduc-
ing detail, requires significant additional effort.

2.2 Operations on Traffic Clusters
A traffic report is a list of clusters presented to a manager.

It is very easy to see that even restricting ourselves to IP
prefixes and very simple port ranges, that there is an expo-
nential number of raw clusters. There are approximately 233

possible source IP prefixes alone! The first step in reducing
this onslaught of data is to restrict the report to only in-
clude high volume clusters, where volume may be defined as
the number of bytes or the number of packets contained in
the cluster over a predefined measurement interval. While
other criteria could be used to filter clusters, data volume
is a categorization of inherent interest. A cluster containing
20 percent of all traffic is one that a network manager is
likely to care about, while a cluster that only contains a few
packets usually warrants less attention.

However, even with this restriction, the number of such
clusters identified in real traces is far too large to manage.
Since the precious resource is not network bandwidth or
CPU cycles, but a network manager’s time, verbose and un-
structured reports are not likely to be appreciated or useful.
Consequently, to maximize the effectiveness of a traffic re-
port, we believe that there are four essential operations that
must be provided:

• Operation 1, Compute: Given a description of traf-
fic as input (e.g., packet traces or NetFlow records),

compute the identity of all clusters with a traffic vol-
ume above a certain threshold. This is the base oper-
ation.

• Operation 2, Compress: Having found the base set
of clusters, one can compress the report considerably
by removing a cluster C from the report if cluster C’s
traffic can be inferred (within some error tolerance)
from that of cluster C′ that is already in the report.
For example, if all the traffic is generated by a single
high-volume connection from source S to destination
D is high volume, then one can infer that the traffic
sent by S is also high volume. Thus one should retain
the S to D cluster for the detail it shows, and omit the
S cluster as it can be inferred from the S to D cluster.
Intuitively, the rule we use is to remove a more general
cluster if its traffic volume can be inferred (within some
error tolerance) from more specific clusters included in
the report.

• Operation 3, Compare: A good way to save the
manager time is to concisely show how the traffic mix
changes from day to day, or week to week. Computing
these deltas requires finding those high volume clusters
that have changed significantly since the last report.
This is trickier than it seems, because a high volume
cluster on day 1 may now become low on day 2, or
vice versa. Worse, more general clusters need not be
larger than the sum of more specific non-overlapping
clusters. Thus combining deltas (Operation 3) with
compression (Operation 2) is much harder than just
implementing each operation in isolation.

• Operation 4, Prioritize: Even after compressing
the report and computing Deltas, it is still desirable to
prioritize the elements of the report in terms of their
potential level of interest to a manager. We choose
to equate the interest in a cluster to what we call its
unexpectedness. While there are many ways to define
this metric, we chose to use a relatively unsophisti-
cated approach that is easy to compute. We define
unexpectedness in terms of deviation from a uniform
model in which the contents of different fields is mutu-
ally independent. For example, if prefix A sends 25%
of the traffic and prefix B receives 40% of all traffic,
then under the assumption of independence, we would
expect the traffic from A to B to be 25%*40%=10%
of the total traffic. If the actual traffic from A to B
is 15% of the total traffic instead of 10%, the clus-
ter is tagged with a score of 150%, indicating that it
is unexpectedly large by a factor of 1.5. If the traf-
fic from A to B is only 6%, then it is given a score
of 60%, indicating that it is unexpectedly small. The
closer a score is to 100%, the more boring it is, and the
less important it is to highlight to the user. This con-
struction of unexpectedness is, in effect, a very simple
multi-dimensional gravity model.

3. ALGORITHMS
The last section motivated four fairly abstract operations

on sets of clusters. Here we describe the specific algorithms
we chose to implement these operations. These algorithms
form the engine that underlies the core of our AutoFocus
tool described in Section 4. Rather than directly present the

3

algorithms for the multi-dimensional case, we first present
the simpler algorithms for the unidimensional (i.e., single
field) case. Addressing this simpler case will help build in-
tuition. Furthermore AutoFocus also includes in its output
the simpler unidimensional results and the multidimensional
algorithms use the results of the unidimensional algorithms
to reduce their search space.

For some of the algorithms we also present theoretical up-
per bounds on the size of the report and on the algorithm’s
running time. Measurement results in the technical report
version of this paper [5] show that in reality reports are much
smaller than these upper bounds. Since our focus in this pa-
per is maximizing information transfer to the manager, not
algorithmic optimization; we believe that significantly faster
algorithms that produce similar results may be possible.

In this section we use the terms dimension and field inter-
changeably since each field defines a dimension along which
we can classify. We use k for the number of fields. In the
actual system we implemented k = 5.

The sets (i.e., prefixes in IP address fields) for each field
form a natural hierarchy in terms of set inclusion. This
can be described by a tree where the parent is always the
smallest superset of the child. The leaves of this tree are
individual values the field can take. The root is always the
set of all possible values, *. The sets denoted by two nodes
are disjoint unless one of the nodes is an ancestor of the
other, in which case it is a superset of the other. We call
the number of levels in this tree the depth of the tree (the
maximum distance from the root to a leaf plus 1). We use
di for the depth of the hierarchy of the i-th of the k fields.
The hierarchy for IP addresses we use in this paper has a
depth of 26 that for port numbers has a depth of 3 while
for the protocol field we use the simplest possible hierarchy
with a depth of d = 2.

The raw data we build our algorithms on is a simplified
version of NetFlow flow records: each flow record, which
we sometimes refer to as a “flow” for conciseness, has a key
that specifies exact values for all five fields and two counters,
one counting the packets that matched the key during the
measurement interval considered and one for the number of
bytes in those packets. Transforming a trace with packet
headers and timestamps into such flow records leads to no
loss of information from the standpoint of traffic clusters.

