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Abstract— Most current information extraction (IE) ap-
proaches have considered only static text corpora, over which
we typically have to apply IE only once. Many real-world text
corpora however are dynamic. They evolve over time, and to
keep extracted information up to date, we often must apply
IE repeatedly, to consecutive corpus snapshots. We describe
Cyclex, an approach that efficiently executes such repeated IE, by
recycling previous IE efforts. Specifically, given a current corpus
snapshot U , Cyclex identifies text portions of U that also appear
in the previous corpus snapshot V . Since Cyclex has already
executed IE over V , it can now recycle the IE results of these
parts, by combining these results with the results of executing
IE over the remaining parts of U , to produce the complete IE
results for U . Realizing Cyclex raises many challenges, including
modeling information extractors, exploring the trade-off between
runtime and completeness in identifying overlapping text, and
making informed, cost-based decisions between redoing IE from
scratch and recycling previous IE results. We describe initial
solutions to these challenges, and experiments over two real-
world data sets that demonstrate the utility of our approach.

I. INTRODUCTION

Over the past decade, the problem of information extraction
(IE) has received significant attention. Given a text corpus
(e.g., a collection of emails, Web pages, etc.), many effective
solutions have been developed to extract information from the
corpus, and much progress has been made [23], [5], [7], [2].

Most of these IE solutions have considered only static
text corpora, over which we typically have to apply IE only
once. In practice, however, text corpora often are dynamic,
in that documents are added, deleted, and modified. They
evolve over time, and to keep extracted information up to
date, we often must apply IE repeatedly, to consecutive corpus
snapshots. Consider for example DBLife, a structured portal
for the database community that we have been developing
[18]. DBLife operates over a text corpus of 10,000+ URLs.
Each day it recrawls these URLs to generate a 120+ MB
corpus snapshot, and then applies IE to this snapshot to
find the latest community information (e.g., which database
researchers have been mentioned where in the past 24 hours).
As another example, the Impliance project at IBM Almaden
seeks to build a system that manages all information within
an enterprise [21]. This system must regularly recrawl the
enterprise intranet, and then apply IE to the recrawled data
to infer the latest information. See [9], [10], [24] for other
examples of dynamic text corpora.

Despite their pervasiveness, no satisfactory solution exists
currently for IE over dynamic text corpora. Given such a
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Fig. 1. Two pages of the same URL, retrieved at different times

corpus, the common solution is to apply IE to each corpus
snapshot in isolation, from scratch. This solution is simple,
but highly inefficient, with limited applicability. For example,
in DBLife reapplying IE from scratch takes 8+ hours each day,
leaving little time left for higher-level data analysis. As another
example, time-sensitive applications (e.g., stock, auction, in-
telligence analysis) often want to refresh information quickly,
by recrawling and reextracting, say, every 30 minutes. In such
cases applying IE from scratch is inapplicable if it already
takes more than 30 minutes. Finally, this solution is ill-suited
for interactive debugging of IE applications over dynamic
corpora, because such debugging often requires applying IE
repeatedly to multiple corpus snapshots. Thus, given the grow-
ing need for IE over dynamic text corpora, it has now become
crucial to develop efficient IE solutions for these settings.

In this paper we present Cyclex (Recycling Extraction),
as a solution. The key idea underlying Cyclex is to recycle
previous IE results, given that consecutive snapshots of a text
corpus often contain much overlapping data. The following
example illustrates this idea:

Example 1. Consider a tiny corpus of a single URL that lists project
meetings. Fig. 1 shows a snapshot of this corpus, which is just a
single data page p (of the above URL), crawled today. Suppose that
we have applied an extractor E to this snapshot, to extract the tuple
(CS 105,2pm) which specifies a meeting. Suppose tomorrow we crawl
the above URL to obtain another corpus snapshot, which is the page
q shown in Fig. 1. Then to extract meetings from q, current solutions
would apply extractor E to q from scratch, and produce tuples (CS
105,2pm) and (CS 310,4pm).

In contrast, Cyclex tries to recycle the IE results of p. Specifically,
it starts by “matching” q with p, to find text regions of q that also
appear in p. Suppose it finds two regions v1 and v2 of q that also
appear as u1 and u2 of p, respectively (see Fig. 1). Cyclex then does
not apply E to v1 and v2, but instead copies over the mentions of u1

and u2. Cyclex then applies E only to v3, the sole region of q that
does not appear in p. The savings come from not having to apply E
to the entire page q.

