A new basis for sparse PCA

Fan Chen

Department of Statistics, UW-Madison

May 21, 2020
Preliminary Exam

UNIVERSITY OF WISCONSIN-MADISON

Background: Project road map

I study social media and genomics data.

Social media:

Sampling of Twitter accounts (JRSS-B)

Clustering of Twitter accounts (This talk)
\# of clusters \& tweet analysis (Ongoing)

Genomics:

Integrative analysis of transcriptome data (Genome Biology)

Multivariate extensions (Ongoing)

Background: Clustering and PCA

- For clustering Twitter accounts, we took a network-based approach.
- This approach has been shown advantageous over some alternatives (Zhang, C, Rohe).
- Spectral clustering is a popular and effective method.
- It is essentially principal component analysis (PCA) + clustering.
- Can we get clusters directly from a sparse version of PCA?

Background: Sparse PCA in a nutshell

- Data matrix $X_{n \times p}$
- PCA finds the linear combination of columns, $X y$, such that the most variance is kept,

$$
\max _{y} \operatorname{Var}(X y) \quad \text { s.t. } \quad\|y\|_{2}=1
$$

Here, y contains the PC loadings.

- The elements in y are usually non-zero.
- Sparse PCA seeks "sparse" loadings.

Background: The plethora of available methods

A very short list of previous proposes:

- the iconic regression-based approach (Zou '06)
- a convex relaxation via semidefinite programming (d'Aspremont '05)
- the penalized matrix decomposition framework (Witten '09)
- the generalized power method (Journée '10)
:
Theoretical developments are extensive, e.g., consistency, minimaxity, and statistical-computational trade-offs under certain conditions.

Background: An enigma of sparse PCA

- Big loss of explained variance/information in the data.

- Better sparse loadings exist, if we use a new basis.

Background: An enigma of sparse PCA

- All assumes the eigen basis is sparse for high-dimensional data.
- But, PCs are rarely sparse.

- Unless we rotate them.

Method: A new formulation

- We propose to consider a rotated basis for sparse PCA.
- Consider the matrix reconstruction error minimization problems
- Classic sparse PCA

\min	$\left\\|X-Z \mathbf{D} Y^{\top}\right\\|_{\mathrm{F}}$		
s.t.	$\\|Y\\|_{1} \leq \gamma$		
	$Z^{\top} Z=Y^{\top} Y=I_{k}$		
	\mathbf{D} is diagonal		

- New sparse PCA
$\min \left\|X-Z \mathbf{B} Y^{\top}\right\|_{F}$
s.t. $\quad\|Y\|_{1} \leq \gamma$
$Z^{\top} Z=Y^{\top} Y=I_{k}$
- Does the middle \mathbf{B} matrix allow orthogonal rotations on Y (or Z)?
- Yes! Suppose the SVD of \mathbf{B} is $O \mathbf{D} R^{\top}$, then $Z B Y^{\top}=(Z O) \mathbf{D}(Y R)^{\top}$.

Method: Two interpretations of the formulation

Proposition (Orthogonal rotations can only help.)

If D is diagonal, then for any Z and Y,

$$
\min \left\|X-Z \boldsymbol{B} Y^{\top}\right\|_{\mathrm{F}} \leq \min \left\|X-Z \boldsymbol{D} Y^{\top}\right\|_{\mathrm{F}}
$$

Proposition (A useful transformation for the algorithm.)

The new sparse PCA formulation is equivalent to a maximization problem,

$$
\min \left\|X-Z \boldsymbol{B} Y^{\top}\right\|_{F} \Leftrightarrow \max \left\|Z^{\top} X Y\right\|_{F}
$$

subject to the same constraints and $B=Z^{\top} X Y$.
Algorithm: iteratively update Z and Y fixing one another.

Method: How to update Y fixing Z ?

$$
\max \left\|Z^{\top} X Y\right\|_{F} \quad \text { s.t. } \quad Y^{\top} Y=I_{k},\|Y\|_{1} \leq \gamma
$$

1 First, consider only $Y^{\top} Y=I_{k}$.
One maximizer is the right singular vectors of $Z^{\top} X$
2a The objective function is rotation invariant.
For any orthogonal matrix $R, \tilde{Y} R$ is also a maximizer.
2b Let's find the rotation that minimizes $\|\tilde{Y} R\|_{1}$.
(More on orthogonal rotations next up.)
3 Finally, consider the sparsity constraint, $\|Y\|_{1} \leq \gamma$, and "soft-threshold" the elements of Y^{*}.

Method: Update Y fixing Z in three steps

Algorithm 1: Polar-Rotate-Shrink (PRS)
Input: matrix $A=X^{\top} Z$
Procedure $\operatorname{PRS}(A)$:
$\tilde{Y} \leftarrow$ left singular vectors of A
// polar
$Y^{*} \leftarrow$ rotate \tilde{Y} with varimax ${ }^{\dagger}$
// rotate
$\hat{Y} \leftarrow$ soft-threshold Y^{*}
// shrink
Output: \hat{Y}
\dagger : Up next

Method: Why the varimax rotation?

Let $Y=\tilde{Y} R$ be the rotated matrix for some orthogonal R.