We use n for the number of such records. Each traffic
cluster is made up of one or more flow records and the cor-
responding byte and packet counters are the sum of the cor-
responding counters of the flow records it includes. Note
that if a cluster contains exact values in all fields it is ex-
actly equivalent to a single flow. For the rest of this section
we ignore that the flow records contain two counters and
work with a single counter. Our algorithms use a thresh-
old H and focus on the traffic clusters that are above this
threshold. We use s for the ratio between the total traffic
T and the threshold s = T/H , so if H is 5% of the total
traffic, then s = 20.

3.1 Unidimensional clustering
First we concentrate on the problem of computing high

volume clusters on a single field, such as the source IP ad-
dress. Note that even the unidimensional case is significantly
more complex than traditional tools like FlowScan, in which
managers define a static hierarchy by pre-specifying which
subnets should be watched. By clustering automatically, we

10.8.0.3 10.8.0.6 10.8.0.710.8.0.2

15 35 30 40

50 70

50

35

35 75

75

75

10.8.0.910.8.0.8

160 110

270

10.8.0.10 10.8.0.14

380

305 10.8.0.12/30

10.8.0.14/3110.8.0.10/31

10.8.0.0/28

10.8.0.8/30

10.8.0.8/31

10.8.0.4/30

10.8.0.6/31 70

10.8.0.0/30

10.8.0.2/31

10.8.0.0/29 120

500

10.8.0.8/29

Figure 1: Each individual IP address sending traffic
appears as a leaf. The traffic of an internal node is
the sum of the traffic of its children. Nodes whose
traffic is above H=100 (double circles) are the high
volume traffic clusters. The Web server 10.8.0.12 is
a large cluster in itself. While no individual DHCP
address is large enough, their aggregate 10.8.0.0/29
is, so it is listed as a large cluster.

do not need to define subnets; the tool will automatically
group addresses into “subnets” that contain a high volume
of traffic.

We use d to represent the depth of the hierarchy and m ≤
n to represent the number of distinct values of the field in
the n flow records of the input.

Computing Unidimensional Clusters
Before we describe our algorithms for computing the high
volume unidimensional clusters, it is useful to bound their
number. Consider the IP source address. A reasonable in-
tuition might be that a threshold H of 5% of the total traf-
fic restricts the report size to 20, because there can be at
most 20 disjoint clusters, each contributing 5% of the traf-
fic. Unfortunately, our definition of clusters allows clusters
to overlap. Thus, if 128.50.∗.∗ is a high volume cluster, then
128. ∗ . ∗ .∗ is as well. Fortunately, a given source address
cluster’s traffic can at most be counted in 25 other clus-
ters (the number of ancestors in its hierarchy tree – we do
not consider prefixes with lengths from 1 to 7). Therefore,
the maximum number of high volume clusters is not 20 but
roughly 20 · 26 = 520. In [5] we show that the size of all
such reports is bounded by 1 + (d − 1)s.

For the unidimensional case, we now describe the algo-
rithm to do Operation 1, computing the raw set of high
volume clusters. When the number of sets in the hierarchy
is relatively small, for example 257 for protocol and 65539
for port numbers, we can apply a brute force approach: keep
a counter for each set and traverse all n flow records while
updating all relevant counters; at the end, list the clusters
whose counters have exceeded H .

If the number of possible values is much larger, as is the
case for IP addresses, we use another algorithm illustrated
by the example from Figure 1. As we go through the flow
records, we first build the leaf nodes that correspond to the
IP addresses that actually appear in the trace. For exam-
ple, there are only 8 possible source addresses (leaves) in the
trace that Figure 1 was built from. Thus, we make a pass

4

over the trace updating the counters of all the leaf nodes.
By the end of this pass, the leaf counters are correct; we also
initialize the counters of all nodes between these leaves and
the root to 0. In a second pass over this tree, we can deter-
mine which clusters are above threshold H by traversing in
post order (children before parents). Also, just before fin-
ishing with each node, the algorithm must add its traffic to
the traffic of its parent. This way, when the algorithm gets
to each node its counter will reflect its actual traffic. The
memory requirement for this algorithm is O(1 + m(d − 1))
and it can be reduced to O(m+d) by generating the internal
nodes only as we traverse the tree. The running time of the
algorithm is O(n+1+m(d− 1)). No algorithm can execute
faster than O(n + 1 + (d − 1)s) because all algorithms need
to at least read in the input and print out the result.

Compressing Unidimensional Traffic Reports
For the unidimensional case, we now describe the algorithm
for Operation 2, compressing the raw set of high volume
clusters. The complete list of all clusters above the thresh-
old is too large and most often it contains redundant infor-
mation. Even if a /8 (address prefix of length 8) contains
exactly the same amount of traffic as a more specific /24
prefix, all the prefixes with lengths in between are also high
volume clusters. More generally, perhaps an intermediate
prefix length like /16 has a little more traffic than the /24
it includes (or the sum of the traffic of several more specific
/24s already in the report) but not much more. Report-
ing the /16 adds little marginal value but takes up precious
space in the report. Removing the /16 on the other hand,
will mean that the manager’s estimate of the /16 may be
a little off. Thus we trade accuracy for reduced size. In
general, define the compression threshold C as the amount
by which a cluster can be off. In our experiments we de-
fined C = H . We did so to avoid unintended errors: if the
manager wants all clusters above H , surely she realizes that
the report can be off by H in terms of missing clusters of
size smaller than H . By setting C = H , we are only adding
another way to be off by H . Also, setting C = H produces
the following simple but appealing result.

Lemma 1. The number of clusters above the threshold in
a non-redundant compressed report is at most s.

Proof Since none of the clusters in the report is redundant,
each has a traffic of at least C = H that was not reported
by any of its descendants. The sum of these differences is
at most T because each flow can be associated with at most
one most specific cluster in the report and these flows make
up the difference between that cluster and the more specific
ones. Therefore, a report can contain at most T/H = s
clusters. �

If we go back to our original example for computing all
clusters that send over 5% of the total traffic, we find that
the number of clusters in the compressed report (assuming
C = H = 5%) is at most 20 and not roughly 20 · 26. The
compressed report corresponding to Figure 1 is in Figure 2.
Note that the number of nodes retained in the report (nodes
with double circles) has dropped from 7 to 4 which is actu-
ally less than the 5 Lemma 1 would have predicted for the
20% threshold.