While appealing, realizing the above idea raises difficult
challenges. The first challenge is that we cannot simply just
copy mentions over, e.g., from regions u1 and u2 of page
p to v1 and v2 of page q, as discussed in Example 1. To



see why, suppose a particular extractor E is such that it only
extracts meetings if a page has fewer than five lines (otherwise
it produces no meetings). Then none of the mentions of page
p can be copied over to page q, which has more than five
lines. In general, which mentions can be copied “safely”
depends on certain properties of extractor E. Thus, we must
model certain properties of extractor E, so that we can (a)
exploit these properties to reuse certain mentions, and (b)
prove that reusing will produce the same set of mentions as
applying IE from scratch. In this paper we define a small set
of such properties, show that many practical extractors exhibit
these properties (see Section III), and develop incremental re-
extraction techniques by exploiting these properties.

Our second challenge is how to “match” two pages, e.g., p
and q in Example 1, to find overlapping text regions. We first
develop ST, a powerful suffix-tree based matcher, and prove
that this matcher achieves the most complete result, i.e., finds
all largest possible overlapping regions. We then show that
an entire spectrum of matchers exists, with matchers trading
off the completeness of the result for runtime efficiency (see
Section V). Since no matcher is always optimal, we provide
Cyclex with a set of alternative matchers (more can be added
easily), and a way to select a good one, as discussed below.

Since dynamic text corpora can easily contain tens of
thousands or millions of data pages, we must also develop
efficient solutions for reusing mentions and applying extractor
E to non-overlapping text, in the presence of a large amount
of disk-resident data. We must also consider how to efficiently
interleave these steps with the step of matching data pages (see
Section VI).

Finally, addressing the above challenges results in a space
of execution plans, where the plans differ mainly on the
page matcher employed. Thus, in the final challenge we must
develop a cost model and use it to select the optimal plan.
Unlike RDBMS settings, our cost model is extraction-specific.
In particular, it tries to model the rate of change of the text
corpus, and the run time and result size of extractors and
matchers, among others (see Section VII).

In summary, we make the following contributions:

• We show that it is possible to exploit past IE work to
significantly speed up IE over evolving text. As far as
we know, Cyclex is the first solution to this important
problem.

• We show how to model certain common properties of
information extractors and how to exploit these properties
to reuse past IE and to guarantee the correctness of our
approach.

• We show that a natural tradeoff exists for finding over-
lapping text regions. We examine the spectrum of choices
and develop a powerful suffix-tree based solution.

• We show how to estimate cost for each of the points in
the spectrum, to find an IE plan with minimal estimated
time.

• We conduct extensive experiments over two real-world
data sets that demonstrate the utility of our approach.

II. RELATED WORK

The problem of information extraction has received much
attention (see [23], [5], [2] for recent tutorials). The main
focus so far has been on improving the accuracy and runtime
of information extractors. But recent work has also started
to consider how to manage such extractors in large-scale IE-
centric applications [5], [2]. Our work fits into this emerging
direction, which is described in more detail in [2].

Once we have extracted entity mentions, we can perform
additional analysis, such as mention disambiguation (a.k.a.
record linkage, e.g., [16]). Thus, such analyses are higher level
and orthogonal to our current work.

While we have focused on IE over unstructured text, our
work is related to wrapper construction, the problem of
inferring a set of rules (encoded as a wrapper) to extract
information from template-based Web pages. Since wrappers
can be viewed as extractors (as defined in Section III), our
techniques can potentially also apply to wrapper contexts. In
this context, the knowledge of page templates may help us
develop even more efficient IE algorithms.

Several recent works have also considered evolving text
data, but in different problem contexts. The work [20] con-
siders how to repair a wrapper (so that it continues to extract
semantically correct data) as the underlying page templates
change, and the work [12] considers how to incrementally
update an inverted index, as the indexed Web pages change.

Recent work [11], [14] has also exploited overlapping text
data, but again in different problem contexts. These works ob-
serve that document collections often contain overlapping text.
They then consider how to exploit such overlap to “compress”
the inverted indexes over these documents, and how to answer
queries efficiently over such compressed indexes. In contrast,
we exploit the IE results over the overlapping text regions to
reduce the overall extraction time.

The problem of finding overlapping text regions is related
to detecting duplicated Web pages. Many algorithms have
been developed in this area (e.g., [13], [17], [4]). But when
applied to our context they do not guarantee to find all largest
possible overlapping regions, in contrast to the suffix-tree
based algorithm developed in this work. Several suffix tree
algorithms have been widely used to find matching substrings
in a given input string [8]. Here we have significantly extended
these algorithms, to develop one that can efficiently detect all
maximal matching regions (i.e., substrings) between two given
strings, in time linear in the total length of these two strings.

