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Abstract— Statistical information extraction (IE) programs
are increasingly used to build real-world IE systems such as
Alibaba, CiteSeer, Kylin, and YAGO. Current statistical IE
approaches consider the text corpora underlying the extraction
program to be static. However, many real-world text corpora are
dynamic (documents are inserted, modified, and removed). As
the corpus evolves, and IE programs must be applied repeatedly
to consecutive corpus snapshots to keep extracted information
up to date. Applying IE from scratch to each snapshot may
be inefficient: a pair of consecutive snapshots may change very
little, but unaware of this, the program must run again from
scratch. In this paper, we present CRFlex, a system that efficiently
executes such repeated statistical IE, by recycling previous IE
results to enable incremental update. We focus on statistical
IE programs which use a leading statistical model, Conditional
Random Fields (CRFs). We show how to model properties of the
CRF inference algorithms for incremental update and how to
exploit them to correctly recycle previous inference results. Then
we show how to efficiently capture and store intermediate results
of IE programs for subsequent recycling. We find that there is
a tradeoff between the I/O cost spent on reading and writing
intermediate results, and CPU cost we can save from recycling
those intermediate results. Therefore we present a cost-based
solution to determine the most efficient recycling approach for
any given CRF-based IE program and an evolving corpus. We
present extensive experiments with CRF-based IE programs for
3 IE tasks over a real-world data set to demonstrate the utility
of our approach.

I. INTRODUCTION

Information extraction (IE) programs extract structured data
from unstructured text, such as emails, Webpages and blogs.
An important technique to build IE programs is to employ
statistical learning models such as Hidden Markov Models,
Conditional Random Fields, and Support Vector Machines.
Compared to rule-based approaches to IE, statistical IE pro-
grams can capture complex patterns (e.g., positive/negative
opinions) with lower amounts of human interaction and are
more robust to noise and variation in unstructured text. As a
result, it is not surprising that there are a growing number of
real-world systems built by statistical IE, including Kylin [1],
Microsoft’s Academic Search [2] and YAGO [3].

To keep extracted information up to date, the above systems
must apply IE repeatedly to snapshots of a corpus; these
repeated extractions are necessary because many text corpora
are dynamic: documents in the corpus are added, deleted,
and modified over time. Consider for example DBLife [4], a
structured portal for the database community. DBLife operates
over a text corpus of 10,000+ URLs. Everyday it recrawls
these URLs to generate a 120+ MB corpus snapshot, and

then applies IE to this snapshot to find the latest community
information (e.g., which database researchers have been men-
tioned where in the past 24 hours). As another example, the
isWiki project at HP Labs China seeks to build a system that
manages all information for enterprise IT support through a
wiki. This system must regularly re-crawl and then re-apply IE
to the wiki, to infer the latest IT-related information. Several
efforts (e.g. freebase.com) have also focused on converting
Wikipedia and its wiki “siblings” into structured databases,
and hence must regularly recrawl and re-extract information.
Other examples of dynamic text corpora can be found in recent
work [5], [6].

Despite the pervasiveness of dynamic text corpora, no
satisfactory solution has been proposed for statistical IE over
them. Given such a corpus, the common solution today is to
treat the corpus as static and to apply statistical IE to each
corpus snapshot in isolation, from scratch. This static solution
is simple but is highly inefficient. For example, in DBLife
reapplying IE from scratch takes 8+ hours each day, leaving
little time for higher-level data analysis. Worse still, ignoring
the dynamic nature of the corpus precludes applying IE to
time-sensitive applications (e.g., stock, auction, intelligence
analysis). In such applications, users want the most up-to-
date information, which is supported by re-crawling and re-
extracting from the corpus at short intervals (e.g., every 30
minutes). In such cases, a static IE solution may take more than
30 minutes simply because it is relabeling many documents
which have only changed slightly. Finally, the static solution
is ill-suited for interactive debugging of IE applications over
dynamic corpora, because such debugging often requires ap-
plying IE repeatedly to multiple corpus snapshots. Thus, given
the growing need for IE over dynamic text corpora, it has now
become crucial to develop efficient statistical IE solutions for
dynamic settings.

In this paper, we present CRFlex, the first step toward a gen-
eral solution for efficiently and repeatedly executing statistical
IE programs. To the best of our knowledge, we are the first
to consider statistical IE over dynamic corpora. We focus on
a leading statistical learning model, Condition Random Fields
(CRFs). CRF-based IE is a state-of-the-art IE solution that is
a workhorse of the above IE systems, and has been used on
many IE tasks, including named entity extraction [7], [8], table
extraction [9], and citation extraction [10].

The key technical intuition underlying CRFlex is that
consecutive snapshots of a text corpus often differ by only a
small amount. For example, suppose that a snapshot contains



the text fragment “We will meet in CS 105 at 3 pm”, from
which we have extracted “CS 105” as a room number. Then
under certain conditions (see Section III), if a subsequent
snapshot also contains this text fragment, we can immediately
conclude that “CS 105” is a room number, without having to
rerun (often expensive) IE programs.

To maximize our opportunities to reuse (or recycle) past
results, CRFlex opens up the standard statistical information
extraction pipeline to exploit opportunities for reuse at each
stage. A statistical information extraction pipeline has three
phases: (1) feature extraction, (2) model construction, and (3)
inference. In the first phase, feature extraction, the document
is mapped into a high dimensional vector space called the
feature space. In a CRF model, there is one feature vector
associated with each token in the input document. In the
second phase, model construction, a structure is built that
captures the correlations between the various vectors. Finally,
inference is performed on this structure. We find that for some
programs, each of these phases can be the bottleneck. So it is
critical that CRFlex exploits recycling opportunities at each
stage of this pipeline. Our first challenge is how to identify
opportunities within the statistical IE pipeline which allow
CRFlex to correctly recycle inference results when only a
small portion of the input text changes, i.e., to produce the
exact same results as if the program were run from scratch.

The text corpus to which IE is applied may contain tens of
thousands or millions of data pages. So our second challenge is
how to develop an efficient recycling solution in the presence
of a large amount of disk-resident data. We show that there is a
fundamental tradeoff: the more intermediate data that CRFlex
saves, the more opportunities CRFlex has for later recycling to
improve the runtime. On the other hand, the I/O cost of reading
and writing intermediate results may dominate the potential
savings. This motivates us to design a spectrum of recycling
solutions that range from capturing no results for a particular
phase to progressively capture more intermediate results.

Finally, none of these recycling solutions is always optimal.
For example, if a CRF-based IE program runs very slowly,
the recycling solution that captures many intermediate results
and enables many recycling opportunities may be the fastest
way to execute the IE program. On the other hand, if a CRF-
based IE programs relies on only inexpensive features then
capturing too many intimidate results may incur so much
overhead that re-running the IE from scratch is even faster. To
address this problem, we develop a cost model to select the
fastest recycling solution for a given IE program and corpus.

We conduct extensive experiments over several IE programs
on 16 snapshots from Wikipedia. Our experiment results show
that CRFlex can cut the runtime of re-extraction from scratch
by as much as 90%.

A. Related Work

Information Extraction: The problem of information extrac-
tion has received much attention (see [11], [12], [13] for recent
tutorials). Much of the initial work focuses on improving the
accuracy and runtime of individual extractors [14]. Recent

work has also considered how to combine and manage such
extractors in large-scale IE applications [12], [13]. Our work
fits into this emerging direction. Optimizing IE programs and
developing IE-centric cost models have also been considered
in several recent papers [15], [16], [17]. These efforts however
have considered only static corpora, not dynamic ones as we
do in this paper.

