
A Study of OS Schedulers for Concurrency Bugs

Faisal Khan

University of Wisconsin-Madison

faisal@cs.wisc.edu

Abstract
Concurrency related bugs are hard to detect and even harder
to reproduce due to their time dependent nature. One big
factor in non-determinism of multi-threaded applicationsis
process scheduler of an operating system. In this work, we
presented results of our study to understand the behavior of
some of the selected concurrency bugs under different OS
schedulers. The generalization of this study to a larger setof
bugs caused by concurrent execution of a program is hard
and may not be very precise in its nature. Still, the consis-
tent nature of our results for a chosen set of separate bugs on
multiple schedulers suggests that shorter time-slices anduni-
form inter-mixing of the execution units of a program by a
scheduler can lead to the early manifestation of concurrency
bugs in a software.

1. Introduction
Application programmers have no control over how an oper-
ating system schedule multiple execution units within a pro-
gram and occasionally the order intended by the programmer
is violated. According to a comprehensive study done on the
characterization of concurrency related bugs a major cause
of such bugs is either due to atomicity violation or order vi-
olation[1]. Additionally, concurrent bugs are often result of
some rare and complex inter-leavings that can even skip the
usual rigorous testing process. One main source of such non-
determinism is process scheduler in operating system.

A process scheduler in OS is responsible for giving an
illusion of simultaneous execution of multiple process by
switching between them fairly quickly. A set of policies
generally govern the behavior of these schedulers. In O(1)
scheduler [20], separate queues are maintained to keep track
of two sets of processes, one that has still time ticks left in
their time quantum and the other set of processes that have
exhausted their current time slice. Processes in each of these
queues are given their share of CPU based on their prior-
ity and their current average sleep time. An interactive pro-
cess (one that spend more time doing I/O) is given a higher
time slice under O(1) scheduler. The CFS (Completely Fair
Scheduler)[4] is a recent addition to Linux and has adapted
quite radical changes then its previous counterpart. The CFS
scheduler tries to balances CPU usage among competing

processes based on how much an individual process is be-
hind in its fair share of CPU.

Although, a strong link between OS scheduling param-
eters and concurrency bugs is not that well established but
still we ran into instances where a certain system is either
more or less favorable in reproducing a given bug [5]. We
understand that establishment of such a link requires a great
deal of effort. Specially, a very comprehensive study involv-
ing identifying and studying a large set of concurrency bugs
will be required. Our work can be considered as an initial
step to characterize behavior of OS schedulers with respect
to concurrency bugs.

We choose three different programs each containing a
known bug caused by concurrent execution. One of our se-
lected bug is from a ’real world’ bug report related to version
4.0.23 of MySQL server running on some variants of Linux
kernel. The other two bugs are included as a benchmark to
generalize the behavior of our chosen schedulers. The ver-
sions of Linux kernel we choose for this study are 2.6.11 [21]
and 2.6.23 [22]. Both of these have very different schedulers,
2.6.11 is based on O(1) priority schedulers while 2.6.23 con-
tains implementation of CFS scheduler. The parameters that
we explicitly studied for each of our schedulers include: abil-
ity to reproduce a given bug, length of time-slices for dif-
ferent execution units (threads) allocated by each scheduler,
general pattern of eviction points for each thread in a pro-
gram e.g by looking at stack information when a context
switch happens. A general description of these bugs is pre-
sented in section 2 followed by results and analysis of our
experiments in section 4.

Another contribution of this work is to come up with a
set of a tools and a design that could allow one to study the
interaction between different components in Linux system
e.g user process and scheduler in a way that is non-intrusive
to a live system. This was particularly hard given that Linux
lacks a powerful tool [18][19] that could provide consoli-
dated view of the system. We formally stated our contribu-
tions in next subsection. Section 3 explains our methodology
and tools used in detail. The related work is given in section
5 and finally we concluded our work in section 6.



Query Number of Operations
INSERT DELAYED INTO id0(X, Y, Z) 500,000
INSERT DELAYED INTO id1(A, B, C) 500,000
SHOW PROESSLIST; FLUSH TABLE WITH READ LOCK; UNLOCK TABLE 100,000

Table 1. Concurrent execution of these queries can cause a deadlock for MySQL server’s version 4.0.23. The second column
shows how many times these queries were repeated. The alphabets X, Y, Z and A, B, C represent a randomly generated integer.