Finally, optimizing IE programs and developing IE-centric
cost models have also been considered in several recent papers
[22], [19], [3]. These efforts however have considered only
static corpus contexts, not dynamic ones as we do in this paper.

III. PROBLEM DEFINITION

Data Sources, Pages, & Corpus Snapshots: Let S =
{S1, . . . , Sn} be a set of data sources considered by an
application A. We assume that A crawls these sources at
regular intervals to retrieve sets of data pages. For example,



DBLife considers 10,000+ data sources, each specified with a
URL, and crawls these URLs (each to a pre-specified depth)
each day to retrieve a set of 14,000+ Web pages. We will refer
to Pi — the set of data pages retrieved at time i — as the i-th
snapshot of the evolving text corpus S.

Entities, Attributes, & Mentions: Data pages often mention
entities, which are real-world concepts, such as person, paper,
and meeting. We represent each entity type e with a set
of attributes a1, . . . , ak, which can be atomic (e.g., meeting
room) or set-valued (e.g., topics).

Given a data page p, we refer to a consecutive sequence
of characters in p as a string, or a text fragment, or a region
(we will use these notions interchangeably). We use p[i..j] to
denote the string s that starts with the i-th character and ends
with the j-th characters of p. In this case, we will also say
s.start = i and s.end = j.

A mention of an atomic (set-valued) attribute a is then a
string in p (a set of strings in p) that refers to a. We can now
define an entity mention as follows:

Definition 1 (Entity mention). Let p be a data page, and a1, . . . , ak

be the attributes of an entity type e. Then a mention of an instance
of entity type e is a tuple m = (m1, . . . , mk), where each mi, i ∈
[1, k], is either a mention of ai in page p, or the special value “nil,”
indicating that a mention of ai cannot be extracted from p. We also
define m.start = mink

i=1 mi.start and m.end = maxk
i=1 mi.end.

Example 2. Suppose the entity type “meeting” has three attributes:
room, time, and topics. Then tuple (CS 310, 4pm, {CIM,IR}) is a
mention of “meeting” in page q of Fig. 1. String s = “CS 310”
(where s.start = 25 and s.end = 30) is a mention of attribute
“room.” “4pm” is a mention of “time,” and the set of strings {“CIM,”
“IR”} is a mention of “topics.”

Extractors: Real-world IE applications extract mentions
of one or multiple entity types from data pages. As a first
step, in this paper we consider extracting mentions of a single
entity type e (e.g., meeting). To extract such mentions, current
applications usually employ an extractor E, which is typically
a learning-based program, or a set of extraction rules encoded
in, say, a Perl script [2]. We assume that E extracts mentions
from each data page in isolation, e.g., extracting meetings
as in Fig. 1. Such per-page extractors are pervasive (e.g.,
constituting 94% of extractors in the current DBLife, see
[2], [22] for many examples). Hence, we start with such
extractors, leaving more complex extractors (e.g., those that
extract mentions that span multiple pages) for future work. We
can now define extractors considered in this paper as follows:

Definition 2 (Extractors). Let a1, . . . , ak be the attributes of an entity
type e. Then an extractor E : p → M takes as input a data page
p and produces as output a set M of mentions of e in page p,
where each mention is of the form (m1, . . . , mk) as described in
Definition 1.

Modeling Properties of Extractors: Recall from the intro-
duction that we must model certain properties of extractors,
so that we can reuse mentions and prove the correctness of
our algorithm. We now describe two such properties: scope
and context. To motivate scope, we observe that attribute

mentions of an entity often appear in close proximity in text
pages. Consequently, an extractor often starts by extracting
attribute mentions, then combines the mentions and prunes
those combinations that span more than a maximal length α.

Example 3. Suppose we apply E to page q in Fig. 1 to extract
(room,time). E may start by extracting all room mentions: “CS 310,”
“CS 105,” then all time mentions: “4pm,” “2pm.” E then pairs room
and time mentions, and prunes pairs that are not found within, say, a
length of 100 characters. Thus, E returns only the pairs (CS 310,4pm)
and (CS 105,2pm).

Thus, we can formalize the notion of scope as follows:

Definition 3 (Extractor scope). An extractor E has scope α iff for
any mention m produced by E we have (m.end − m.start) < α.

To motivate context, we observe that when extracting men-
tions, many extractors examine only small “context windows”
to both sides of a mention, as the following example illustrates:

Example 4. Let E be an extractor for (room,time,topics). Suppose
E produces string X as a topic if (a) X matches a pre-defined word
(e.g., “IR”), and (b) the word “discuss” or “topic” occurs within a
30-character distance, either to the left or to the right of X . Then we
say that the context of topic mentions is 30 characters. That is, once
E has extracted X as a topic, then no matter how we perturb the
text outside a 30-character window of X (on both sides), E would
still recognize X as a valid topic mention.