Our algorithm for computing the unique non-redundant
compressed report, exemplified in Figure 2, relies on a single
traversal of the tree of the high volume traffic clusters. Each

10.8.0.910.8.0.8

10.8.0.8/31

160 110

10.8.0.0/28

10.8.0.8/30 305

500

270

120 38010.8.0.8/2910.8.0.0/29

Figure 2: The clusters from the compressed re-
port are represented with double circles. Node
10.8.0.8/31 is not in the compressed report because
its traffic is exactly the sum of the traffic of its chil-
dren. Node 10.8.0.8/30 is not in the compressed
report because its traffic is within a small amount
(35) of as what we can compute based on its two
descendants in the report.

node in the tree maintains two counters: one reflecting its
traffic and one reflecting an estimate of its traffic based on
the more specific clusters included in the report. We per-
form a post order traversal and decide for each node whether
it goes into the report or not. We compute the node’s “es-
timate” as the sum of the estimates of its children. If the
difference between this value and the actual traffic is below
the threshold, the node is ignored, otherwise it is reported
with its exact traffic and its “estimate” counter is set to its
actual traffic. This algorithm significantly reduces the size
of the report while guaranteeing that all clusters of size H
or larger can be reconstructed within error C.

Computing Unidimensional Cluster Deltas
While compressed reports provide a complete traffic char-
acterization for a given input, sometimes we are more in-
terested in how the structure of traffic has changed. More
specifically, the challenge is to produce a concise report that
indicates the amount of the change for all the clusters whose
increase or decrease in traffic is larger than a given thresh-
old.

There are two ways to define the problem: by looking at
the absolute change in the traffic of clusters, or by looking
at the relative change. If the lengths of the measurement in-
tervals are equal and the total traffic doesn’t change much,
one can use absolute change: the number of bytes or pack-
ets by which the clusters increase or decrease. However, to
compare the traffic mix over intervals of different lengths
(e.g. how does the traffic mix between 10 and 11 AM differ
from the traffic mix of the whole day), we can only meaning-
fully measure relative change and must normalize the sizes
of traffic clusters so that the normalized total traffic is the
same in both intervals. Thus, even if the traffic of a given
cluster changed significantly, if it represents the same per-
centage of the total traffic, its relative change is zero. For

5

the rest of this paper we assume that the we are comput-
ing the absolute change or that the traffic has already been
normalized.

To detect the clusters that change by more than H , we
can use the full traces from each interval, but a more effi-
cient algorithm can be built simply using the uncompressed
reports computed earlier. Since each cluster in the uncom-
pressed report is above a threshold of H , if a cluster was
below H in both intervals it could not have changed by
more than H overall. But operating only on the reports
for the two intervals still leaves some ambiguities: we can-
not be sure whether a cluster that appears only in one of
the intervals and is close to H was zero in the other one and
thus changed by more than H , or was close to but below H
and thus changed by very little. Of course, if the threshold
used by the input reports is much below H , the ambiguity
is reduced and we can ignore it in practice. A simple pre-
processing step can provide the exact input required for the
delta algorithm as follows: using reports with threshold H
for both intervals we compute the set of clusters that were
above H in either of them and in one more pass over the
trace we compute the exact traffic in both intervals for each
of these clusters.

We can apply to delta reports a compression algorithm
similar to that from the previous section. We decide whether
to include a cluster into the compressed delta report by com-
paring its actual change to the estimate based on more spe-
cific clusters already reported: if the estimate is lower or
larger by at least H than the actual change, the cluster is
reported. Note that this can (and does) lead to putting
clusters that did not change by more than the threshold
into the compressed delta report. Consider the following
example. The traffic from port 80 (Web) increased by more
than the threshold and therefore we put it into the delta re-
port. At the same time, no traffic from individual low ports
changed much and the total traffic from low ports remained
the same. This is possible because traffic from many low
ports may have decreased slightly, thus compensating for
the increase in port 80 traffic. Our compressed delta report
needs to indicate that the total traffic from low ports did not
change because otherwise the manager would assume that
it increased by approximately as much as the Web traffic.

Lemma 2. The number of clusters in a non-redundant
compressed delta report is at most s1 + s2.

Proof Each cluster in the report covers a traffic of at least
H from one of the intervals that was not reported by any
of its descendants. The sum of the absolute value of these
differences is at most T1 + T2 (T1 is the total traffic of the
first measurement interval and T2 is the total traffic of the
second one) because each flow can be associated with at
most one most specific cluster in the report and the sum
of the sizes of all flows is T1 + T2. Therefore, there are at
most (T1 +T2)/H = s1 +s2 clusters in the compressed delta
report. �

While this result suggests that compressed delta reports
could be double the size of compressed reports, in practice
traffic changes slowly, so the deltas are much more compact
than compressed reports using the same threshold.