Evolving Text: In terms of IE over evolving text, we
have previously developed Cyclex [18] and Delex [19]. Both
recycle previous IE efforts to improve extraction time. Cyclex
recycles for a single IE blackbox and Delex recycles for multi-
ple IE blackboxes. Those blackboxes are rule-based IE black-
boxes, not the statistical programs that we consider here. As
we describe, these rule-based solutions ignore many recycling
opportunities. Other work (e.g. [20]) considers evolving text
data, but not for IE programs: their focus is on incrementally
update an inverted index, as the indexed Web pages change.

CRFs: CRF-based IE has received much attention recently.
Many have considered how to improve extraction accuracy
of CRF-based IE programs [21], [8]. More recent work has
consider how to push CRF inference into RDBMS, and then
exploit RDBMS to improve extraction time [22], [23], [24].
However, these approach only consider optimizing CRF-based
IE over static text corpora, not over dynamic corpora.

In summary, we make the following contributions.
• We establish that it is possible to exploit work done by

previous IE runs to significantly speed up CRF-based IE
programs over evolving text. As far as we know, CRFlex
is the first solution to this important problem.

• We show how to model certain properties of CRF infer-
ence algorithms, and how to exploit these properties to
recycle the past IE and to guarantee the correctness of
our approach.

• We show how to develop a spectrum of recycling solu-
tions, trading off I/O cost spent on reading and writing
intermediate results and CPU cost saved from recycling
those intermediate results.

• We conduct extensive experiments with several CRF-
based IE programs over a real-world data set to demon-
strate the utility of our approach. We show in particular
that CRFlex can cut the runtime of re-extraction from
scratch by as much as 90%.

II. BACKGROUND

CRFlex considers an application that requires repeatedly
crawling a set of data sources to retrieve data pages (e.g.,
Web pages). We refer to the set of data pages retrieved at
time i as Si for i = 1, 2, . . . , as the i-th snapshot of the
text corpus. A page at a fixed location (e.g., a URL) may
change across snapshots, and the central goal of CRFlex is to
reduce the repeated time spent on CRF inference by exploiting
a simple observation: many pages only change by a small
amount between successive snapshots.

The goal of CRFlex is to extract a target relation R from
all data pages in each snapshot. Let d be a data page. A



d:  Tom Cruise was born in NYC. 
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Fig. 1. An example of using CRFs to extract named entities.
Fig. 2. CRF inference workflow.
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Fig. 3. An example CRF of a 6-token se-
quence.

mention of a relation R(a1, . . . , an) on a page d is a tuple
(m1, . . . , mn) such that for i = 1, . . . , n, mi is a string in page
d that provides a value for ai or nil. For example, consider a
relation MEETING(room,time). Suppose a data page d is “We
will meet in CS 105 at 3 pm”. Then (“CS 105”,“3 pm”) is a
mention of MEETING relation, where “CS 105” and “3 pm”
are mentions of attributes room and time, respectively.
CRF-based IE Programs: Given a set of data pages in a
snapshot, CRF-based IE programs extract mentions from each
data page in isolation. Since such per-page extraction pro-
grams are pervasive, we start with such extraction programs.
We leave those programs extracting across multiple pages for
future work.

To extract mentions from each data page, CRF-based IE pro-
grams transform information extraction to a sequence labeling
problem. Given as input a sequence of tokens x = x1 . . . xT

and a set of labels, CRFs are probabilistic models that label
each token with one label from a set of labels, denoted Y . We
denote the label of xi by yi for i = 1, . . . , T . Intuitively, the
set of labels, Y , contains the set of entity types to be extracted
and a special label “other” for tokens that do not belong to
any of the entity types.

Example 1. Figure 1 illustrates an example of the input and
output of a CRF that is used to extract PERSON (P) and
LOCATION (L) entities form a page. A CRF-based IE program
P first segments d into a sequence x of tokens. Here, P picks
the most likely labeling for the sequence according to the
CRF’s probability model (a so-called Maximum Likelihood
estimate). Finally, to form the relation, P outputs a set of
name mentions M , where each mention consists of the longest
subsequence of tokens with the same labels P or L.

CRF Inference Workflows: The goal of CRFlex is to exploit
recycling opportunities within a single page. The inference
step of CRFs is often very expensive even in much larger
IE programs, as has been reported in previous work such
as the Stanford Named Entity Recognition System [7]. Our
experiments also confirm this. Therefore, CRFlex focuses on
the CRF inference.

We observe that the CRF inference in many IE applications,
including several popular open source CRF packages [25], [26]
can be modeled as a workflow which conceptually consists of
3 main steps: (I) feature function computation, (II) computing
the trellis graph, and (III) labeling the resulting sequence.
Figure 2 illustrates such CRF inference workflow. we now

describe each step in more detail.
(I) Computing Feature Functions. Given a token sequence x,

a CRF inference workflow outputs the label sequence y of the
token sequence. The first step is to extract essential properties
from the document. To do so, a user first defines a set of
feature functions {fk}K

k=1. In turn, these feature functions are
applied to every token. Such feature functions may capture
both local features of the document, e.g., whether or not a
word is capitalized, and global features of the document, e.g.,
whether or not the word “born” is present anywhere in the text
of the page. Additionally, the feature functions may express
correlations between labels. In principle, a CRF’s feature
functions may describe correlations between every label of the
a document. However, in the most popular linear-chain CRFs
used in IE, the feature functions are restricted to correlating
the previous yi with label yi−1, the previous label in the token
sequence x. Thus, we may denote the set of feature functions
as {fk(yi−1, yi, x, i)}K

k=1. We illustrate by example:

Example 2. Figure 3 illustrates a linear CRF model over the
6-token sequence. 2 possible feature functions can be:

f1(yi−1, yi, x, i) = [xi starts with a capitalized character] ·
[yi−1 = PERSON ] · [yi = PERSON ],

f2(yi−1, yi, x, i) = [ “in” appears in the 5-token window

xi−5xi−4xi−3xi−2xi−1]
·[yi = LOCATION ],

where [p] = 1 if the predicate p is true and 0 otherwise.

Given a token sequence x, the inference workflow first em-
ploys the feature functions {fk(yi−1, yi, x, i)}K

k=1 to compute
the feature values at each position i in the token sequence.
This is the first step of inference indicated as (I) in Fig. 2.
When the corpus changes, many of the feature functions may
need to be recomputed from scratch (as they depend on the
text in potentially complex ways). The feature functions may
themselves be the output of other CRFs. However, an impor-
tant special case is when the feature functions are traditional
rule-based IE programs. In this case, we can leverage work on
incremental execution of rule-based IE programs (we describe
the relevant work below).

(II) Computing the Trellis Graph. During the offline training
process, each function fk is associated with a real-valued
weight λk that indicates roughly how indicative that feature
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Fig. 4. An example of computing factors.

is of the class it is trying to learn.1 In the second step,
the inference workflow then computes factors φ(yi−1, yi, x, i)
which are the dot product between the feature values and
the corresponding feature weights. The factors represent the
correlations between x, the current label yi and the previous
label yi−1. Formally,

φ(yi−1, yi, x, i) =
K∑

k=1

λk · fk(yi−1, yi, x, i) (1)

One can visualize the factors in the famous Trellis Graph
which is shown in Figure 4.(a). In this graph, each row
corresponds to a label and each column corresponds to a
position. All correlations are confined to cells in adjacent
columns and so we visualize the factors φ on the edges
between such cells.