Let m be a mention produced by an extractor E in page p.
Then we formalize the notion of context as follows:

Definition 4 (β-context of mention & extractor context). The β-
context of m (or context for short when there is no ambiguity) is the
string p[(m.start − β)..(m.end + β)], i.e., the string of m being
extended on both sides by β characters. Extractor E has a context
β iff for any m and p′ obtained by perturbing the text of p outside
the β-context of m, applying E to p′ still produces m as a mention.

We assume that each extractor E comes with a scope α
and a context β. These values can be supplied by whoever
implementing E or knowing how E works (e.g., the applica-
tion builder, after examining E’s description or code). As we
show in the experiments, α and β do not have to be “tight” in
order for us to benefit from recycling IE results. However, the
“tighter” (i.e., smaller) these values are, the larger the benefits.

Problem Definition: We can now describe our problem as
follows. Let P1, . . . , Pn be consecutive snapshots of a text
corpus, E be an extractor with scope α and context β, and
M1, . . . ,Mn be the set of mentions extracted by E from
P1, . . . , Pn, respectively. Let Pn+1 be the corpus snapshot
immediately following Pn. Then develop a solution to extract
the set of mentions Mn+1 from Pn+1 in a minimal amount
of time, by utilizing P1, . . . , Pn, α, β, and M1, . . . ,Mn. In
the rest of the paper we describe Cyclex, our solution to this
problem.

IV. THE CYCLEX SOLUTION APPROACH

To describe Cyclex, we begin with two notions:

Definition 5 (Old region & maximally old region). A region r in
a data page p of snapshot Pn+1 is an old region if it occurs in a
page q of snapshot Pn. r is a maximally old region if it cannot be
extended on either side and still remains an old region.



Pn , Pn+1

Pn-w , Pn-w+1 , …, Pn

Mn-w ,Mn-w+1, … , Mn

Cost Model

Matcher Selector

Mn+1

Matchers

Page Matcher

Reuser

Extraction Module

Fig. 2. The Cyclex architecture

To extract mentions from Pn+1, Cyclex then considers each
page p in Pn+1 and “matches,” i.e., compares p with pages in
Pn, to find old regions of p. Next, it uses the old regions to
identify copy regions and extraction regions of p (see Section
VI). Cyclex then applies extractor E only to the extraction
regions, and copies over the mentions of the copy regions.

Since pages retrieved (in consecutive snapshots) from the
same URL often share much overlapping data, to find old
regions of p, Cyclex currently matches p only with q, the
page in Pn that shares the same URL with p. (If q does
not exist, then Cyclex declares that p has no old regions.)
Section VIII shows that the choice of matching pages with the
same URL already significantly reduces IE time. Considering
more complex choices (e.g., matching p with all pages in Pn)
is an ongoing research.

We call algorithms that match p and q to find old regions in
p page matchers. Sections V shows that such matchers span an
entire spectrum, trading off result completeness for runtime,
and that no matcher is always optimal. For example, the ST
matcher described below returns all maximally old regions,
thus providing the most opportunities for recycling past IE
results. But it may also incur more runtime than matchers that
return only some old regions. So, a priori we do not know if
it would be better than these other matchers.

The above result leads to the Cyclex architecture in Fig. 2.
Given snapshot Pn+1, the matcher selector employs a cost
model (that utilizes statistics computed over the past w snap-
shots) to select a page matcher from a library of matchers.
The page matcher then finds old regions of pages in Pn+1.
Next, the extraction module applies extractor E to extraction
regions of pages in Pn+1, and the reuser copies over mentions
of the copy regions. Cyclex then combines the results of both
the extraction module and the reuser to produce the final IE
result for Pn+1. The next three sections describe the matchers,
the reuser and extraction module, and the matcher selector in
detail.

V. THE PAGE MATCHERS

Recall from Section IV that a page matcher compares pages
p and q to find old regions of p. We have provided the current
Cyclex with three page matchers: DN, UD, and ST (more
matchers can be easily plugged in as they become available).
DN incurs zero runtime, as it immediately declares that page
p has no old region. Cyclex with DN thus is equivalent to
applying IE from scratch to Pn+1.

UD employs an Unix-diff-command like algorithm [15],
which splits pages p and q into lines, then employs a heuristic
to find common lines. Thus, UD is relatively fast (takes time

linear in |p| + |q|), but finds only some old regions. We omit
further description for space reason, but refer the reader to
[15].