1.1 Contributions

We consider that this work has made following contribu-
tions:

1. An experiment driven study of different parameters of at
least two separate schedulers that could possibly effect
the manifestation of a concurrency bug.

2. A practical analysis of OS scheduling policies in specific
context of concurrency bug. It is particularly significant
as understanding the theoretical model of policies that
are entirely based on heuristics is generally challenging
and may not be able to fully capture the behavior of an
implementation.

3. A set of tools and a design to take an insight look into a
running system.

1.2 Deviation from Proposal

We originally proposed to study operating system schedulers
under multi-core systems but during our initial testings the
case for multi-core systems became less interesting. In all
cases for our selected bugs, multi-core system easily lead to
desired incorrect result in presence of bug. Also, we dropped
the idea of deterministic scheduling, as mentioned in pro-
posal, due to lack of time.

2. Concurrency Bugs
We selected one real world bug related to MySQL server and
two small benchmark programs containing race conditions.
The purpose of such benchmarks was to to observe presence
of any general pattern that could favor early or delayed
manifestation of bugs in our chosen schedulers.

2.1 Concurrency Bug-I: MySQL Server

MySQL server is a popular open source database server by
Sun Microsoystems [6]. One relatively older version (4.0.23)
of MySQL server has a concurrency bug that can lead to
deadlock when given a set of specific queries. It is also
known that manifestation of this bug is OS dependent e.g
it is easy to reproduce it under 2.4.x kernel and not on
2.6.9 kernel [5] . The actual cause of bug is some complex
interleaving of concurrent execution of three set of queries
in table 1.

The server handling of these queries involve creating dif-
ferent kernel threads. Each delayed insert query is handled
by two threads, one handling user queries and replying in-

Figure 1. Wait-for graph showing deadlock state of MySQL
server version 4.0.23 on Linux kernel version 2.6.23

Parameter Source of Information
Interleaving Looking at the user stack while in

the kernel’s schedule() method
Time Slice Recording time for processes en-

try and exit in the context switch
method

Table 2. Parameters related to a running program and how
they are extracted.

stantly to user due to ’DELAYED’ keyword and one delay
handler thread that is actually inserting the rows in database.
Both these thread share a mutex lock to co-ordinate their ac-
tivities. The flush query is handled by a single thread and its
job is to close all open tables and kill all active delay han-
dlers. To ensure that delay handlers don’t exit while flush
thread is operating on them latter acquires the same mutex
shared by delay and insert thread. The cause of deadlock is
a circular wait where flush query thread is waiting for one
of the delayed handler’s mutex while holding a global read
lock on database tables. Whereas, the same delayed handler
is waiting for acquiring this global read lock while holding
its mutex. The wait for graph for this situation is shown is
figure 1. We will refer to these five threads as ’interesting’
later in this text.



#include <pthread.h>

//Global counter

long counter = 0;

void * worker(void *arg) {

int x;

for (x=0; x<ITERATION_PER_THREAD; x++)

counter++;

}

int main(int argc, char *argv[]) {

pthread_t p[THREADS];

int i;

for (i=0; i<THREADS; i++)

pthread_create(&p[i], NULL,

worker, NULL);

for (i=0; i<THREADS; i++)

pthread_join(p[i], NULL);

return 0;

}

Figure 2. Non-synchronized access to a shared variable.

2.2 Concurrency Bug-II

Our first benchmark program is related to presence of a race
condition where multiple threads are trying to increment a
shared variable. The absence of any synchronization prim-
itive between these threads can produce wrong result. The
code snippet for this bug is given in figure 2.

2.3 Concurrency Bug-III

The second of our benchmark program is a typical example
of order violation in acquiring the lock that can lead to a
deadlock depending on the interleaving chosen by scheduler.
The code snippet for this bug is given in figure 3.

