A new basis for sparse PCA

Fan Chen

Department of Statistics, UW-Madison

May 21, 2020 Preliminary Exam

Background: Project road map

I study social media and genomics data.

Social media:

Sampling of Twitter accounts (JRSS-B)

Clustering of Twitter accounts (**This talk**)

of clusters & tweet analysis (Ongoing)

Genomics:

Integrative analysis of transcriptome data (Genome Biology)

Multivariate extensions (Ongoing)

Background: Clustering and PCA

- For clustering Twitter accounts, we took a network-based approach.
- This approach has been shown advantageous over some alternatives (Zhang, C, Rohe).
- Spectral clustering is a popular and effective method.
- It is essentially principal component analysis (PCA) + clustering.
- Can we get clusters directly from a sparse version of PCA?

Background: Sparse PCA in a nutshell

- Data matrix $X_{n \times p}$
- PCA finds the linear combination of columns, *Xy*, such that the most variance is kept,

$$\max_{y} Var(Xy)$$
 s.t. $||y||_2 = 1$.

Here, y contains the PC loadings.

- The elements in y are usually non-zero.
- Sparse PCA seeks "sparse" loadings.

Background: The plethora of available methods

A very short list of previous proposes:

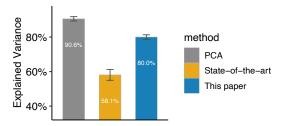
- the iconic regression-based approach (Zou '06)
- a convex relaxation via semidefinite programming (d'Aspremont '05)
- the penalized matrix decomposition framework (Witten '09)
- the generalized power method (Journée '10)

3

Theoretical developments are extensive, e.g., consistency, minimaxity, and statistical-computational trade-offs under **certain conditions**.

Background: An enigma of sparse PCA

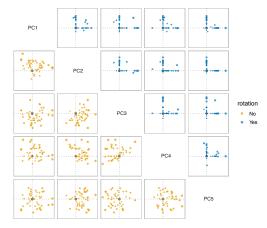
• Big loss of explained variance/information in the data.



Better sparse loadings exist, if we use a new basis.

Background: An enigma of sparse PCA

- All assumes the eigen basis is sparse for high-dimensional data.
- But, PCs are rarely sparse.



Unless we rotate them.

Method: A new formulation

- We propose to consider a rotated basis for sparse PCA.
- Consider the *matrix reconstruction error* minimization problems
 - Classic sparse PCA

min
$$\|X - Z\mathbf{D}Y^{\mathsf{T}}\|_{\mathsf{F}}$$

s.t. $\|Y\|_1 \leq \gamma$
 $Z^{\mathsf{T}}Z = Y^{\mathsf{T}}Y = I_k$
D is diagonal

New sparse PCA

min
$$\|X - Z\mathbf{B}Y^{\mathsf{T}}\|_{\mathsf{F}}$$

s.t. $\|Y\|_{1} \le \gamma$
 $Z^{\mathsf{T}}Z = Y^{\mathsf{T}}Y = I_{k}$

- Does the middle **B** matrix allow orthogonal rotations on Y (or Z)?
- Yes! Suppose the SVD of **B** is ODR^T , then $ZBY^T = (ZO)D(YR)^T$.

Method: Two interpretations of the formulation

Proposition (Orthogonal rotations can only help.)

If D is diagonal, then for any Z and Y,

$$\min \|X - Z\boldsymbol{B}Y^{\mathsf{T}}\|_{\mathsf{F}} \leq \min \|X - Z\boldsymbol{D}Y^{\mathsf{T}}\|_{\mathsf{F}}.$$

Proposition (A useful transformation for the algorithm.)

The new sparse PCA formulation is equivalent to a maximization problem,

$$\min \|X - ZBY^{\mathsf{T}}\|_{\mathsf{F}} \Leftrightarrow \max \|Z^{\mathsf{T}}XY\|_{\mathsf{F}}$$

subject to the same constraints and $\mathbf{B} = Z^{\mathsf{T}}XY$.

Algorithm: iteratively update Z and Y fixing one another.