Example 3. The factors on the highlighted edges in Fig-
ure 4.(a) are computed as follows. Figure 4.(b) illustrates
the 5 λs associated with the 5 feature functions, where f1

and f2 are illustrated in Example 2. Given the feature value
vector at position 2, which is illustrated in Figure 4.(c),
Figure 4.(d) illustrates how to compute the factors at position
2. For example, the factor in the first row and first column
corresponds to φ(P, P, x, 2), which is the factor when y1 is
“P” and y2 is also “P”. Since only feature f1 is triggered
for such pair of labels, φ(P, P, x, 2) is computed as the dot
product between the value of f1 and the λ associated with f1.

The reason we compute the factors is that for a given token
sequence x the factors define a probability distribution over all
label sequences. Following previous work [27], we formally
define the distribution as follows.

p(y|x) =
1

Z(x)
exp

{
T∑

i=1

φ(yi−1, yi, x, i)

}
(2)

where Z(x) is a normalizing function that guarantees the
probability is between 0 and 1.2

In step (II), we observe that we may be able to exploit and
recycle portion of the factors when the feature value vector of
a position remains the same. Thus, there are opportunities for
recycling in both of the first two steps.

1We assume the model is learned via an offline process and used repeatedly.
2Explicitly, we can write Z(x) =

∑
y exp

{∑T
i=1 φ(yi−1, yi, x, i)

}
.
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Fig. 5. An example of ML inference using Viterbi.

(III) Performing Inference. The last step of the workflow is
to perform inference over the Trellis graph. There are two main
types of inference: Marginal Inference where we try to find the
marginal probability of labels, or Maximum Likelihood (ML)
inference where the goal is to find the labeling sequence y that
maximizes p(y|x). In this work, we focus on ML inference,
because it is easiest to use by downstream applications.

To perform ML inference, we can use the famous dynamic
programming algorithm called Viterbi [28]. It operates in two
phases: forward phase and backward phase. In the forward
phase, it computes a two dimensional V matrix. Each cell
(y, i) of V stores the best partial labeling score of x1...xi

with the ith token labeled y. The Viterbi algorithm computes
scores recursively as follows:

V (y, i) =
{

maxy′{V (y′, i− 1) + φ(y′, y, x, i)} if i > 0
0 if i = 0

(3)
While computing scores, it also keeps track of which

previous label y′ is used to compute the current score in
V (y, i) by adding an edge from cell V (y′, i−1) to cell V (y, i).
In the end of the forward phase, it fills in all cells of the V
matrix and adds all edges indicating which previous labels are
used to compute the scores. Then y∗ corresponds to the path
traced from the cell that stores maxyV (y, T ). In the backward
phase, the Viterbi algorithm backtracks by following the edges
added in the forward phase to restore y∗.

Example 4. Figure 5 illustrates the V matrix computed over
the token sequence x in Figure 3. The first row, second row, and
third row contain the scores of label P, L, and O respectively.
Each column contains the scores for a given position. We also
plot all the edges that keep track of which previous labels are
used to compute the scores. For example, the edge V (P, 1) →
V (L, 2) indicates the score in V (P, 1) is used to compute
the score in V (L, 2). Finally, the path of the best labeling is
highlighted in bold.

The running time of the Viterbi algorithm is O(T |Y|2),
where T is the length of the input token sequence and |Y|
is the size of Y .
Background on Multiple Snapshots for Rule-based IE:
As we noted above, many feature functions employed in the
workflow are similar to traditional rule-based extractors: it
takes input as text fragments and outputs a value. Previous
work [18], [19] have developed techniques to incrementally
produce the results of such extractors when only a small
portion of input text fragments changes. They define several
properties to localize the extraction of a given extractor. We
recall one such property called context. Specifically, a feature
function f has context β iff its output at position i depends
only on the small “context windows” of size β to both sides
of i. Formally,



Definition 1 (context). We say f has context β iff for any yi−1,
yi, x, and i, f(yi−1, yi, x, i) = f(yi−1, yi, x′, j), where x′ is
obtained by perturbing the tokens of x outside xi−β ...xi+β

and j is the corresponding position of i in x′.

More details of context can be found in [18].
Therefore, we can apply these techniques to incrementally

produce the output of all feature functions, and then re-run
the final two stages of the workflow. However, such approach
may not be optimal for two reasons. First, in order to recycle
the results, the above work requires that we store all output
of all feature functions at each snapshot. However, many
CRFs often employ hundreds of and even thousands of feature
functions [27]. Capturing and storing all their output incurs
significant I/O overheads (as we show in our experiments).
Second, this approach still requires computing trellis graph
and conducting inference from scratch. While incrementally
computing trellis graph (mainly conducting dot product) may
not be very hard, incrementally conducting the Viterbi infer-
ence is challenging. This is because the most likely path is
correlated with the entire token sequences (see Equation 3).
To address the these limitations, the goal in CRFlex is to make
each part of the above workflow incremental.
Problem Definition and the CRFlex Approach: Given a
sequence of snapshots, our goal is to compute the most likely
labels for the CRF applied to the latest snapshot as efficiently
as possible. A straightforward solution is to re-run the entire
workflow on the corpus from scratch. This solution is simple,
however is often very costly as the workflow often incurs
significant runtime. This suggests that we should consider
how to incrementally produce the latest labels by recycling
the labels from the previous snapshots. Of course, it may not
be correct to recycle all labels and so our goal is to recycle
as many labels as possible.

Our strategy in CRFlex is to develop algorithms that are
incremental at each step of the workflow. These incremental
algorithms will need to materialize state, which poses a
challenge as there is a trade off between the time spent
materializing intermediate state and the amount of time it saves
for later execution. Our experiments demonstrate that no single
approach for recycling is always optimal, and thus we develop
a cost model to choose between approaches. In the following
sections, we first discuss the detailed opportunities for recy-
cling employed by CRFlex (section III). We then discuss how
to exploit these opportunities to design recycling solutions that
CRFlex considers, and CRFlex’s optimizer picks the fastest
recycling solution using a cost model (Section IV).

III. OPPORTUNITIES FOR RECYCLING

In this section, we will discuss how to maximize recycling
opportunities in each of the 3 steps of CRF inference work-
flows.
Scope of Recycling from the Past: Let XN+1 and XN

be the set of token sequences on snapshot SN+1 an SN

respectively. As discussed earlier, to recycle, we must match
each token sequence x ∈ XN+1 with token sequences in the

past snapshots, to find matching regions. Many such matching
schemes exist. Currently, we match each token sequence x
from page p only with token sequence x′ from page q at the
same URL as p. (If q does not exist then we declare x to
have no overlapping regions.) This simplification is based on
the observation that pages with the same URL often change
relatively slowly across consecutive snapshots, and hence often
share much overlapping data. We will consider how to extend
our approach to more general matching schemes in the future.

Given this matching scheme, in the following subsections,
we discuss at each step (a) the incremental properties we
exploit to guarantee the correctness of recycling, (b) what
results we should capture on SN and how to capture and store
them efficiently, and (c) how to recycle the captured results
on SN+1.