3. Methodology
We executed all these three programs under different version
of Linux kernel that were known of having different sched-
ulers. These executions were repeated multiple time to gain
some confidence about our results. Once discovering at-least
one interesting case (i.e MySQL server bug), we moved on to
instrument the Linux kernel to gather more insight into each
of our chosen scheduler e.g interleaving - how concurrent
parts are executed, time slice - CPU time given to a process
before its evicted by some other process. Now, It is worth
mentioning here that the parameters affecting the chosen in-
terleaving can be enormous e.g different type of interrupts,
presence of higher priority processes in run queue etc. So, to
keep the scope of this project within some manageable con-
straints we only focused on the time slice information and
interleaving. Table 2 summarize how these two pieces of in-

#include <pthread.h>

long counter = 0;

pthread_mutex_t lockA;

pthread_mutex_t lockB;

void * worker1(void *arg) {

int x;

for (x=0; x<ITERATIONS_PER_THREAD; x++) {

pthread_mutex_lock(&lockA);

pthread_mutex_lock(&lockB);

counter++;

pthread_mutex_unlock(&lockB);

pthread_mutex_unlock(&lockA);

}

}

void * worker2(void *arg) {

int x;

for (x=0; x<ITERATIONS_PER_THREAD; x++) {

pthread_mutex_lock(&lockB);

pthread_mutex_lock(&lockA);

counter++;

pthread_mutex_unlock(&lockA);

pthread_mutex_unlock(&lockB);

}

}

int main(int argc, char *argv[]) {

pthread_t p[2];

pthread_create(&p[0], NULL,

worker1, NULL);

pthread_create(&p[1], NULL,

worker2, NULL);

pthread_join(p[0], NULL);

pthread_join(p[1], NULL);

return 0;

}

Figure 3. Reverse order locking



formation for each our test subjects were extracted from a
live system.

3.1 Experimental Setup

One of the challenges faced by us was to come up with a
way to gather information shown in table x with minimum
overheads on system as to not effect our results. Unfortu-
nately, Linux still lacks a powerful analysis tools (e.g like
D-Trace[18]) that could provide a consolidated view of a
running system. We overcome this hurdle by building a cus-
tom solution based on off the shelf components. Figure 4
shows a schematic follow of the overall layout of our solu-
tion. Below we describe each of the individual components
mentioned in the figure followed by few words on flow of
the information in this setup.

Figure 4. Tracing system setup

3.1.1 KProbes

Kprobes[7] is a way to insert breakpoint at a running ker-
nel and gather information in non-disruptive way. Kprobes
achieves this by dynamically re-writing breakpoint instruc-
tion at desired location and pass control to our code. Using
this we can look at different data structures of kernel before
restoring normal execution of kernel. For example, by plac-
ing kprobe module at ’schedule()’ method we can known
about the current processing that is currently running etc.

3.1.2 LTT trace markers

LTT or Linux Tracing Toolkit[8] is capable of handling a
large amount of debugging events in a non-intrusive fash-
ion. This toolkit is available as a set of patches for differ-
ent version of kernel. It uses specialized markers, that can
be inserted anywhere in the kernel including user processes,
to produce events that can later be read by user level utili-
ties. There are two separate versions, one for kernel version
2.6.11 [9] and lower and other for version 2.6.12 [10] and
upwards. Both these version were separately modified by us
to include extra information such process stack.

3.1.3 Stack Snapshot

The stack information is gathered by reading the user mem-
ory page currently mapped to the virtual page pointed by
stack pointer at time of context switch.

3.1.4 Parser

A custom parser was written to analyze the LTT event infor-
mation for obtaining results given in next section.

3.1.5 Information Flow

A brief flow of information is given here. A kprobe module
is inserted at the kernel’s ’contextswitch()’ method to read
the process descriptor of current process and the one which
is going to replace the current one. This information along
with some ’useful’ entries from user stack pages are passed
to LTT. LTT’s user level tools read these events from the
running system and record the event information to a log
file. Later we parse these log files for our analysis.

4. Experimental Results and Analysis
We conducted different sets of experiments for each of the
bug given in section x. In this section we present different
set of results for each of these bugs including reproducing
these bugs under separate schedulers, studying time-slice
information etc.

