A New Basis for Sparse PCA

Fan Chen (fanci@google)

(with Karl Rohe) Statistics @ UW-Madison

August 14, 2020 Statistics Journal Club, Google

In this talk, you will hear about:

• (Why) A number of sparse PCA methods perform poorly.

• A new basis of sparse PCA and a beautiful world (with examples).

We study public opinions on Twitter

Public opinions on Twitter — murmuration.wisc.edu

Sampling of Twitter accounts (JRSS-B)

Clustering of Twitter accounts (submitted, This talk)

Networked public opinions (submitted)

of clusters & tweet analysis (ongoing...)

Sparse PCA in a nutshell

- Data matrix $X_{n \times p}$ (centered).
- PCA finds k linear combinations of columns, XY, such that the most variance is kept,

$$\max_{Y} \|XY\|_2 \quad \text{s.t.} \quad Y^T Y = I_k.$$

Here, $Y \in \mathbb{R}^{p \times k}$ contains the PC *loadings*.

- The elements in Y are usually non-zero.
- Sparse PCA seeks "sparse" loadings.

The plethora of available methods

A very short list of previous proposes:

- the iconic regression-based approach (Zou '06)
- a convex relaxation via semidefinite programming (d'Aspremont '05)
- the penalized matrix decomposition framework (Witten '09)
- the generalized power method (Journée '10)

i

Theoretical developments are extensive, e.g., consistency, minimaxity, and statistical-computational trade-offs under **certain conditions**.

An enigma of sparse PCA

• Big loss of explained variance/information in the data.

Better sparse loadings exist, if we use a new basis.

A stereotype formulation of sparse PCA

- Consider the matrix reconstruction error minimization problems
 - Classic sparse PCA

min
$$\|X - Z\mathbf{D}Y^{\mathsf{T}}\|_{\mathsf{F}}$$

s.t. $\|Y\|_{1} \leq \gamma$
 $Z^{\mathsf{T}}Z = Y^{\mathsf{T}}Y = I_{k}$
D is diagonal

Implicative assumption: The singular vectors were readily sparse.

Singular vectors are not readily sparse.

• But, PCs are rarely sparse in high-dimensional data.

• They can be sparse, if we rotate them.

A new formulation

- We propose to consider a **rotated basis** for sparse PCA.
- Consider the *matrix reconstruction error* minimization problems
 - Classic sparse PCA

$$\begin{aligned} & \text{min} & & \|X - Z\mathbf{D}Y^\mathsf{T}\|_\mathsf{F} \\ & \text{s.t.} & & \|Y\|_1 \leq \gamma \\ & & Z^\mathsf{T}Z = Y^\mathsf{T}Y = I_k \\ & & \mathbf{D} \text{ is diagonal} \end{aligned}$$

New sparse PCA

min
$$\|X - Z\mathbf{B}Y^{\mathsf{T}}\|_{\mathsf{F}}$$

s.t. $\|Y\|_1 \leq \gamma$
 $Z^{\mathsf{T}}Z = Y^{\mathsf{T}}Y = I_k$

- Does the middle **B** matrix allow orthogonal rotations on Y (or Z)?
- Yes! Suppose the SVD of **B** is ODR^T , then $ZBY^T = (ZO)D(YR)^T$.

Two interpretations of the formulation

Proposition (Orthogonal rotations can only help.)

If D is diagonal, then for any Z and Y,

$$\min \|X - Z\boldsymbol{D}Y^{\mathsf{T}}\|_{\mathsf{F}} \ge \min \|X - Z\boldsymbol{B}Y^{\mathsf{T}}\|_{\mathsf{F}}.$$

Proposition (A useful transformation for the algorithm.)

The new sparse PCA formulation is equivalent to a maximization problem,

$$\min \|X - ZBY^{\mathsf{T}}\|_{\mathsf{F}} \iff \max \|Z^{\mathsf{T}}XY\|_{\mathsf{F}}$$

subject to the same constraints and $\mathbf{B} = Z^{\mathsf{T}}XY$.

Algorithm: iteratively update Z and Y fixing one another.

How to update Y fixing Z?

$$\max \ \|Z^\mathsf{T} X Y\|_\mathsf{F} \ \text{s.t.} \ Y^\mathsf{T} Y = \mathit{I}_\mathsf{k}, \ \|Y\|_1 \leq \gamma$$

1 First, consider only $Y^TY = I_k$. One maximizer is the right singular vectors of Z^TX

 $\rightarrow Y$

- 2a The objective function is rotation **invariant**. For any orthogonal matrix R, $\tilde{Y}R$ is also a maximizer.
- 2b Let's find the rotation that minimizes $\|\tilde{Y}R\|_1$. (More on orthogonal rotations next up.)
 - 3 Finally, consider the sparsity constraint, $||Y||_1 \le \gamma$, and "soft-threshold" the elements of Y^* .

 $\rightarrow Y^*$

Update Y fixing Z in three steps

Algorithm 1: Polar-Rotate-Shrink (PRS)

```
Input: matrix A = X^T Z Procedure PRS(A):
```

Output: \hat{Y}

†: Invented by Kaiser (1958)

Why the varimax rotation?

Let $Y = \tilde{Y}R$ be the rotated matrix for some orthogonal R.