A. Maximizing Recycling Opportunities in Computing Feature
Functions

Let VN and VN+1 be the feature values of XN and XN+1

respectively. Our goal is to incrementally compute VN+1.
The basic idea is to match a token sequence x ∈ XN+1

with a token sequence x′ ∈ XN to find the matching token
regions between x and x′. Then we can recycle (i.e. copy) the
feature values computed from those matching regions, instead
of invoking the feature functions over these regions.

Incremental Property of Computing Feature Functions: It
is important to notice that it is not correct to copy all feature
vales in the matching token regions. Suppose x =“Tom Cruise
was from NYC” and x′ =“Tom Cruise was born in NYC”.
Even though “NYC” is a matching token between x and x′,
copying all feature values at this position may lead to errors.
Consider the feature function f2 in Example 2. Its value at
“NYC” in x′ is 1, whereas its value at “NYC” in x is 0. So
copying its value in x′ to that in x leads to an error.

To address this problem, we exploit the context of a feature
function (cf Section II) to guarantee that we correctly copy
feature values. Given matching token regions, we can exploit
the context of each feature function to identify its copy regions
and re-computation regions. Copy regions are regions where
we can safely copy feature values, and re-computation regions
are regions where we must re-apply the feature function.
Please refer to previous work [18] on how to exploit context
to identify copy and re-computation regions.

Capturing and Storing Feature Vectors: To maximize the
recycling opportunities, we need to capture both all input, XN ,
and all output, VN , while we were computing feature functions
over XN . Each token sequence x in XN is stored as a sequence
of integer triples, one for each token in x. The integers in a
triple indicate the ID of the data page where x is located, and
the start and end position of the token in that data page.

Efficiently storing VN poses a challenge. Because of their
great flexibility to include a wide variety of features, CRFs
often employ very large feature sets, with millions of fea-
tures [27]. Therefore, the size of VN is often very large,
and storing it in a straightforward way incurs large I/O
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overheads. To address this problem, we develop the following
two techniques to reduce the size of VN without losing any
information.

1. Storing Sparse Feature Vectors. We observe that although
the number of features employed by a CRF inference workflow
may be large, at a certain position, most feature values are
zeros and only a small number of features have non-zero
values. Therefore, the feature vectors, which consist of all
feature values at each position, are very sparse. We can store
such sparse feature vector as (feature id, feature value) pairs
for only those non-zero feature values.

2. Storing Feature Groups. We also observe that
many CRFs employ features instantiated from the
same “templates”. We call such features feature
groups. For example, in Example 2, the predicate
[ “in” appears in the 5-token window xi−4xi−3xi−2xi−1xi]
is a template. Then we can define a set of features instantiated
from this template, one for each possible label. Feature f2 in
Example 2 is the feature instantiated for label “LOCATION”.

When we evaluate the feature groups at a position, their
values are the same (i.e. are either all 0 or all 1). Therefore,
we only need to store one value for such feature groups.
Recycling Captured Feature Values: Figure 6.(a) illustrates
the feature value recycling workflow. Given a token sequence
x ∈ XN+1, we first match it with a token sequence x′ ∈ XN .
There are many possible ways to match two token sequences.
As the first step, we use “Unix Diff” in CRFlex, and leave
other possible matching algorithms in future work.

Not all feature values remain the same in the token matching
regions. So in the next step, the feature recyclers exploits the
context of each feature function to identify copy regions and
re-computation regions (on edge a in Figure 6.(a)) for each
feature function. Then we copy from VN at those copy re-
gions, and re-apply the feature functions at the re-computation
regions. This results in VN+1.

B. Maximizing Recycling Opportunities in Computing Trellis
Graph

Let FN and FN+1 be the factors over XN and XN+1

respectively. Our goal is to incrementally compute FN+1.
Incremental Property of Computing Trellis Graph: Similar
to recycling feature values, we first identify feature vector
matching regions, where feature vectors remain the same at
those regions. By the definition of factors (see Equation 1),
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Fig. 7. An illustration of contexts.

we can see that if the feature vector at a position i remains
the same (which implies that all the feature values at i remain
the same), the factors at i remain the same. We exploit this
fact to guarantee the factors recycled are correct.
Capturing and Storing Factors: To maximize recycling
opportunity, we must capture both the input of this step,
VN , and the output of this step, FN . VN is captured and
stored as we discussed in Section III-A. As FN is often linear
with the length of token sequences, we can store factors in a
straightforward way.
Recycling Captured Factors: Figure 6.(b) illustrates the
factor recycling workflow. The “vector diff” first matches the
feature vectors computed from a token sequence x ∈ XN+1

with those computed from x′ ∈ XN to identify feature vector
matching regions.

After the vector matching regions are identified, the factor
recycler then determines the factor copy regions and factor
re-computation regions. This step is very trivial, as the factor
copy regions are exactly the feature vector matching regions,
and the factor re-computation regions are the remaining re-
gions. Finally, the copier copies factors from FN and trellis
graph computation is invoked at the re-computation regions.

C. Maximizing Recycling Opportunities in Performing ML
Inference

Let YN and YN+1 be the labels over XN and XN+1

respectively. Our goal is to incrementally compute YN+1.
Incremental Properties of Viterbi: To incrementally com-
pute the labels of a token sequence when some factors of
the token sequence have changed, We identify a property of
Viterbi algorithm, called Viterbi context. The Viterbi context
specifies small windows surrounding each position i such that,
the factors outside those windows are irrelevant for Viterbi
to compute y∗i (the most likely label computed by Viterbi at
position i). We first introduce right context and left context.
Then build on them to introduce Viterbi context.

To motivate right contexts, we observe that given the factors
from position 1 to position i, the factors of positions far away
after i are irrelevant to y∗i , as illustrated by the following
example:
Example 5. Figure 7 illustrates the paths generated by Viterbi
over an eight-token sequence and three possible labels L1, L2,
and L3. Notice that cell V (L3, 4) can reach all cells in column
6 by following the paths in dots between column 4 and 6. Since
the path of y∗ must contain one of those 3 cells in column 4, no
matter what factors follows position 3, the path of y∗ must go
through cell V (L3, 4). Therefore, no matter how we perturb
the factors after position 6, y∗4 = L3. We call the factors in
the window [5...6] (i.e. a window starting at position 5 and
ending at position 6) the right context of y∗4 .



We formalize the notion of right context as follows:

Definition 2 (Right context). Let Φi denote the factor vector
at position i, which consists of all factors associated with i.
So the length of Φi is |Y|2. The right context of the best label
y∗i of xi is the factor vectors within window [i + 1...i + ν],
denoted as Φi+1...Φi+ν , such that i + ν is the first column of
V where all cells can be reached by cell V (y∗i , i) through the
paths computed by Viterbi.

The nice property of right context is that the factors outside
the right context are irrelevant for Viterbi to compute the label
y∗i . That is, if we perturb the factors after the right context of
y∗i , applying Viterbi to the resulting sequence of factors still
produces the same label y∗i .

To motivate left contexts, we observe that the factors far
away before the position i also have little influence on y∗i .
Formally,

Definition 3 (Left context). The left context of the best label
y∗i of xi is the factor vectors in window [i−µ...i−1], denoted
as Φi−µ...Φi−1, and the label λ for token xi−µ, such that cell
V (λ, i− µ) can reach all cells in column i through the paths
computed by Viterbi, and no cell in a column after i− µ can
reach all cells in column i. We represent the left context as a
tuple (Φi−µ...Φi−1, λ). Furthermore, we call Φi−µ...Φi−1 the
left context window of y∗i .