4.1 MySQL Server

In the next few subsections we give details of different set
of tests that we conducted to understand the behavior of
MySQL bug on two selected platforms 2.6.11 and 2.6.23 that
are known to have different schedulers as stated before.

4.1.1 Bug Manifestation

The table 2 shows the results of running the problematic
queries on different Linux versions along with occurrence
of deadlock. The first column shows the version of kernel
that we used. All of these kernel versions were running on a
single CPU machine except for the one which have ’smp’ in
their name. The ’smp’ versions were running on a multi-core
configuration of the machine.

Kernel version Scheduler Deadlock Occurrence
2.6.11 O(1)Scheduler Almost None
2.6.11-smp O(1) Always
2.6.23 CFS Always
2.6.24-smp CFS Always
2.4.x O(N) Scheduler Always

Table 3. Summary of results

We ran queries mentioned in section 2 multiple times and
result was surprisingly very consistent. Specially on 2.6.11
and 2.6.23 kernel version we conducted these tests couple
dozen times with consistent results. There was only one
instance on 2.6.11 where we saw occurrence of a deadlock.



For multi-core configuration of these kernels it was apparent
that we are not going to get anything interesting as far as this
bug is concerned. So, we decided to focus our attention on
2.6.11 and 2.6.23 kernel. More formally stating, we picked
these two kernels because:

1. Both kernel versions are known to have different sched-
ulers.

2. It is extremely hard to reproduce the MySQL server dead-
lock on 2.6.11, whereas, running on 2.6.23 always leads
to a deadlock.

3. CFS (Completely Fair Scheduler) is a recent addition to
Linux kernel. It would be interesting to study its behavior
for concurrency bugs.

4.1.2 Interleaving-I

We looked at each ’interesting’ thread’s stack for multiple
execution of this bug to generalize the pattern of successful
and non-successful interleaving. A successful interleaving
pattern can be defined as the one when the normal execution
continues to produce desired results. On the other hand,
a non-successful interleaving will be the one which leads
to deadlock. In other word a non-successful interleaving
exposes the bug. The table 4 shows the sequence of context
switches that lead MySQL server to a deadlock in multiple
runs of this experiment. The third column in the table shows
the state of the program just before a context switch. This
state information was extracted by looking at the last user
method at the top of the the threads’ stack at time of context
switch.

Seq Thread name Stack Overview
1 Delay thread Waiting for insert thread
2 Flush thread Executed pthreadlock on delay

handler’s mutex without acquir-
ing it.

3 Insert thread Waiting for delay handlers
4 Delay thread Blocks on global read lock after

acquiring its own mutex.
5 Flush thread Completes pthreadlock state-

ment and blocks as mutex was
acquired by delay handler in
previous context switch (seq 4).

Table 4. Description of interleaving that leads to dead of
MySQL server on 2.6.23 kernel.

Now, for the successful pattern of interleaving we ob-
served that flush thread gets evicted at the point when it is
waiting for inputs from the client process or trying to write
output for the results of ’show processlist’ of the user query.
Whereas, delay and insert threads generally become inac-
tive when one is waiting for other using separate condition

variables. Our guess at what might be the culprit in 2.6.23
that unlike in 2.6.11 caused deadlock is shorter time-slice.
The reason for reaching at this preliminary conclusion was
the difference between two kind of interleaving pattern we
noticed in these two systems and nature of CFS scheduler
that is used in 2.6.23. Under 2.6.11 a task doing I/O is fa-
vored in terms of getting higher time slice then compute in-
tensive task. This implies that both flush and delay threads
must have gotten a bigger time-slice on 2.6.11, thus mini-
mizing their chances of being evicted ’prematurely’. In later
subsections we conducted more tests to confirm this hypoth-
esis.