3.2 Multidimensional clustering
The relationships between multidimensional clusters form

a more complex space defined by combining multiple unidi-

Medicine (M)

Root

C

E

UE

UC

U

TE

S

T

M

D
P

Engineering (E)

Structural Eng. (S)

Pediatrics (P)

Dermatology (D)

UDP (U)

TCP (T)

Root − all traffic

Root − all traffic

Computer Science (C)

Figure 3: The multidimensional model combines
unidimensional hierarchies (trees) into a graph. The
hierarchy on the near side of the cube breaks up the
traffic by prefixes; the hierarchy on the right side
of the cube by protocol. For example, the node la-
beled C on the near side represents the Computer
Science Department, the node labeled U on the right
side represents the UDP traffic and the node labeled
UC in the graph represents the UDP traffic of the
Computer Science Department.

mensional hierarchies. In the top of Figure 3, the closer face
of the cube shows the prefix hierarchy that breaks up the
traffic of a hypothetical university between the Engineering
School and the Medical School, and breaks up the traffic of
the Engineering School between the Structural Engineering
Department and the Computer Science Department. On the
right side of the cube we illustrate another hierarchy that
breaks up the traffic by protocol into TCP and UDP. When
we combine these hierarchies in the bottom of Figure 3 we
obtain a specific type of directed acyclic graph, a semi-
lattice. Nodes in this graph have up to k parents instead
of just one: one parent for each dimension along which they
are not defined as *. For example, node UC represents the
UDP traffic of the Computer Science Department and has
as parents the nodes UE (the UDP traffic of the Engineer-
ing School) and C (the total traffic of the Computer Science
Department). Unlike unidimensional clusters, two multidi-
mensional clusters can overlap and still neither includes the
other: one can be more general along one dimension, while
the second can be more general along another one. For ex-
ample, clusters UE and C overlap (their intersection is UC)
but neither includes the other. As a result, the size of the
graph is much larger than the sizes of the trees representing
the hierarchies of individual fields: it is the product of their

6

sizes.
We use the phrase unidimensional ancestor of cluster X

along dimension i to denote the cluster that is identical to X
in its ith field and has wildcards in all the other k−1 fields.
This is also a unidimensional cluster along dimension i. In
our example, C is the unidimensional ancestor of UC along
the prefix dimension and U is its unidimensional ancestor
along the protocol dimension. We use the phrase children
of cluster X along dimension i to denote the clusters that
have exactly the same sets for all other dimensions and for
dimension i their sets are one step more specific (i.e. they
are children of the set used by X in the hierarchy of field i).
For example S and C are the children of E along the prefix
hierarchy and UE and TE are its children along the protocol
hierarchy.

Computing Multidimensional Clusters
Our algorithm examines all clusters that may be above the
threshold; for each such cluster, the algorithm examines all
n flows, and adds up the ones that match. If the traffic
is above the threshold, the cluster is reported, otherwise it
is not. Explicitly evaluating all the clusters generated by
the n flows in the input, approximately n

�k
i=1 di, is not

an acceptable approach for the configurations we ran on.
Therefore our algorithm restricts its search (thereby reduc-
ing running time) based on a number of optimizations that
prune the search space.

The first optimization exploits that all the unidimensional
ancestors of a certain cluster include it, so the cluster can be
above the threshold only if all its unidimensional ancestors
are also above threshold. We first solve the k unidimensional
problems. After this, we restrict the search to those clusters
that have field values appearing in each of the uncompressed
unidimensional reports. Next, observe that traversal of the
search space is such that we always visit all the ancestors of a
given node before visiting the node itself. Thus our second
optimization is to consider only clusters with all parents
above the threshold. This is very easy to check because in
our graph nodes have pointers to their parents. A third
optimization is to batch a number of clusters when we go
through the list of flow records.

Even with all three optimizations, among all our algo-
rithms, this one produces the largest outputs and takes the
longest to run. For example, computing both packet and
byte reports with a 5% threshold takes on average 16 min-
utes for a one day measurement interval, 2 minutes for a one
hour measurement interval and 1 minute for a five minute
measurement interval using a 1 GHz Intel processor, however
using a threshold of 0.5% for a one day trace it takes over 3
hours to compute the uncompressed report. We believe this
algorithm can be improved significantly. In [5] we bound
the number of high volume clusters in the multidimensional
case by s

�k
i=1 di. While there are pathological inputs that

could force the size of the output close to its worst case
bound, the results for real data are much smaller.

Compressing Multidimensional Traffic Reports
For the multidimensional case Operation 2, compression,
is absolutely necessary to achieve reports of reasonable size.
We first bound the maximum size of the compressed report.

Lemma 3. For any traffic mix, there exists a compressed
report of size at most (s

�k
i=1 di)/(max di).

COMPRESS REPORT
1 sort more specific first(cluster list)
2 foreach cluster in cluster list
3 for field = 1 to 5
4 sum[i]=add estimates(cluster.childlists[field])
5 endfor
6 cluster.estimate = max(sum[i])
7 if(cluster.traffic − cluster.estimate ≥ H)
8 add to compressed report(cluster)
9 cluster.estimate = cluster.traffic
10 endif
11 endforeach

Figure 4: The algorithm for compressing traffic re-
ports traverses all clusters starting with the more
specific ones. The “estimate” counter of each cluster
contains the total traffic of a set of non-overlapping
more specific clusters that are in the compressed
report. The clusters whose estimate is below their
actual traffic by more than the threshold H , are
included into the compressed report.

Proof Let m be the field with the deepest hierarchy (dm =
max di). Let Lj be the sizes of clusters (indexed by j) that
have * in field m. Since each flow belongs to at most

�
i�=m di

clusters with ∗ in field m, we get
�

Lj ≤ T
�

i�=m di. We
can obtain any cluster by varying the mth field of the cor-
responding cluster j. We can compress all the clusters ob-
tained from cluster j by varying field m using the unidi-
mensional algorithm for field m, so by applying Lemma 1,
we get that the number of clusters in the result is bound
by sj = Lj/H . These reports for all j together cover all
clusters, so for the total size of the report we get

�
Lj/H ≤

s
�

i�=m di = (s
�k

i=1 di)/(max di). �
We have implemented a fast greedy algorithm for multi-

dimensional compression (Figure 4). It traverses all clusters
in an order that ensures that more specific clusters come
before all of their ancestors (line 1). At each cluster we keep
an “estimate” counter. When we get to a particular cluster
we compute the sum of the estimates of its children along
all dimensions (line 4) and set the estimate of the current
cluster to the largest among these sums (line 6). If the dif-
ference between the estimate and the actual traffic of the
cluster is below the threshold (line 7), it doesn’t go into the
compressed report. Otherwise we report the cluster (line
8) and set its “estimate” counter to its actual traffic (line
9). The invariant that ensures the correctness of this algo-
rithm is that after a cluster has been visited, its “estimate”
counter contains the total traffic of a set of non-overlapping
more specific clusters that are in the compressed report. It
is easy to see how this invariant is maintained: when com-
puting the estimate for the cluster, for each dimension, the
algorithm computes the sum of the estimates of the chil-
dren of the node (cluster) along that particular dimension.
Since the sets at the same level of the field hierarchy never
overlap, the sets contributing to the estimates of distinct
children will never overlap, so the invariant is maintained.