We can show that if we perturb the factors before position i,
as long as y∗i ’s left context remains the same, applying Viterbi
to the resulting factors still produces the same label y∗i for
token xi.

Example 6. In Figure 7, V (L1, 2) can reach all cells in
column 4 by following the highlighted paths between column
2 and 4. Therefore, the left context of y∗4 is Φ2...Φ3 and label
L1.

We now define Viterbi context. Intuitively, the Viterbi con-
text of y∗i consists of its left context and its right context.
Formally:

Definition 4 (Viterbi context). The Viterbi context of the best
label y∗i of xi is the factors Φi−µ...Φi+ν and the label λ, such
that Φi−µ...Φi−1 is its left context window, Φi+1...Φi+ν is the
right context window and y∗i−µ = λ. We denote the Viterbi
context as a tuple (Φi−µ...Φi+ν , λ).

The nice property of Viterbi context is that no matter how
we perturb the factors of the token sequence x outside the
window [i − µ...i + ν], as long as the label λ of xi−µ can
still reach all possible labels of xi, applying Viterbi to the
perturbed factors still produces the same label y∗i .

Example 7. From Example 5 and Example 6, we know that
the left context of y∗4 is (Φ2...Φ3, L1) and the right context is
Φ5...Φ6. Therefore, the Viterbi context of y∗4 is (Φ2...Φ6, L1).

Capturing and Storing Viterbi Inference Results: To max-
imize the recycling opportunities, we must capture all input,
the factors FN , and output, YN . Furthermore, to guarantee the
correctness of recycling, we also need the capturing all the

Viterbi contexts of labels in YN .
The key step in identifying Viterbi contexts is to identify a

cell in each column i of V that can reach all cells in a column
after i. This can be done by checking the reachability of the
cells following all the edges added by the Viterbi algorithm
while it is computing the scores in the V matrix. The pseudo-
code of capturing Viterbi context is listed below. Notice that
capturingV C is called during the forward phase of Viterbi
algorithm. Each time Viterbi fills scores of a column j in V
by Equation 3, it invokes capturingV C.

Algorithm 1 capturingVC
1: Input: Viterbi cells V, the latest filled position j in V, the position i up to which

the right contexts are all set, right contexts ν, left contexts µ, label sequence y
2: Output: updated right contexts ν, updated left contexts µ, updated label sequence

y, the position i′ up to which the right contexts are all set
3: Y′ ← Y , k ← j
4: while k > i do
5: Y′ ← backtracingCells(V, k,Y′)
6: if |Y′| = 1 then
7: break {/*found the beginning of the context window*/}
8: end if
9: k ← k − 1

10: end while
11: for l = i + 1 to k do
12: ν(l) ← j − l
13: y(l) ← the only element in Y′
14: end for{/* fill ν and output labels at each index before k */}
15: if k > i then
16: µ(j) ← k
17: else
18: µ(j) ← i {/* fill µ at position j}
19: end if
20: i′ ← k

Algorithm 2 backtracingCells
1: Input: Viterbi cells V, position k, the label set Y′
2: Output: the resulting label set Y′′
3: initialize Y′′ as an empty set
4: for all y ∈ Y′ do
5: if V(y, k).pre /∈ Y′′ then
6: add V(y, k).pre to Y′′
7: end if
8: end for

capturingV C incurs overhead of O(TD|Y|) in time, where
T is the length of x and D is the length of the longest right
context. In our experiments, we found that D is generally 2-3
tokens.

We have discuss how to store factors in Section III-B. To
store the Viterbi contexts of each y∗i , we only store µ and ν,
which are the lengths of the left and right context window
of y∗i . Finally, the labels output by Viterbi are also stored as
integers.
Recycling Captured Results: We now describe how to
incrementally produce YN+1 when some factors change. The
recycling workflow is illustrated in Figure 6.(c).

Given the sequences of factor vectors of two token se-
quences x in XN+1 and x′ in XN respectively, the “factor diff”
first matches the two sequences of factor vectors to identify
the factor matching regions, where factor vectors remain the
same.

Given the factor matching regions, the “inference recycler”
then works with the “label copier” and Viterbi to generate the



label sequence. An important difference between the recycling
workflow in Figure 6.(c) and those in Figure 6.(a) and (b)
is the Viterbi inference recycling workflow must interleave
the processing of copy and re-computation. Specifically, the
recycling workflow computes the best labels of x sequentially
(by either copying or re-computing) from left to right in the
following 3 steps.

1.Re-computing Viterbi Scores, Outputting Labels and
Finding Contexts: Starting from the first position, the
inference recycler first invokes a Viterbi-like algorithm, incre-
mentalViterbi. Like Viterbi, incrementalViterbi computes the
scores in the V matrix according to Equation 3. Unlike Viterbi,
which outputs the best labels until it finishes computing all
the scores in the V matrix, incrementalViterbi outputs the
best labels for partial token sequence as soon as it can.
Precisely, incrementalViterbi identifies the Viterbi contexts, as
we described above, while computing the scores in V . It then
outputs the best labels up to position i as soon as it determines
the right context of y∗i . Take the sequence in Figure 7 for
example. incrementalViterbi outputs y∗4 = L3 as soon as it
finishes computing the scores in column 6 and detects the
right context of y∗4 is Φ5...Φ6. In this way, we can exploit
the best labels of the partial sequence to determine if the left
contexts of subsequent positions in x remain the same.

2.Locating a Copy Region and Copying Labels: incre-
mentalViterbi is invoked until it enters the first factor match-
ing regions. Now the inference recycler exploits the Viterbi
contexts to determine the inference copy region within the
matching region. An inference copy region is a subsequence
of positions in x where the most likely labeling is the same as
its matching part in x′. Exploiting the Viterbi contexts, we can
find such copy regions by finding regions where the Viterbi
contexts (including both left and right contexts) of all positions
in x are the same as the Viterbi contexts of their matching
positions in x′.
3.Re-computing Viterbi Scores After a Copy Region:
Let r be the right boundary of the last copy region. incre-
mentalViterbi then resumes computing scores according to
Equation 3 and finding Viterbi contexts starting from position
r +1. However, we did not compute the scores when copying
the label y∗r . How can we compute the scores at position r+1
by Equation 3 without the scores at position r?

Our solution is based on the observation that we have
obtained the most likely label y∗r at position r by copying.
This suggests the path of y∗ must go through the cell V (y∗r , r).
Therefore, we only need to consider the score of V (y∗r , r)
to compute all scores at position r + 1. Furthermore, we
can show that we do not even need the actual score of
V (y∗r , r) for the computation. Any dummy score of V (y∗r , r)
can guarantee that we can obtain the correct best labeling.
This suggests that we compute V (y, r + 1) for each y ∈ Y as
V (y, r + 1) = c + φ(y∗r , y, x, r + 1), where c is the dummy
score of V (y∗r , r). We can then compute the scores of tokens
after xr+1 by using Equation 3.

The recycling workflow repeats step 1- 3 until it covers the

entire sequence. The pseudo-code is listed below.