- $||Y||_1 = \sum_{i,j} |Y_{ij}|$ is not a smooth function of Y if it contains zero.
- Instead, minimize a smoother objective: $||Y||_{4/3}$
- ullet Further, Hölder's inequality says that (with the conjugates 4/3 and 4)

$$\|Y\|_{\frac{4}{3}} \ge \frac{\sqrt{k}}{\|Y\|_4}$$

Hence, we maximize $||Y||_4 = \sum_{i=1}^p \sum_{j=1}^k y_{ij}^4$.

• When $Y^TY = I_k$, this is actually the varimax rotation (Kaiser '58). This technique has been popular in the psychology literature. In R, the base function varimax computes this.

Results: A beautiful world

- Simulation studies:
 - explain more variance in the data
 - converge faster
 - more robust against the changes of parameters
- Data examples:
 - sparse coding of images (*)
 - · analysis of single-cell gene expression
 - clustering of Twitter accounts (*)
 - blind source separation

*: this talk

Sparse coding of images

Figure by Brian Booth (2013).

• Can sparse PCA find these "Edges" too?

Sparse coding of images

Sparse image encoding using traditional PCA (left) and sparse PCA (right).

Clustering of Twitter accounts: Setup

- Prior work: We collected a targeted sample of politics-related from Twitter accounts (C, Zhang, Rohe, JRSS-B, 2020)
- Data: Twitter friendship network
 - n = 193, 120 Twitter accounts
 - p = 1,310,051 accounts being followed
- Adjacency matrix $A \in \{0, 1\}^{n \times p}$ with

$$A_{ij} = 1$$
, if *i* follows *j*

• **Task**: find k clusters of (n or p) Twitter accounts with A.

Clustering of Twitter accounts: Toy example

Example: 600 nodes and 4 clusters.

What we observe:

What we want:

When we cluster rows and columns, we see blocks.

Clustering of Twitter accounts: Algorithm

- **Idea**: Treat the users being followed (i.e., columns of A) as variables.
- **Recall**: Loadings delineates PCs by original variables.
- Solution:
 - \bullet Find k sparse PCs of A (or its normalized version).
 - 2 Cluster users with sparse PC loadings.

Clustering of Twitter accounts: Results

- As a result, we observed that the clusters of Twitter accounts form homogeneous, connected, and stable social groups (Zhang, C, Rohe).
- Recall: we want to see diagonal blocks.

Enriched friendship within each clusters of Twitter accounts.

This talk

- Introduced a new method of finding **sparse** signals in data.
- The key advance is the orthogonal rotation.
- This approach is particularly useful when a data matrix is presumed low-rank but its singular vectors are not readily sparse.

The SCA algorithm


```
Algorithm 2: Sparse Component Analysis (SCA)
```

Input: data matrix X and the number k of PCs

Procedure: SCA(X, k):

initialize \hat{Z} and \hat{Y} with the top k singular vectors of X

repeat

 $\hat{Z} \leftarrow \text{right singular vectors of } X \hat{Y}$

 $\hat{Y} \leftarrow \mathtt{PRS}(X^{\mathsf{T}}\hat{Z})$

until convergence

Output: sparse loadings \hat{Y}

Two-way data analysis

- Sparse PCA reduces column dimensionality of X.
- The framework naturally generalizes to a two-way analysis for simultaneously row and column dimensionality reductions.
 - Sparse matrix approximation (SMA):

min
$$\|X - Z\mathbf{B}Y^{\mathsf{T}}\|_{\mathsf{F}}$$

s.t. $\|Z\|_1 \leq \gamma_z$
 $\|Y\|_1 \leq \gamma_y$
 $Z^{\mathsf{T}}Z = Y^{\mathsf{T}}Y = I_k$

• For example, if *X* is the adjacency matrix of a bipartite graph, the SMA estimates the PCs for both sets of nodes.

Discussion: Sparse PCA and ICA

- Similarities:
 - For sparse signals, $SCA^T \approx ICA$.
 - Both are related to kurtosis (fourth-moment statistics).
- Nuances:
 - ICA also extracts non-sparse signals, while sparse PCA does not.
 - ICA presumes no or very little noise in X, in order for estimating guarantees.
 - Sparse PCA tackles high-dimensional regimes.

Capture more variance in the data

- Simulate data $X_{100\times100}$ from a low-rank model $SY^{\mathsf{T}}+E$, where
 - $S_{100\times16}$ contains the scores,
 - $Y_{100\times16}$ is sparse,
 - $E_{100\times100}$ is some noise.
- Impose the same ℓ_1 -norm constraint on loadings.
- Assess the proportion of variance explained (PVE),

$$||X_Y||_F^2$$
, where $X_Y = XY(Y^TY)^{-1}Y^T$.

Capture more variance in the data

• SCA explains significantly more variance.

Figure: Comparison of the PVE by PCs.

SCA is more robust and stable

Figure: Heat maps of the sparse PC loadings returned by SCA and SPC, with three different sparsity parameters ($\gamma = 24, 36, 48$)

7 / 10

Analysis of scRNA-seq data

- scRNA-seq profiles the amount of gene expression for individual cells.
- For example, a human pancreatic islet cell data contains
 - p = 17499 genes
 - n = 8451 cells (with 9 cell types)
 - X_{ij} is the expression of gene j in sample i
- **Task**: extract the sparse gene PCs that characterize the cell types (without supervision).

Analysis of scRNA-seq data

• SCA finds gene markers of cell types (PVE = 94.34%).

SCA is capable of blind source separation

• Task: Extract the source signals/images, only seeing the mixed ones.