The compression rule allows the algorithm to consider all
non-overlapping sets of more specific clusters reported when
computing the estimate. Our algorithm does something sim-

7

pler: it only looks at the sets of non-overlapping more spe-
cific clusters that can be partitioned along a dimension or
another. Thus it will sometimes include clusters into the
report that could have been omitted, but it will never omit a
cluster that does not meet the compression criterion (i.e., is
larger by more than H than the traffic of each of the sets
of non-overlapping more specific clusters in the compressed
report). This is a small price to pay for the big gains in per-
formance we get by performing simpler local checks. Com-
puting both byte and packet compressed reports takes less
than 30 seconds for a threshold as low as 0.5%.

In practice compressed traffic reports are two to three or-
ders of magnitude smaller than uncompressed reports and
dramatically smaller than the theoretical bound. For a thresh-
old of 5% of the total traffic the average report size is around
30 clusters. This is not influenced significantly by the length
of the measurement interval or the diversity of the traffic
(backbone versus edge), but the size of the report is pro-
portional to the inverse of the threshold. For brevity we
only present in [5] our algorithm for computing compressed
multidimensional delta reports, but note here that the in-
teractions between compression (Operation 2) and deltas
(Operation 3) are more complex than in the unidimen-
sional case.

Computing “Unexpectedness”
Recall Operation 4 which seeks to prioritize clusters via a
measure of unexpectedness based on comparing the cluster
percentage to the product of the percentages computed for
each field in the cluster by itself. Computing the unexpect-
edness score of a given cluster is very easy using the graph
describing the relations between the high volume clusters:
we only need to locate the unidimensional ancestors along
all dimensions.

4. THE AUTOFOCUS TOOL
The AutoFocus prototype is an off-line traffic analysis sys-

tem composed of three principal components:

• Traffic Parser. This component consumes raw net-
work measurement data. Our current system uses
(sampled) packet header traces as input, but it could
easily be modified to accept other forms of data such
as sampled NetFlow records.

• Cluster Miner. The cluster miner is the core of
the tool and applies our multidimensional and unidi-
mensional algorithms to compute compressed traffic
reports, compressed delta reports and unexpectedness
scores.

• Visual Display. The visual display component is
responsible for formatting the report and construct-
ing graphical displays to aid understanding. To im-
prove user recognition of individual elements, we post-
process the raw traffic report to attach salient names
to individual addresses and ports. These names are
generated from the WHOIS and DNS services, lists of
well-known ports, as well as user-specified rules that
contain information about the local network environ-
ment (e.g. that a particular host is a Web proxy cache
or a file server). The display component also generates
a series of time-domain graphs, using different colors to
identify a set of key traffic categories. These categories

can contain multiple clusters. Categories are ordered
and each flow is counted against the first category it
matches, traffic not falling any particular category is
lumped into an “Other” category. Ideally, the cate-
gories are also constructed to be representative of “in-
teresting” aggregates (e.g. outbound SSL traffic from
our Web servers). Currently, the user specifies these
categories – typically based on examining the clusters
contained in the textual report. Heuristics for auto-
matically selecting these traffic categories remains an
open problem, complicated by the requirement that
categories be meaningful. We expect that some user
involvement will always be beneficial.

Figure 5 depicts a report generated by AutoFocus us-
ing a 5% threshold on a trace recently collected from the
SD-NAP exchange point. After identifying the size of the
total traffic and the threshold parameters, the report pro-
vides the five unidimensional compressed reports – protocol,
source address, destination address, source port and desti-
nation port. For example the report indicates that 66% of
traffic in this trace originates from 192.128.0.0/10, however
most of this traffic can be attributed to the more specific pre-
fix, 192.172.226.64/26 (owned by CAIDA). Note that pre-
fixes between these two records, from /10 to /26, are com-
pressed away because their traffic does not differ by more
than 5% (17.7GB) from the more specific /26 prefix. Ulti-
mately, an individual source IP address is responsible for the
majority of this activity. The compressed multidimensional
report starts with the least specific clusters (such as arbi-
trary TCP traffic from servers using low ports to clients).
Note that the most specific cluster shown exactly identi-
fies the particular transfer that consumed more than half of
the total bandwidth. Moreover, its unexpectedness score of
596%, promptly brings it to the attention of the network
administrator. Consequently, this cluster is also identified
in the delta section at the end of the report. The output of
AutoFocus also includes time-series plots of traffic as bytes
and packets colored by the appropriate categories on two
timescales: short (two days – not shown here) and long
(eight days). The conspicuous spikes at each midnight are
periodic backups.

The AutoFocus prototype has another feature that proved
useful on a number of occasions: drilling down into indi-
vidual categories. For each of the categories, we provide
separate time series plots and reports that analyze the in-
ternal composition of the traffic mix within that particular
category.