Algorithm 3 incMLViterbi
1: Input: factor matching and unmatched regionsR, new factor sequence Φ, previous

label sequence y′, previous right contexts ν′, previous left contexts µ′

2: Output: new label sequence y, new right contexts ν, new left contexts µ
3: initialize Viterbi cells V
4: initialize y, ν and µ; i ← 1
5: sort regions in R by their positions in Φ in ascending order
6: for all r ∈ R do
7: b ← the index of r’s left boundary in the new sequence
8: e ← the index of r’s right boundary in the new sequence
9: if r is an unmatched region then

10: i ← b− 1
11: for j = b to e do
12: V.column(j) ← V iterbiForward(V, j, Φ)
13: (ν, µ, y, i) ← capturingV C(V, j, i, ν, µ, y)
14: end for
15: else
16: (l, ν, µ, y) ← getCopyStartPos(Φ, y′, µ′, V, ν, µ, y, b, e) {/*

Step 1. re-computing Viterbi scores and finding Contexts until the begin
position of the next copy region is found */}

17: if l is not null then
18: r ← getCopyEndPos(ν′, l, e)
19: if r is not null then
20: (µ, ν, y) ← copy(l, r, µ′, ν′, y′)

{/* Step 2. locating a copy region and copying labels */}
21: V.column(r) ← dummy constant c
22: i ← r
23: for j = r + 1 to e do
24: V.column(j) ← V iterbiForward(V, j, Φ)
25: (ν, µ, y, i) ← capturingV C(V, j, i, ν, µ, y)
26: end for{/* Step 3. re-computing Viterbi scores after a copy region*/}
27: else
28: i ← l + ν(l)
29: for j = l + ν(l) + 1 to e do
30: V.column(j) ← V iterbiForward(V, j, Φ)
31: (ν, µ, y, i) ← capturingV C(V, j, i, ν, µ, y)
32: end for
33: end if
34: end if
35: end if
36: end for

Algorithm 4 getCopyStartPos
1: Input: new factor sequence Φ, previous label sequence y′, previous left contexts

µ′, Viterbi cells V, new right contexts ν, new left contexts µ, new label sequence
y, region start index b, region end index e,

2: Output: start position s of the next copy region, ν, µ, y
3: i ← b− 1
4: for j = b to e do
5: V.column(j) ← V iterbiForward(V, j, Φ)
6: (ν, µ, y, i) ← capturingV C(V, j, i, ν, µ, y)
7: if i > b− 1 then
8: k ← matching index of j in the old sequence
9: l ← j−µ(j) {/* l is the start position of the left context window at position

j in the new sequence*/}
10: m ← k − µ′(k) {/* m is the start position of the left context window at

position k in the old sequence*/}
11: if y(l) = y′(m) and µ(j) = µ′(k) and µ(j) >= b then {/* checking

if the left contexts remain the same*/}
12: s ← j
13: exit
14: end if
15: end if
16: end for
17: s ← null



Algorithm 5 getCopyEndPos
1: Input: previous right contexts ν′, region start index b, region end index e
2: Output: end position r of the next copy region
3: for r = e to b do
4: k ← matching index of r in the old sequence
5: if r + ν′(k) < e then {/*checking if the right contexts remain the same */}
6: exit
7: end if
8: end for
9: r ← null

The following theorem states the correctness of the incre-
mental version of Viterbi.

Theorem 1. Let x be a token sequence, and Φ be the factor
sequence of x. Let y be the label sequence output by Viterbi
inference over Φ. The incremental version of Viterbi inference
is correct in that it will output the exact y when it is applied
to Φ.

IV. OVERALL RECYCLING SOLUTIONS

In Section III, we have discussed the recycling opportunities
at each step of the CRF workflow. We now discuss how
to design the overall recycling solutions exploiting these
recycling opportunities. It turns out there is a spectrum of
recycling solutions, which trade their recycling opportunities
with the recycling overheads. We will first discuss the plan
space considered by CRFlex in Section IV-A and IV-B.
As none of these recycling plans is always the fastest one,
we present a cost-based solution in Section IV-C to select
the fastest plan for a given corpus and CRF inference flow.
Finally, we discuss how to execute the chosen recycling plan
in Section IV-D.

A. Defining Recycling Plans

One way to construct a recycling solution is to stitch to-
gether the local recycling workflows in Figure 6. Although this
recycling solution gains the maximal recycling opportunities,
it is not always optimal, as it also incurs the maximal recycling
overheads in capturing intermediate results.

Therefore, we consider alternative recycling solutions which
incurs less overheads at the cost of losing some recycling
opportunities. In this section, we first present 4 types of
generic recycling blocks for local recycling. They differ in the
number of intermediate results they capture. We then discuss
how to compose an overall recycling solution using these
generic recycling blocks in Section IV-B.

We observe that the local recycling workflows in Figure 6
are very similar: they all consist of 3 operators, a matcher, a
recycler, and a copier. These operators are recycling operators,
in contrast to the actual computation operators. A recycling
block encapsulates these recycling operators. It may contain all
3 or some of these recycling operators. We categorize recycling
blocks into 4 types of generic recycling blocks depending
on the operators and their workflows encapsulated. We now
introduce the 4 generic recycling blocks.
Capturing-All (A) Recycling Block: In sections III, to
enable maximal recycling opportunities, we capture all input
and output for each step in the CRF inference workflow, as

Fig. 8. Generic recycling blocks.

showed in Figure 6. These local recycling workflows can be
treated as instantiations from the same generic recycling block,
illustrated by Figure 8.(a).

The generic recycling solution consists of all 3 recycling
operators. As it captures both the input and output of a step in
the CRF workflow, we call it “capturing-all” recycling block
and denote it as A recycling block. The box in the bottom of
Figure 8.(a) illustrates the recycling block. In particular, all the
arrows with numbers (i.e. arrow “1”, “2” and “3”) are inputs
to A and all the arrow with characters (i.e. arrow “a” and “b”)
are outputs from A.

The A recycling block incurs the most I/O overheads among
the 4 generic recycling blocks (in capturing both input and
output). But it also gains the maximal recycling opportunities
.
Capturing-Input (I) Recycling Block: Figure 8.(b) illus-
trates a generic recycling block that only captures the input
(e.g., a token sequence, feature vectors or factors) to a step in
the CRF inference workflow. We call it I recycling block.

In contrast to the A recycling block, it does not capture the
output of a step in the CRF inference workflow. Therefore, it
does not need to copy any previous output, and thus does not
include a copier (or the arrow “3” and “b”). Even though it
does not copy anything, it still outputs the copy regions (on
arrow “c”) identified by the recycler, so that the downstream
recycling blocks can exploit them (as we will discuss in the
following paragraphs).

Another difference between I and A recycling blocks is how
to determine the re-computation regions. In A recycling block,
re-computation regions are solely determined by the recycler
in the recycling block for the current step. In contrast, in B
recycling block, the recycler of the current recycling block
cannot determine the re-computation regions. This is because
in CRF inference workflows, the re-computation regions of
a downstream step often overlap with the copy regions of
the current step. For example, the inference re-computation
regions may overlap with the factor copy regions because the
Viterbi contexts of some factor copy regions change.

As a result, for the re-computation of the downstream step at
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those regions, we need to obtain the output of the current step.
For A recycling block, the output can be obtained by copying
from the output captured on the last snapshot. For I recycling
block, the output has to be obtained by re-computation. Hence,
the re-computation regions of the current step is determined
by the re-computation regions of the downstream steps.

In summary, compared with A recycling block, I recycling
block incurs less I/O overheads in capturing the output.
However, it also loses some recycling opportunities in that it
may have to invoke re-computation even at some copy regions.

Capturing-Output (O) Recycling Block: Figure 8.(c) illus-
trates a generic recycling block that only captures the output
(e.g., feature vectors, factors or labels) of a step in the CRF
inference workflow. We call it O recycling block.