4.1.3 Measure of Time-slice

0 1 2 3 4 5 6 7 8

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

X: 5660
Y: 135

Context Switches

u
s
e
c

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

800

900

1000

X: 56
Y: 40.61

Context Switch

us
ec

Figure 5. Time-slices for insert threads on 2.6.11 (top) and
2.6.23 (bottom) schedulers

As we suggested in previous section that smaller time-
slice in CFS might be one of the causes for manifestation
of MySQL bug on 2.6.23, we looked at time-slices against
each context switch for our ’interesting’ threads under these
two schedulers. The plots for insert, flush and delay threads
is given in figure 5, 6 and 7 respectively. The apparent



difference between these threads on 2.6.11 and 2.6.23 is the
length of time-slice. The CFS starts a thread by giving it a
relatively higher time-slice but then suddenly drops it in an
effort to balance off the CPU usage among all child of a
given thread.

0 1 2 3 4 5 6 7 8

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

X: 9178
Y: 244

Context Switches

u
s
e
c

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180

Context Switch

us
ec

Figure 6. Time-slices for flush threads on 2.6.11 (top) and
2.6.23 (bottom) schedulers

4.1.4 Interleaving - II

To see how uniform a share of CPU was allocated by these
scheduler among ’interesting’ threads, we looked at the the
accumulative time given to a specific ’interesting’ thread
aggregated over multiple context switches before any one
of the other ’interesting’ thread is scheduled. The rational
behind this analysis was to see how much uniformly time
slices are distributed among our ’interesting’ threads. The
result for this analysis is given in figure 8, 9 and 10. All
these plots are based on the same data that we studies for
time-slice information.

As it was expected, time-slice distributions on 2.6.11 is
not as uniform as under 2.6.23. This indicates that CFS
scheduler tends to given each thread fair amount of chance

0 2 4 6 8 10 12

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

X: 1.508e+04
Y: 374

Context Switch

us
ec

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

800

900

1000

X: 122
Y: 90.29

Context Switch

us
ec

Figure 7. Time-slices for delay threads on 2.6.11 (top) and
2.6.23 (bottom) schedulers

in getting the CPU by well mixing the execution units. This
can explain some of the difference in behavior of these two
schedulers.

4.1.5 Environmental Changes

We tried two different kind of environmental changes to in-
fluence the behavior of these bugs. On 2.6.11 kernel, we
ran the MySQL server with lowest possible priority using
’nice’ utility. This resulted in producing deadlock for each
test runs of these queries. Additionally, we tuned the CFS
scheduler e.g by changing schedwakeupgranularityns.
The schedwakeupgranularityns governs how much un-
fairness is allowed when balancing the CPU share among
processes. This along with many other parameters defines
a time-slice in CFS. This change avoided the deadlock but
resulted in lower throughput of the MySQL server. We still
need to do more testing to present any useful result for this
change.

The time-slice information for running MySQL server
with lowest possible priority for each of the insert , flush and



0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10

12
x 10

4

X: 176
Y: 9088

Context Switch

us
ec

0 100 200 300 400 500 600
0

20

40

60

80

100

120

X: 109
Y: 57.55

us
ec

Context Switch

Figure 8. Time-slice distribution for one of the insert
threads on 2.6.11 (top) and 2.6.23 (bottom) schedulers

delay thread is given in figure 11, 12 and 13 respectively.
These results are very interesting and some what correspond
to our earlier conclusion of having uniform distribution of
time-slice that should have exposed the bug.

4.2 Concurrency Bug-II

Kernel Version Threads Iterations Correct Results
2.6.11 2 1000000 All
2.6.11 100 100000 All
2.6.11 200 1000000 All
2.6.23 2 1000000 None
2.6.23 100 100000 None
2.6.23 200 1000000 None

Table 5. Results of execution of concurrency bug given in
section 2.2 on different kernel versions.

The result of running one of the two benchmarks pro-
grams is given in Table 5. The middle two columns state dif-
ferent combination of threads and per thread iterations for

0 2 4 6 8 10 12

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

X: 1.373e+04
Y: 757

us
ec

Context Switch

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

us
ec

Context Switch

Figure 9. Time slice distribution for flush threads on 2.6.11
(top) and 2.6.23 (bottom) schedulers

Kernel Version No. of Iterations Deadlocked
2.6.11 10000 0%
2.6.11 100000 30%
2.6.11 1000000 50%
2.6.23 10000 0%
2.6.23 100000 90%
2.6.23 1000000 100%

Table 6. Results of execution of concurrency bug given in
section 2.3 on different kernel versions.

incrementing the counter. The last column shows how many
times we got the expected results for the global ’counter’
variable. If all set of execution for a given number of threads
and iterations were correct (or incorrect) we just reported
’All’ (or ’None’) otherwise a fraction of successful results is
reported.