5. EXPERIENCE WITH AUTOFOCUS

5.1 Comparison to unidimensional methods
We contrast our multidimensional method with unidimen-

sional analysis. Figure 6 presents a simplified version of
the time domain plot generated by AutoFocus for Friday
the 20th and Saturday the 21st of December 2002, while
Figure 7 and Figure 8 present two unidimensional plots (see
[5] for the unidimensional reports for the other fields). Be-
sides compactness, our multidimensional view has the ad-
vantage of making it easier to see very specific facts about
the network traffic. For example the light colored “spot”
between 7 AM and 2 PM on the first day is UDP traf-
fic that goes to a specific port of a specific multicast ad-

8

Total traffic is 354 GB. The threshold is 5%=17.7 GB.
Unidimensional reports
Protocol breakdown
 6(TCP) 98.653% 350 GB
Source IP breakdown
 137.131.0.0/16(Scripps) 7.778% 27.6 GB
 192.128.0.0/10 66.450% 235 GB
 192.172.226.64/26[Caida] 61.371% 217 GB
 192.172.226.89(magrathea.caida.org) 55.424% 196 GB
Destination IP breakdown
 132.249.0.0/17[SDSC] 5.506% 19.5 GB
 137.131.0.0/17[Scripps] 5.529% 19.6 GB
 137.131.128.0/17[Scripps] 5.574% 19.8 GB
 192.0.0.0/8 60.937% 216 GB
 192.67.21.154(hpss07.sdsc.edu) 55.362% 196 GB
 198.0.0.0/8 6.651% 23.6 GB
Source port breakdown
 lowport 22.768% 80.8 GB
 80(http) 16.784% 59.6 GB
 highport 76.532% 271 GB
 4339 55.362% 196 GB
Destination port breakdown
 lowport 6.121% 21.7 GB
 highport 93.178% 330 GB
 35904 55.362% 196 GB
Multidimensional report
 Source IP Destination IP Pr. Src port Dst port Traffic Label
 * * TCP lowport highport 80.4 GB 108.2%
 * * TCP 80(http) highport 59.6 GB 108.8%
 * * TCP highport lowport 21.1 GB 128.7%
 * * TCP highport highport 248 GB 99.4%
 * 132.249.0.0/17[SDSC] TCP * highport 19.0 GB 105.7%
 * 137.131.0.0/16(Scripps) TCP 80(http) highport 18.6 GB 306.0%
 * 137.131.0.0/16(Scripps) TCP highport * 18.1 GB 60.9%
 * 137.131.0.0/17[Scripps] TCP * * 19.5 GB 100.6%
 * 137.131.128.0/17[Scripps] TCP * * 19.6 GB 100.6%
 * 192.0.0.0/8 * * highport 214 GB 106.4%
 * 192.0.0.0/8 TCP * * 214 GB 100.8%
 * 198.0.0.0/8 TCP * highport 22.2 GB 102.2%
 137.131.0.0/16(Scripps) * TCP * highport 20.5 GB 80.7%
 192.172.226.0/24(SDSC NAP) * TCP highport highport 214 GB 139.9%
 192.172.226.0/25(Caida) * TCP * highport 221 GB 110.5%
 192.172.226.64/26[Caida] * TCP * * 217 GB 101.4%
 192.172.226.89(magrathea.caida.org) 192.67.21.154(hpss07.sdsc.edu) TCP 4339 35904 196 GB 596.7%
Delta report ------------ traffic changed from 213 GB to 354 GB, threshold is 5%=17.7 GB ------------
 * 137.131.0.0/17[Scripps] TCP highport * -20.6 GB
 134.79.0.0/18[SLAC.stanford] 137.131.0.0/16(Scripps) TCP highport lowport -19.6 GB
 192.172.226.3(ra.caida.org) 192.67.21.168(hpss45.sdsc.edu) TCP highport highport -30.5 GB
 192.172.226.89(magrathea.caida.org) 192.67.21.154(hpss07.sdsc.edu) TCP 4339 35904 196 GB

Figure 5: The report for the 17th of December 2002 (one of the 31 daily reports for this trace) contains
compressed unidimensional reports on all 5 fields and the compressed multidimensional cluster report using
a threshold of 5% of the total traffic. In the unidimensional reports the percentages indicate the share of the
total traffic the given cluster has. In the multidimensional report they indicate the unexpectedness score.
Note how much smaller the delta report is than the full report.

dress. While we could manually correlate the corresponding
“bright spots” from the protocol, destination prefix and des-
tination port plots, the AutoFocus plot automatically iden-
tifies the key usage directly. The massive spike causing the
traffic surge from 12:01 AM until 3 AM the first day and
the longer dark traffic cluster from 1 AM until 11 AM that
day and 1 AM and to 6 AM the second day are two different
types of backups. It would be difficult to disentangle them
using only unidimensional plots. Since they use different

source ports (SSH versus high ports) they show up sepa-
rately in the source port report, but since they come from
the same source network and go to the same destination
network they show up together in those plots.

5.2 Experience with analysis of traffic traces
This section presents highlights of our experience using

AutoFocus to analyze traffic traces from three large produc-
tion networks. While the usefulness of the insights gleaned

9

Figure 6: Multidimensional report

Figure 7: Unidimensional – source port

Figure 8: Unidimensional – destination network

using AutoFocus is hard to quantify, we hope that present-
ing some of them will give the reader a more accurate idea
of the power of our system.

Small network exchange point
Our first trace was collected from SD-NAP, a small network
exchange point in San Diego, California, that connects many
research and educational institutions and also connects some
of them to the rest of the Internet. The trace is 31 days long
and it starts on the 7th of December 2002. In addition, we
were able to consult with those familiar with this network to
calibrate our conclusions and receive useful feedback about
out results.

When analyzing the raw reports we looked for traffic clus-
ters that were large, but did not completely dominate the
traffic (e.g. the cluster containing all TCP traffic is not
very useful). In particular, we found that port 80 (TCP)
Web traffic was so large that it was best subdivided into

four categories: Web traffic from a particular server at the
Scripps Institute, Web traffic destined for clients within the
Scripps /16 (Web client traffic), other traffic from port 80
and traffic to port 80. Of these, the first and second cate-
gories proved to be the most interesting. Traffic from the
Web server showed a clear diurnal pattern with peaks be-
fore noon (sometimes a second peak after noon) and lows
after midnight. It also showed a clear weekly pattern with
lower traffic on the weekends and holidays. The second cat-
egory (the Web clients) had similar trends, but the lows
around midnight usually went down to zero and the differ-
ence between weekend and weekday peaks was much larger.
In retrospect, this is to be expected since the client traffic
requires the physical presence of people at Scripps, while the
server traffic can be driven by requests from home machines
or users outside the institution.