Method: How to update Y fixing Z?

$$\max \ \|Z^\mathsf{T} X Y\|_\mathsf{F} \ \text{s.t.} \ Y^\mathsf{T} Y = \mathit{I}_\mathsf{k}, \ \|Y\|_1 \leq \gamma$$

1 First, consider only $Y^TY = I_k$. One maximizer is the right singular vectors of Z^TX

 $\rightarrow Y$

- 2a The objective function is rotation **invariant**. For any orthogonal matrix R, $\tilde{Y}R$ is also a maximizer.
- 2b Let's find the rotation that minimizes $\|\tilde{Y}R\|_1$. $\to Y^*$ (More on orthogonal rotations next up.)
 - 3 Finally, consider the sparsity constraint, $||Y||_1 \le \gamma$, and "soft-threshold" the elements of Y^* .

$$\rightarrow \hat{Y}$$

Method: Update Y fixing Z in three steps

Algorithm 1: Polar-Rotate-Shrink (PRS) Input: matrix $A = X^T Z$ Procedure PRS(A): $\tilde{Y} \leftarrow \text{left singular vectors of } A$ $Y^* \leftarrow \text{rotate } \tilde{Y} \text{ with } varimax \uparrow$ $\hat{Y} \leftarrow \text{soft-threshold } Y^*$ // shrink

†: Up next

Output: \hat{Y}

Method: Why the varimax rotation?

Let $Y = \tilde{Y}R$ be the rotated matrix for some orthogonal R.

- $||Y||_1 = \sum_{i,j} |Y_{ij}|$ is not a smooth function of Y if it contains zero.
- ullet Instead, minimize a smoother objective: $\|Y\|_{4/3}$
- ullet Further, Hölder's inequality says that (with the conjugates 4/3 and 4)

$$\|Y\|_{\frac{4}{3}} \ge \frac{\sqrt{k}}{\|Y\|_4}$$

Hence, we maximize $||Y||_4 = \sum_{i=1}^p \sum_{j=1}^k y_{ij}^4$.

• When $Y^TY = I_k$, this is actually the varimax rotation (Kaiser '58). This technique has been popular in the psychology literature. In R, the base function varimax computes this.

Method: The SCA algorithm


```
Algorithm 2: Sparse Component Analysis (SCA)
```

Input: data matrix X and the number k of PCs

Procedure: SCA(X, k):

initialize \hat{Z} and \hat{Y} with the top k singular vectors of X

repeat

 $\hat{Z} \leftarrow \mathsf{polar}(X\hat{Y})$

 $\hat{Y} \leftarrow \text{PRS}(X^{\mathsf{T}}\hat{Z})$

until convergence

Output: sparse loadings \hat{Y}

Method: Two-way data analysis

- Sparse PCA reduces column dimensionality of X.
- The framework naturally generalizes to a two-way analysis for simultaneously row and column dimensionality reductions.
 - Sparse matrix approximation (SMA):

min
$$\|X - Z\mathbf{B}Y^{\mathsf{T}}\|_{\mathsf{F}}$$

s.t. $\|Z\|_1 \leq \gamma_z$
 $\|Y\|_1 \leq \gamma_y$
 $Z^{\mathsf{T}}Z = Y^{\mathsf{T}}Y = I_k$

• For example, if X is the adjacency matrix of a bipartite graph, the SMA estimates the PCs for both sets of nodes.

Results: Overview

- Simulation studies:
 - explain more variance in the data (*)
 - converge faster
 - more robust against the changes of parameters
- Data examples:
 - sparse coding of images
 - blind source separation
 - analysis of single-cell gene expression (*)
 - clustering of Twitter accounts (*)

*: this talk

Results: Capture more variance in the data

- Simulate data $X_{100\times100}$ from a low-rank model $SY^{\mathsf{T}}+E$, where
 - $S_{100\times16}$ contains the scores,
 - $Y_{100\times16}$ is sparse,
 - $E_{100\times100}$ is some noise.
- Impose the same ℓ_1 -norm constraint on loadings.
- Assess the proportion of variance explained (PVE),

$$||X_Y||_F^2$$
, where $X_Y = XY(Y^TY)^{-1}Y^T$.

Results: Capture more variance in the data

• SCA explains significantly more variance.