It is quite evident from these results that there is some-
thing particularly interesting about CFS scheduler that is
causing earlier manifestation of two very different bugs. In



0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5
x 10

4

X: 7969
Y: 599

Context Switch

us
ec

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

X: 364
Y: 110.1

Context Switch

us
ec

Figure 10. Time slice distribution for delay threads on
2.6.11 (top) and 2.6.23 (bottom) schedulers

the next subsection we looked at how the time-slices for a
two thread case differ among 2.6.11 scheduler and CFS.

4.2.1 Time-slice

We measured time slices at each context switch in similar
fashion as with MySQL server bug. The result for two thread
case for 1 million iterations per each thread is given in
figure 14. Surprisingly, the pattern is consistent with our
earlier assumption that CFS’s use of shorter time-slice, in
an effort to balance the computing between all the processes
in system, can be seen as a cause of easier manifestation of
these bugs.

4.3 Concurrency Bug-III

The result of running our second benchmark program is
given in Table 6. The middle column state iterations per
thread for incrementing the shared counter. The last column
shows percentage of times that execution of this sample
program resulted in a deadlock on a given kernel version.
We didn’t do any further analysis on this bug, but, the results

0 2 4 6 8 10 12

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

Context Switch

us
ec

Figure 11. Time slice for insert thread under with priority
MySQL server under 2.6.11

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

100

200

300

400

500

600

700

800

900

1000

X: 9.012e+04
Y: 160

Context Switch

us
ec

Figure 12. Time slice for flush thread with low priorty
MySQL server under 2.6.11

supports, at least in part, our hypothesis that CFS favor
earlier exposure of concurrency bugs.

5. Related work
The tools and techniques for detection and prevention of
bugs in general and concurrency bugs in particular are topic
of lot of recent work including [15, 17, 14, 3, 2]. However,
we are unaware of any work that is a direct study of sched-
ulers for relating them to concurrency bugs. One reason for
this is probably because generalization of a heuristic based
systems is very hard if not impossible.

The Rx[16] tool developed by Feng Quin et. al has
included scheduling parameters as part of environmental
changes necessary to avoid concurrency bugs. Our study also
confirms their heuristic that certain environment changes can
help to avoid certain interleaving thus reducing the chances



0 1 2 3 4 5 6 7

x 10
4

0

1000

2000

3000

4000

5000

6000

Context Switch

us
ec

Figure 13. Time slice for delay handler thread with low
priority MySQ server under 2.6.11

1 1.5 2 2.5 3
0

1

2

3

4

5
x 10

4

Context Switch

us
ec

1 2 3 4 5
0

1

2

3

4
x 10

4

Context Switch

us
ec

0 2 4 6 8
0

2000

4000

6000

8000

10000

12000

Context Switch

us
ec

0 2 4 6
2000

4000

6000

8000

10000

12000

14000

Context Switch

us
ec

Figure 14. (a) top left: thread 1 running under 2.6.11 (b) top
right: thread 2 running under 2.6.11. (c) bottom left: thread
1 running under 2.6.23. (d) bottom right: thread 2 running
under 2.6.23

of occurrence of a failure in presence of a concurrency bug.
But, it may have some significant side effects as exemplified
in our own study.

A characterization of pattern of concurrency bugs is done
by [1] and [11]. However, our work differ from them as they
tried to study pattern of bugs based on the mistakes in pro-
gram’s source code that can cause a concurrent program to
fail. Whereas, we tried to characterize schedulers in certain
way to help identify policies that could help early exposure
of such mistakes in source code.

One common approach prevalent in literature to detect
concurrency bugs is to capture the non-determinism in ap-
plication by replying the execution of program by forcing
same interleaving [12], controlling scheduler’s noise [13] or

exploring all possible interleaving space [14]. All these ef-
forts indicate the importance of a study as such of ours to
establish a relation between OS schedulers and concurrency
bugs.