Another interesting traffic cluster contained Web proxy
traffic originating from port 3128 of a particular server at
NLANR. The amount of traffic had a daily and weekly cycle,
but the lowest traffic was at noon and the highest at mid-
night. Using AutoFocus’ drill-down feature we were able to
examine the breakdown of this traffic, which identified large
clusters containing transfers to second-level caches from Tai-
wan, Indonesia, Spain and Hong Kong. Evidently the traffic
was driven by the daily cycle of the clients in these other
time zones.

AutoFocus places the remaining non-categorized traffic
into an amalgamated “Other” category. On the last day
of the trace, we saw a huge sharp increase at 5:30 PM in the
“Other” traffic that saturated the link followed by a sudden
decrease at 11 PM. Again using the drill-down feature, we
observed that this change was mostly attributable to traf-
fic between two nearby universities: from UCSD to UCLA.
However, traffic between these two did not appear in any
other cluster over the previous 30 days. Upon investigation
we determined that traffic bulge was due to a temporary net-
work outage that forced traffic normally using the CalREN
network to transit SD-NAP instead.

Large research institution
Our second trace was taken from the edge of a network that
connects a large research institution (roughly 15,000 hosts)
to the Internet. The trace is 39 days long and it starts on
the 12th of December. In this case, we had access to similar
although less-detailed expertise concerning the operation of
the network.

Many findings for the second trace were similar to those
we have described earlier, but there were some differences.
We observed a series of regularly scheduled backup transfers:
one from a range of machines destined to TCP port 7500
that had regular daily spikes at 11PM and 5AM followed by
periods of quiescence. Another example was a regular 40GB
transfer that started at 8PM on each Wednesday (usually
lasting until 10AM the following morning). This activity
proved to be a full backup of a large RAID array.

We observed a single large cluster containing a series of
regular TCP transfers from a single host to port 5002 on
three other hosts distributed around the Internet. This
turned out to be a regularly scheduled network measurement
experiment that was part of a distributed research activity.

The most interesting result for this second trace came by
looking at the breakout of the Sapphire worm [12]. This
worm exploits a vulnerability of the Microsoft SQL server

10

Figure 9: The Sapphire/SQL Slammer worm shows up in the time series plots as a big increase in the traffic
of the “Other” category around 21:30. Once we highlight the worm by putting it into a separate category,
it is evident that while its traffic is significantly reduced at 22:10 when the infected internal hosts were
neutralized, worm traffic persists at a lower level because of outside hosts spreading it into this network.

running on UDP port 1434 and spreads extremely aggres-
sively using single 404 byte packets to infect random destina-
tions. We computed the traffic reports for three hour mea-
surement intervals. The time at which the worm started was
apparent in the time series plot (see Figure 9). It showed up
as a huge increase in the “Other” traffic category. Drilling
down into the report describing that category, the worm was
conspicuous: 90% of the traffic was to UDP port 1434. A
quick comparison between the packet and byte reports also
gave us the average packet size. Furthermore, the report
readily revealed the 6 internal IP addresses that generated
80% of the traffic: these were local hosts infected by the
worm aggressively trying to infect the outside world. These
compromised servers were promptly neutralized by the net-
work administrators. In the next three hour interval, while
the traffic in the “Other” category decreased to levels simi-
lar to those before the worm, still a substantial fraction of it
(23%) was worm traffic. The report revealed that this was
traffic originating on the outside: it consisted of incoming
probes trying to infect internal hosts. We also performed an
analysis of the trace with the worm traffic separated into its
own category (the second plot from Figure 9). We were able
to see fine details. For example some of the infected hosts
did not spread their traffic uniformly over the whole address
space, but focused on single /8s. This is consistent with the
observation [12] that for some values of the random seed,
the algorithm used by the worm to select target addresses
chooses them from a limited set. This example shows once
again the strength of our multidimensional approach: Auto-
Focus is able to promptly bring to the network manager’s
attention and describe in great detail such unexpected and
unpredictable event as a worm epidemic.

While none of the traces we worked with contained mas-
sive denial of service attacks, we believe that AutoFocus
would bring them to the attention of the network operator
the same way it showed the worm. The victim of the at-
tack (whether it is an individual IP address or a prefix) will
show up in the report with a very large number of packets
(or bytes depending on the type of attack). Furthermore,
the attack will reveal the protocol used by the attack and
possibly the port number if it is kept constant. If the source
address is faked at random from the whole IP address space,
the report will not associate any particular source address
with the attack traffic hitting the victim. However, if for
some reason (e.g. egress filtering at the site the attack orig-

inates from), the source addresses are restricted to a certain
prefix (or a small number of prefixes), the report will identify
these, thus facilitating prompt and specific response.

We presented the output of AutoFocus to network man-
agers of the first two networks we had traces from. Their
reactions were very positive. It was easy for them to un-
derstand the output. They appreciated the intuitiveness of
the time series plots, the large amount of information they
convey and the ease with which the traffic reports and the
drill-down feature provided them more detailed information
when they needed it. The managers of both networks ex-
pressed interest in widely deploying our tool.

Backbone
A third trace we looked at was captured in August 2001 from
an OC-48 backbone link and is 8 hours long. We looked at
traffic reports for one hour measurement intervals. The re-
ports reveal that around two thirds of the bytes on the link
come from TCP port 80 and around one third come from
high ports. The report also revealed that around one third
of the traffic was from high ports to high ports. This is con-
sistent with the behavior of peer to peer traffic. Through
the unexpectedness scores, the report revealed some further
facts that seemed surprising at first. There were specific
source and destination prefixes where the Web traffic rep-
resented almost all of the traffic. One explanation for the
prefixes that send almost only Web traffic is the clustering
of Web servers in Web hosting centers or server farms. The
prefixes that receive almost exclusively Web traffic could be
organizations with many Web clients whose internal policy
prohibits the use of peer to peer applications.