In contrast to the A and I recycling blocks, it does not
capture the input of a step in the CRF inference workflow.
Therefore, it cannot use a matcher to identify matching re-
gions. Instead, it uses the copy regions of the last upstream
step (on arrow “4”) as the matching regions, because the output
from the last step (which is the input to the current step)
remains the same in those regions.

Compared with the A recycling block, O recycling block
incurs less I/O overheads in capturing the input. However,
it also loses some recycling opportunities in those matching
regions not contained in the copy regions of an upstream step.

Capturing-None (N) Recycling Block: Figure 8.(d) illus-
trates a generic recycling block which does not capture either
the input or the output of a step in the CRF inference workflow.
We call it “capturing-nothing”, denoted as N, recycling block.

The processing of N recycling block is a mix of that of O
and I recycling blocks. Like the O recycling block, it does not
use a matcher to identify matching regions. Instead, it uses
the copy regions from an upstream step. Like the I recycling
block, it does not use a copier to copy any output. Furthermore,
the re-computation regions are also determined by the re-
computation regions of the downstream steps.

Compared with the A, I and O recycling blocks, N recycling
block incurs the least I/O overheads. However, it also loses the
most recycling opportunities in that it may have to invoke re-
computation even at some copy regions and it cannot recycle
in those matching regions not contained in the copy regions
of the upstream step.

Figure 9 lists the comparison of the 4 generic recycling
blocks.

B. Composing Overall Recycling Plans

We can compose an overall recycling plan by choosing
one of the 4 generic recycling blocks for each step in the
CRF inference workflow and instantiating the chosen recy-
cling blocks with the matcher, recycler and copier for the
corresponding step. Furthermore, at the feature computation
step, we can choose different recycling blocks for different
types of features.

We distinguish two types of features when choosing re-
cycling blocks: local features and non-local features. Local
features are features whose context β is zero, and nonlocal
features are those features whose context β is non-zero.

Given that we can choose from 4 generic recycling blocks
for local feature computation, non-local feature computation,
trellis graph computation and Viterbi inference, there are to-
tally 16 possible recycling plans. The input/output dependency
constraint further rules out 8 plans. The remaining 8 plans are
listed in Figure 10. These are the recycling plans considered
by CRFlex. We now explain them in detail.

The capturing-VC recycling solution captures no interme-
diate results of the inference workflow except the Viterbi
contexts. Figure 11.(a) shows its workflow, where IFC is the
I recycling block instantiated for feature computation step (in-
cluding both local and non-local feature computation), NTC is
the N recycling block instantiated for trellis graph computation
step, and OV I is the O recycling block instantiated for the
Viterbi inference step. Notice that as I and N recycling blocks
are used for the first two steps, the re-computation regions for
these steps are determined by the re-computation regions of
the last step (on edge “a” of the OV I block).

The next three recycling plans capture values of local
features, non-local features and all features respectively, be-
sides Viterbi contexts. From figure 10, we can see that
both capturing-LF&VC plan and capturing-NLF&VC use I
recycling block for some feature computations.

The next three recycling plans in Figure 10 capture the
factors, among other intermediate results such as feature values
and Viterbi contexts. The last recycling plan captures all
intermediate results. This recycling plan is the one composed
by stitching together the three local recycling flows in Figure 6.
Figure. 11 show the recycling workflows of all the recycling
plans.

C. Cost-Based Selection of the Best Recycling Plan

We first discuss the pros and cons of various recycling
solutions. Each of the recycling solution could be the fastest
solution given different characteristics of the CRF workflow
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and corpus. We then present the cost model that captures these
characteristics.

Pros and Cons of Various Recycling Solutions: The
tradeoff between I/O cost and recycling opportunities can
be roughly quantified by how expensive the CPU cost of
computing a result is relative to the I/O cost needed to
recycle the result. As such ratio is different for different CRF
inference workflows, the plan space considered by CRFlex
covers different ratios. In particular, we find that the plan space
considered by CRFlex can be easily categorized by various
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characteristic of feature functions, as plotted in Figure 12.

Like defining recycling plans, the plan space is determined
by two types of feature functions: local features and non-local
features. Both types of features are categorized as “cheap”
and “expensive”. The features are cheap if the CPU cost of
computing a feature value is on average smaller than the I/O
cost of reading and writing a feature value, and are expensive
vise verse.

For non-local features, the I/O cost of recycling a feature
value is also determined by the contexts. The longer the
contexts are, the less feature values we can safely recycle from
a given length of text fragment, and thereby increasing the I/O
overheads in recycling feature values.

Using the characteristics of local and non-local features, we
can divide the plan space into 5 parts, as in figure 12, with
4 extreme cases in the 4 corners. The left bottom corner (in
white) is where both local and non-local features are relatively
cheap to compute in comparison to the I/O overheads. There-
fore, we expect the capturing-VC plan, which incurs the least
I/O overheads, is the fastest plan in this region. The left upper
corner is where local features become expensive. Therefore,
the plan captures local features, capturing-LF&VC plan, is
expected to be the fastest.

On the other hand, the right upper corner (in black) is where
both local and non-local features are relatively expensive
to compute. Therefore, we expect capturing-AF&VC, which
captures all feature values is the fastest plan in this region.
The right bottom corner is where only non-local features are
expensive. Therefore, we expect the plan only captures non-
local features, capturing-NLF&VC, to be the fastest.

Cost Model: We now discuss the cost model that captures the
above characteristics. As all recycling solutions need to read
XN+1 and write YN+1, our cost model ignores these costs.
Furthermore,our cost model also ignores the costs of the diff
operators (i.e. unix diff, vector diff and factor diff) as they are
very small in comparison to the other costs.



We then model the cost of a recycling plan as follows:
4∑

i=1

ti · l · (1− f̂) (4)

+

4∑
i=1

(ti · l · f̂ · ĝi + o · n̂i), (5)

The cost of a recycling plan consists of two parts. The
first part is the cost of re-running the entire CRF inference
workflow over all the token sequences from data pages at new
URLs (Line 4). The second part is the cost of incrementally
running the CRF inference workflow over the remaining token
sequences(Line 5). Both parts are modeled as the summation
of the costs of the four computation components (denoted by
the subscripts) in a CRF inference workflow: the local feature
function computation, non-local feature function computation,
dot product and the Viterbi inference. The cost of each
computation component in the second part can be further
decomposed into the CPU cost (captured by term ti ·m·l·f ·gi)
and the I/O cost (captured by term oi · ni). The parameters
used are listed in Figure 13. Note that the values of the hatted
parameters may vary across differen recycling plans.
Selecting the Best Recycling Plan: As the first step,
CRFlex assumes that the evolving rate of a corpus is constant.
Many real-life corpora have such characteristics [18], [19].
Therefore, we only need to estimate the parameters using a
small sample on each of the first k snapshots, for a pre-
specified k. Then we evaluate the cost and pick recycling
plan with the smallest estimated cost. From snapshot k + 1,
we will execute the same recycling plan on all subsequent
snapshots. For space reasons, we do not discuss parameter
estimation further. Section V demonstrates empirically that a
small sample size and k are sufficient for CRFlex, meaning
that parameter estimation and cost-based plan selection adds
very little overhead to the overall cost.
D. Executing A Selected Recycling Plan

There are two cases of executing a selected plan. The
first case is at Sk+1, the first snapshot over which CRFlex
executes the selected plan. When CRFlex re-ran the CRF
workflow on Sk, it did not capture any intermediate results.
Therefore, it cannot recycle at Sk+1, and has to re-run the
entire CRF inference workflow. Specifically, while re-running,
it also captures the intermediate results according to the picked
recycling plan. While CRFlex is running the CRF inference
workflow over the token sequences from each data page in
Sk+1, it appends the results captured from each page in an
intermediate result file Rk+1.