6. Conclusion
We studied different concurrency related bugs, including one
from a real world application, under separate schedulers.
The main goal was to find any relation between manifes-
tation of bug and schedulers. Although, a generalization of
scheduler behavior will require a broader study involving in-
vestigation of multiple bugs, but, we were able to drew some
handsome conclusion by doing a comprehensive analysis of
multiple parameters involved in influencing the scheduling
policies e.g time slice, accumulative time, interleaving etc.
Our results suggests that under CFS scheduler, chances of
manifestation of a concurrency bugs are higher then O(1)
scheduler. The main cause of these bugs to easily show up
on CFS can be attributed to shorter time-slice and uniform
intermixing of threads. A future study analyzing difference
between CFS and O(1) scheduler can shed some more light
on the causes and effects of these schedulers on occurrence
or avoidance of bugs related to multi-threaded environment.

References
[1] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mis- takes

a comprehensive study on real world concurrency bug charac-
teristics. In Proc. 13th Intl. Conf. on Architec- tural Support for
Programming Languages and Operat- ing Systems, 2008.

[2] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-
son. Eraser: A dynamic data race detector for multithreaded pro-
grams. ACM Transactions on Computer Systems, 15(4):391411,
1997.

[3] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Can-
dea. Deadlock Immunity: Enabling Systems To Defend Against
Deadlocks - OSDI’08.

[4] CFS : http://people.redhat.com/mingo/cfs-scheduler/sched-
design-CFS.txt - last visited 22 Mar 2009.

[5] http://bugs.mysql.com/bug.php?id=7823

[6] MySQL Server: http://www.mysql.com

[7] Kprobes - http://www.ibm.com/developerworks/library/l-
kprobes.html

[8] Karim Yaghmour and Michel R. Dagenais. Measuring and
characterizing system behavior using kernel-level event logging.
In Proceedings of the 2000 USENIX Annual Technical Confer-
ence, 2000.

[9] LTT - http://www.opersys.com/LTT/

[10] LTTng - http://ltt.polymtl.ca/

[11] E. Farchi, Y. Nir, and S. Ur. Concurrent Bug Patterns and How
to Test them. Workshop on Parallel and Distributed Systems:
Testing and Debugging, 2003.

[12] George W. Dunlap , Samuel T. King , Sukru Cinar , Murtaza
A. Basrai , Peter M. Chen, ReVirt: enabling intrusion analysis



through virtual-machine logging and replay, ACM SIGOPS Op-
erating Systems Review, v.36 n.SI, Winter 2002

[13] Y. Eytani and T. Latvala. Explaining Intermittent Concurrent
Bugs by Minimizing Scheduling Noise. Haifa Verification con-
ference, Haifa, Israel, 2006, Revised Selected Papers. Lecture
Notes in Computer Science 4383, Springer, 2007.

[14] M. Musuvathi, S. Qadeer, T. Ball, and G. Basler. Finding and
reproducing heisenbugs in concurrent programs. In OSDI, 2008

[15] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In OSDI, 2008.

[16] Feng Qin , Joseph Tucek , Jagadeesan Sundaresan , Yuanyuan
Zhou, Rx: treating bugs as allergies—a safe method to survive
software failures, Proceedings of the twentieth ACM symposium
on Operating systems principles, October 23-26, 2005, Brighton,
United Kingdom

[17] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: Ex-
posing Atomicity Violation Bugs from Their Hiding Places. To
appear in the proceedings of the 14th International Conference
on Architecture Support for Programming Languages and Oper-
ating Systems (ASPLOS’09), March 2009.

[18] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leven-
thal. Dynamic Instrumentation of Production Systems USENIX
2004

[19] Chapter 4: Linux Device Drviers, 2nd Edition -
http://www.xml.com/ldd/chapter/book/ch04.html

[20] Chapter 5: Understanding the Linux kernel, 3rd Edition.

[21] 2.6.11: http://www.kernel.org/pub/linux/kernel/v2.6/linux-
2.6.11.tar.bz2

[22] 2.6.23: http://www.kernel.org/pub/linux/kernel/v2.6/linux-
2.6.23.tar.bz2