- $\|Y\|_{1}=\sum_{i, j}\left|Y_{i j}\right|$ is not a smooth function of Y if it contains zero.
- Instead, minimize a smoother objective: $\|Y\|_{4 / 3}$
- Further, Hölder's inequality says that (with the conjugates $4 / 3$ and 4)

$$
\|Y\|_{\frac{4}{3}} \geq \frac{\sqrt{k}}{\|Y\|_{4}}
$$

Hence, we maximize $\|Y\|_{4}=\sum_{i=1}^{p} \sum_{j=1}^{k} y_{i j}^{4}$.

- When $Y^{\top} Y=I_{k}$, this is actually the varimax rotation (Kaiser '58). This technique has been popular in the psychology literature. In R, the base function varimax computes this.

Method: The SCA algorithm

Algorithm 2: Sparse Component Analysis (SCA)
Input: data matrix X and the number k of PCs
Procedure: $\operatorname{SCA}(X, k)$:
initialize \hat{Z} and \hat{Y} with the top k singular vectors of X
repeat

$$
\begin{aligned}
& \hat{Z} \leftarrow \operatorname{polar}(X \hat{Y}) \\
& \hat{Y} \leftarrow \operatorname{PRS}\left(X^{\top} \hat{Z}\right)
\end{aligned}
$$

until convergence
Output: sparse loadings \hat{Y}

Method: Two-way data analysis

- Sparse PCA reduces column dimensionality of X.
- The framework naturally generalizes to a two-way analysis for simultaneously row and column dimensionality reductions.
- Sparse matrix approximation (SMA):

$$
\begin{array}{cl}
\min & \left\|X-Z \mathbf{B} Y^{\top}\right\|_{F} \\
\text { s.t. } & \|Z\|_{1} \leq \gamma_{z} \\
& \|Y\|_{1} \leq \gamma_{y} \\
& Z^{\top} Z=Y^{\top} Y=I_{k}
\end{array}
$$

- For example, if X is the adjacency matrix of a bipartite graph, the SMA estimates the PCs for both sets of nodes.

Results: Overview

- Simulation studies:
- explain more variance in the data (*)
- converge faster
- more robust against the changes of parameters
- Data examples:
- sparse coding of images
- blind source separation
- analysis of single-cell gene expression $(*)$
- clustering of Twitter accounts (*)
* : this talk

Results: Capture more variance in the data

- Simulate data $X_{100 \times 100}$ from a low-rank model $S Y^{\top}+E$, where
- $S_{100 \times 16}$ contains the scores,
- $Y_{100 \times 16}$ is sparse,
- $E_{100 \times 100}$ is some noise.
- Impose the same ℓ_{1}-norm constraint on loadings.
- Assess the proportion of variance explained (PVE),

$$
\left\|X_{Y}\right\|_{\mathrm{F}}^{2}, \quad \text { where } \quad X_{Y}=X Y\left(Y^{\top} Y\right)^{-1} Y^{\top} .
$$

Results: Capture more variance in the data

- SCA explains significantly more variance.

Figure: Comparison of the PVE by PCs.

Results: Analysis of scRNA-seq data

- scRNA-seq profiles the amount of gene expression for individual cells.
- For example, a human pancreatic islet cell data contains
- $p=17499$ genes
- $n=8451$ cells (with 9 cell types)
- $X_{i j}$ is the expression of gene j in sample i
- Task: extract the sparse gene PCs that characterize the cell types (without supervision).

Results: Analysis of scRNA-seq data

- SCA finds gene markers of cell types (PVE $=94.34 \%$).

Results: Clustering of Twitter accounts

- We collected a targeted sample of Twitter friendship network: (C, Zhang, Rohe, JRSS-B '20)
- $n=193,120$ Twitter accounts
- who follow a total of $p=1,310,051$ accounts
- $A \in\{0,1\}^{n \times p}$ with $A_{i j}=1$ if and only if account i follows account j.
- Task: find clusters of Twitter accounts.

Results: Clustering of Twitter accounts

- As a result, we observed that the clusters of Twitter accounts form homogeneous, connected, and stable social groups (Zhang, C, Rohe).
- The row and column clusters are matched.

Figure: Heat map of friend counts between clusters of Twitter accounts.

Summary: This talk

- We introduce a new method for sparse PCA with an extension for two-way data analysis.
- The methods differ from the previous because of the orthogonally rotated basis.
- This approach is particularly useful when a data matrix is presumed low-rank but its singular vectors are not readily sparse.

Summary: Next talk...

1. Spectral technique for text (e.g., tweets) searching applications. (with Rohe)
2. Spectral method for estimating graph dimensionality (\# of clusters). (with Roch \& Rohe)
3. Sparse partial least square regression for transcriptome data analysis. (with Keleș)

Thank you!

Advisors Karl Rohe and Sündüz Keleș
Committee Po-Ling Loh, Michael Newton, Sébastien Roch (Math)

Sparse PCA and independent component analysis

- Similarities:
- For sparse signals, SCA ${ }^{\top} \approx$ ICA.
- Both are related to kurtosis (fourth-moment statistics).
- Nuances:
- ICA also extracts non-sparse signals, while sparse PCA does not.
- ICA presumes no or very little noise in X, in order for estimating guarantees.
- Sparse PCA tackles high-dimensional regimes.

Results: SCA is more robust and stable

Figure: Heat maps of the sparse PC loadings returned by SCA and SPC, with three different sparsity parameters ($\gamma=24,36,48$)

Results: SCA is capable of blind source separation

- Blind source separation finds source signal from mixing observational data.

Results: Sparse coding of images

Sparse image encoding using traditional PCA (left) and sparse PCA (right).