6. RELATED WORK
FlowScan [14] is a package by Dave Plonka used for vi-

sualizing network traffic. It uses NetFlow [13] data to give
detailed information about the traffic by breaking it down
in a number of ways: by the IP protocol; by the well-known
service or application; by IP prefixes associated with “local”
networks; or by the AS pairs between which the traffic was
exchanged. There are many other applications that pro-
duce similar breakdowns of the traffic such as CoralReef [1]
or the IPMON project [2] based on packet traces instead
of NetFlow data. In [6] Estan and Varghese present algo-
rithms that automatically and efficiently identify large clus-
ters, once the definition of clusters is fixed. In terms of

11

our terminology, these reports display traffic clusters along
predefined dimensions.

There are methods for reducing the size of the raw data
describing the traffic mix in a way that does not preclude
future analyses: through sampling [4] or sketches [7]. While
our method also produces a very compact summary of the
traffic mix, its primary purpose is not to be used by further
analyses, but to convey a description of the traffic to the
human operator.

The problems we are solving are related to classical clus-
tering [10], but are different in that we use the space defined
by the field hierarchies instead of a Euclidian space. An-
other problem, finding association rules [3], requires finding
frequent item sets in high dimensional data, and is a well
studied problem in data mining. The two important differ-
ences between these two problems are: 1) Most approaches
to association rules do not use hierarchies. A notable ex-
ception is Han and Fu [9] who use a single hierarchy across
all fields unlike our use of separate hierarchies for each field.
2) Our compression rules were crucial to the effectiveness of
AutoFocus. To the best of our knowledge, no algorithms for
association rules use compression rules similar to ours.

7. CONCLUSIONS
Managing IP-based networks is hard. It is particularly

complicated by not understanding the nature of the appli-
cations and usage patterns driving traffic growth. In this
paper, we have introduced a new method for analyzing IP-
based traffic, multidimensional traffic clustering, that is de-
signed to provide better insight into these factors. The nov-
elty of our approach is that it automatically infers, based on
the actual traffic, a traffic model that matches the dominant
modes of usage. Unlike previous work, our algorithms can
analyze traffic along multiple different “dimensions” (Srource
address, Destination address , Protocol, Source port, Des-
tination Port) at once, and yet be able to use compression
to map results from this multidimensional space into a con-
cise report. In essence, our approach exploits the locality
created by particular modes of usage.

In addition to developing these algorithms, we have em-
bodied them in the AutoFocus analysis system. We have
developed a Web-based user interface to allow managers to
explore clusters across multiple time-scales and to drill down
to explore the contents of any clusters of interest. Our pre-
liminary experiences with this tool have been extremely pos-
itive and we have been able to identify unusual traffic pat-
terns that would have been considerably harder to identify
using conventional tools. Moreover, we have received posi-
tive feedback from network mangers who have quickly been
able to appreciate the benefits of our approach.

Finally, note that AutoFocus, as described in this paper,
automatically extracts patterns of resource consumption in
a single interval of time based on the traffic log of a single
link. The natural generalization would to extend AutoFocus
to automatically extract patterns of resource consumption
across time and across space. While AutoFocus currently
provides a visual display across a limited number of peri-
ods, it would be useful to do automatic time-series analyses
across large time periods using compressed clusters as a new
and parsimonious basis for such analysis. Similarly, extend-
ing AutoFocus to detect resource consumption across space
would allow managers to detect geographical patterns within
the network. We leave these generalizations for future work.

8. ACKNOWLEDGMENTS
We would like to thank Vern Paxson and Jennifer Rexford

for the many discussions that led to the clarifying the con-
cept of traffic clusters. We would also like to thank David
Moore and Vern Paxson for help with the evaluation of the
AutoFocus prototype. Support for this work was provided
by NSF Grant ANI-0137102 and the Sensilla project spon-
sored by NIST Grant 60NANB1D0118.

9. REFERENCES
[1] Coralreef - workload characterization.

http://www.caida.org/ analysis/ workload/.

[2] Ipmon - packet trace analysis.
http://ipmon.sprintlabs.com/ packstat/

packetoverview.php.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In Proceedings of the ACM SIGMOD, 1993.

[4] N. Duffield, C. Lund, and M. Thorup. Charging from
sampled network usage. In SIGCOMM Internet
Measurement Workshop, November 2001.

[5] C. Estan, S. Savage, and G. Varghese. Automatically
inferring patterns of resource consumption in network
traffic. Technical report CS2003-0746, UCSD.

[6] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. In Proceedings of
the ACM SIGCOMM, 2002.

[7] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M.
Strauss. Quicksand: Quick summary and analysis of
network data. Dimacs technical report, 2001.

[8] P. Gupta and N. Mckeown. Packet classification on
multiple fields. In Proceedings of the ACM
SIGCOMM, 1999.

[9] J. Han and Y. Fu. Discovery of multiple-level
association rules from large databases. In Proceeding
of VLDB, 1995.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The
elements of statistical learning. Springer, 2001. pages
453-479.

[11] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V.
Paxson, and S. Shenker. ACM SIGCOMM CCR, Vol
32, No. 3, July 2002.

[12] D. Moore, V. Paxson, S. Savage, C. Shannon, S.
Staniford, and N. Weaver. The spread of the
sapphire/slammer worm. Technical report, January
2003. http://www.caida.org/ outreach/ papers/ 2003/

sapphire.

[13] Cisco netflow. http://www.cisco.com /warp /public

/732 /Tech /netflow.

[14] D. Plonka. Flowscan: A network traffic flow reporting
and visualization tool. In Proceedings of USENIX
LISA, 2000.

[15] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H.
Levy. An analysis of internet content delivery systems.
In Proceedings of OSDI, 2002.

10

12