The second case is after Sk+1. Now CRFlex can recycle
the results from the last snapshot. At the same time, it also
produce intermediate results for recycling in the next snapshot.
As the intermediate result file is often very large and cannot
fit into memory, we must guarantee that CRFlex will access
it sequentially. To do so, CRFlex processes data pages at
each snapshot in the same order determined by their URLs.
Specifically, let q1, q2, . . . , qN be the order CRFlex processed

Feature 

Type Index

Feature Type Feature Description Context

1 Cheap local features Word-based regular expressions and 

their conjunctions

0

2 Expensive local features Approximate string match between a 

token and a dictionary

0

3 Cheap and short-context

non-local features

2-token-window-based regular

expressions and their conjunctions 

2 tokens

4 Expensive and long-context 

non-local features

Approximate string match between 

tokens in a 40-token- window and a 

dictionary

40 tokens

Fig. 14. Feature description.

the data pages at Sk+1. Therefore, the results in Rk+1 were
also stored in that order.

Then at Sk+2, CRFlex processes the data pages in the same
order. That is, let pi be the page with same URL as qi, i =
1, . . . , N . Then CRFlex processes p1, then p2, and so on. (If
a page p ∈ Sk+2 does not have a corresponding page in Sk+1,
then we can process it at any time, by simply re-running the
CRF inference workflow.) By processing in the same order,
we only need to scan Rk+1 sequentially once.

V. EMPIRICAL EVALUATION

Dataset: We now empirically evaluate the utility of CRFlex.
The data set used for the experiments consists of 16 snapshots
obtained from a subset of Wikipedia.com URLs. On average,
each snapshot contains 3038 data pages, and its total size is
about 35M.
Features: To construct CRF-based IE programs for our
experiments, we consider 4 types of feature functions. Fig-
ure 14 lists the description of those features. Most of these
features have been used in previous work. For example, the
word-based regular expressions are default features in the CRF
open source package [25]. Conjunctions of regular expressions
have been considered in CRF-based Named Entity Recognition
(NER) and Noun Phrase Segmentation [27]. Approximate-
string-matching-based features have also been used in CRF-
based NER [29].
IE Programs: Based on these 4 types of features, we
construct 4 IE programs. Figure 15 illustrates the statistics
of these IE programs. Each IE program first uses the same
tokenizer to segment a document into token sequences, and
then employs a different CRF with different types of features
chosen from the feature described above to label the token
sequences. The 4 IE programs represent the 4 extreme cases
in the plan space illustrated in Figure 12. All the IE programs
were developed using the CRF open source package [25].
1. Part-of-speech (POS) Tagging: POS tagging is to identify
tokens such as nouns, verbs, adjectives, and adverbs. There are
totally 10 possible labels considered by the CRF. As this task
is relatively easy, the IE program we construct employs the
cheap local features and cheap non-local features.
2. NER: NER is to extract entities such as “Person”,
“Location”, and “Organization” from documents. There are
totally 9 possible labels considered by the CRF. Similar
to previous work [29], this IE program employs the string
matching based expensive local features and cheap non-local
features.



IE Program Feature Employed # Features # Labels

POS Feature type 1 and 3 3060 10

NER Feature type 2 and 3 900 9

Chunking with Cheap LF Feature type 1 and 4 2051 7

Chunking with Expensive LF Feature type 2 and 4 168 7

Fig. 15. IE programs description.

3&4. Chunking: Text chunking is to divide a document into
syntactically correlated parts of words, such as noun phrase
words and verb phrase words. There are totally 7 possible
labels considered by the CRF. We consider two IE programs
for this task. Both employs expensive non-local features with
long contexts. The first one considers cheap local features,
while the second one considers expensive local features.
Runtime Comparison: We considered 2 baselines: Rerun
and Cyclex. Rerun re-executes IE programs over all pages in
a snapshot. Cyclex is a rule-based recycling solution treating
the entire IE programs as a blackbox to recycle. Figure 16
plots the runtime curves of Rerun, Cyclex and CRFlex.

CRFlex used the first 2 snapshots to collect statistics for its
cost model while re-running the IE programs from scratch. The
statistics were collected over 150 data pages on each snapshot.
So the runtime of CRFlex on these snapshots includes both
the runtime of re-running the programs and the runtime of
collecting statistics. On the third snapshot, CRFlex still re-
ran the programs. But it also captured intermediate results
according to the picked recycling plan.

We observe that, on the first 3 snapshots, the runtime curves
of Rerun Cyclex and CRFlex are very close, indicating a
small overhead of collecting statistics and capturing results
for CRFlex. From snapshot 3 and on, CRFlex performed
significantly better than Rerun and Shortcut, cutting runtime
by as much as 90%. These results suggest that CRFlex was
able to exploit the properties specific to the CRF workflows
to recycle more IE results, thereby significantly speeding up
execution.

As CRFlex considers a set of recycling plans, we also
executed all recycling plans from snapshot 3 to the last
snapshot, and plotted the runtimes of three fastest recycling
plans for each task in Figure 17.

From Figure 17, we observe that none of the recycling plan
is always optimal. For the POS program which employs cheap
local and non-local features, capturing-VC is the fastest plan.
For the NER program which employs expensive local and
cheap non-local features, capturing-LF&VC is the fastest plan.
The two Chunking IE programs both employ expensive non-
local features. For the one employing cheap local features,
capturing-NLF&VC is the fastest plan, while for the one
employing expensive local features, capturing-AF&VC is the
fastest plan.

This underscores the importance for the CRFlex optimizer
to consider various recycling plans and select the best for
a particular setting. Furthermore, we also observe that the
optimizer of CRFlex is able to pick the fastest plan in all
cases, indicating the effectiveness of the optimizer in CRFlex.
Contributions of Components: Figure 18 shows the runtime
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Fig. 18. Runtime decomposition.

decomposition of the three fastest recycling plans and Rerun
for each IE program (numbers in the figure are averaged over
all snapshots). “Match” is the total CPU time of applying
matchers. “Extraction” is the total CPU time on extraction,
including the time used for running both the tokenizer and the
CRF inference workflow. “IO” is the total time of reading and
writing intermediate results produced by the CRF inference
workflows. Finally, “Others” is the remaining time (e.g., to
read and write data pages, and to load the CRF model into
memory etc.)

The results show that extraction time and IO time dominate
runtimes of all recycling plans. Furthermore, the runtime of
the CRFlex inference workflow also dominates the extraction
time, taking more than 96% of extraction time. This indicates
that we should focus on optimizing these two components, as
CRFlex does.

VI. CONCLUSIONS AND FUTURE WORK

A growing number of real-world applications must deal
with statistical IE over dynamic text corpora. Executing such
IE programs from scratch at each snapshot is very time-
consuming. To address this problem, we have developed
CRFlex, a solution that efficiently executes CRF-based IE
programs over evolving text by recycling previous inference
results. As far as we know, CRFlex is the first in-depth
solution for this important problem. CRFlex also opens up
several interesting directions that we are planning to pursue,
including (a) how to handle IE programs based on statistical
models other than CRFs, and (b) how to handle evolving IE
programs as well as evolving text.
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