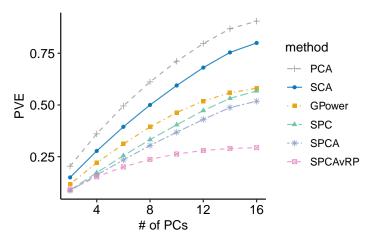


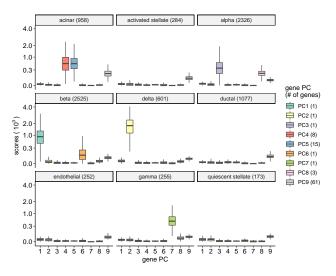
Figure: Comparison of the PVE by PCs.

Results: Analysis of scRNA-seq data

- scRNA-seq profiles the amount of gene expression for individual cells.
- For example, a human pancreatic islet cell data contains
 - *p* = 17499 genes
 - n = 8451 cells (with 9 cell types)
 - X_{ij} is the expression of gene j in sample i
- **Task**: extract the sparse gene PCs that characterize the cell types (without supervision).

Results: Analysis of scRNA-seq data

• SCA finds gene markers of cell types (PVE = 94.34%).



Results: Clustering of Twitter accounts

- We collected a targeted sample of Twitter friendship network: (C, Zhang, Rohe, JRSS-B '20)
 - n = 193, 120 Twitter accounts
 - who follow a total of p = 1,310,051 accounts
 - $A \in \{0, 1\}^{n \times p}$ with $A_{ij} = 1$ if and only if account i follows account j.
- Task: find clusters of Twitter accounts.

Results: Clustering of Twitter accounts

- As a result, we observed that the clusters of Twitter accounts form homogeneous, connected, and stable social groups (Zhang, C, Rohe).
- The row and column clusters are matched.

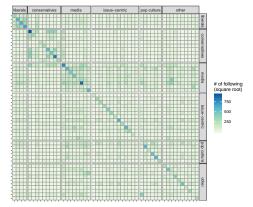


Figure: Heat map of friend counts between clusters of Twitter accounts.

Summary: This talk

- We introduce a new method for sparse PCA with an extension for two-way data analysis.
- The methods differ from the previous because of the orthogonally rotated basis.
- This approach is particularly useful when a data matrix is presumed low-rank but its singular vectors are **not** readily sparse.

Summary: Next talk...

- Spectral technique for text (e.g., tweets) searching applications. (with Rohe)
- 2. Spectral method for estimating graph dimensionality (# of clusters). (with Roch & Rohe)
- 3. Sparse partial least square regression for transcriptome data analysis. (with Keleş)

Thank you!

Advisors Karl Rohe and Sündüz Keleş

Committee Po-Ling Loh, Michael Newton, Sébastien Roch (Math)

Sparse PCA and independent component analysis

- Similarities:
 - For sparse signals, $SCA^T \approx ICA$.
 - Both are related to kurtosis (fourth-moment statistics).
- Nuances:
 - ICA also extracts non-sparse signals, while sparse PCA does not.
 - ICA presumes no or very little noise in X, in order for estimating guarantees.
 - Sparse PCA tackles high-dimensional regimes.

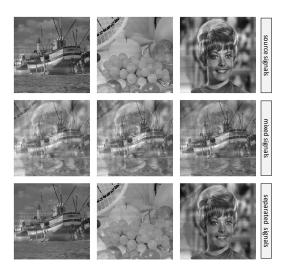
Results: SCA is more robust and stable

Figure: Heat maps of the sparse PC loadings returned by SCA and SPC, with three different sparsity parameters ($\gamma = 24, 36, 48$)

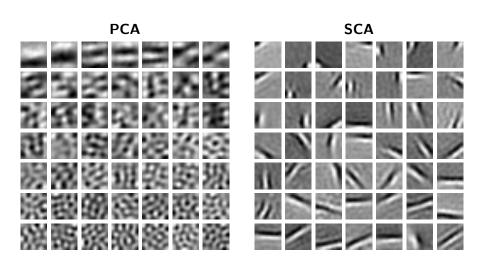
3 / 5

Results: SCA is capable of blind source separation

 Blind source separation finds source signal from mixing observational data.



Results: Sparse coding of images



Sparse image encoding using traditional PCA (left) and sparse PCA (right).