ST is a novel suffix-tree based matcher that we have
developed, which finds all maximal old regions of p using time
linear in |p|+ |q|. ST and DN thus represent the two ends of
a spectrum of matchers that trade off the result completeness
for runtime efficiency, while UD represents an intermediate
point on this spectrum.

In the rest of this section we describe ST in detail. Roughly
speaking, ST inserts all suffixes of q and p into one suffix
tree T [8]. As we insert each suffix of p, T helps us identify
the longest prefix of this suffix that also appears in q. To
realize this intuition, however, we must handle a number of
intricacies, so that we can locate all maximal old regions
without slowing down ST to quadratic time.

A. Suffix Tree Basics

The suffix tree for a string q is a tree T with |q| leaves, each
describing a suffix of q. T must satisfy the following: (1) Each
non-root internal node has at least two children. (2) Each
edge is labeled with a nonempty substring of q, and no two
edges out of a node can have labels beginning with the same
character. (3) The path label of a node is the concatenation
of all edge labels on the path from the root to this node; each
suffix of q corresponds to the path label of a leaf. (4) Each
non-root internal node with path label λu (where λ is a single
character and u is a string) has a suffix link to the node with
path label u; the root has a suffix link to itself. Fig. 3(a) shows
the suffix tree for “ababbabaab$,” where symbol $ terminates
the string. Suffix links are showed as dotted lines.

To construct a suffix tree for q, we insert all suffixes of
q one by one into an initially empty tree. For example, the
suffixes of “ababbabaab$” are “ababbabaab$,” “babbabaab$,”
“abbabaab$,” . . ., “b$.” Let si denote q[i..|q|], the i-th suffix
of q. Conceptually, to insert si, we first look up si, matching
si against edge labels as we go down the tree until no more
characters can be matched. If lookup stops at a node, we insert
si as a leaf below that node; if lookup stops in the middle of
an edge, we add a new node to split the edge right before the
point where it diverges from si, and then insert si as a leaf of
the new node.

Unfortunately, if we insert every si by starting the lookup
from the root, we would end up with a quadratic-time al-
gorithm. The secret to more efficient suffix-tree construction
is to exploit the suffix links, which allow us to leverage the
matching work we have already done when inserting si−1. We
now sketch the construction algorithm below.

Suppose we have just inserted si−1 as a leaf child of node
αi−1; note that αi−1 is the only possibly new internal node
created during the insertion of si−1. Next, we want to insert
si into the suffix tree, and ensure that αi−1’s suffix link is
properly set up. To this end, we follow a series of up, across,
and down moves in the suffix tree. Suppose αi−1’s path label
is λu, where λ is a single character; note that u is a prefix
of si. First, we go up from αi−1 to its parent θ, whose path
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Fig. 3. An example of inserting a suffix

label is λu′, where u′ is a prefix of u. Then, following the
suffix link of θ, we go across to θ′, whose path label is u′.
Next, starting from θ′, we go down the tree, matching u−u′,
the substring of u that follows u′. We end up with node β
with path label u, to which we set the suffix link of αi−1. If
β does not currently exist in the tree, we create β by splitting
the edge right where the matching of u − u′ stops; we then
add si (which, as we recall, begins with u) as a child of β.
On the other hand, if β already exists in the tree, we continue
to go down the tree from β, matching si −u, the substring of
si that follows u, and insert si at the point where matching
stops; this process may create a new internal node. It can be
shown that this construction algorithm is linear in the size of
the string [8].

Fig. 3.b shows the suffix tree before inserting s7 of “abab-
babaab$.” The only new internal node in the tree now is α6

(the dark node). The path label for the dark node is “aba” and
u is “ba.” First, we go up from the dark node to its parent θ.
Then we follow the suffix link of θ and go across to θ′ (the
dotted node). Notice that we skip looking up the first “b” in
s7 by following the suffix link. Next, from the dotted node,
we go down the tree, matching the substring of u that follows
“b.” The matching stops in the middle of the edge with label
“ab” out from the dotted node, which leads to splitting the
edge and creating a new node β. In Fig. 3.c, β is the dark
node. We then insert the leaf corresponding to s7 as the child
of β. Finally, we set up the suffix link from α6 to β.

B. ST: The Suffix-Tree Matcher

ST starts by building a suffix tree T for q, the old page, as
described in Section V-A. Next, it inserts the suffixes of p, the
new page, one by one, into T , and reports each maximal old
region as soon as it is detected. To carry out this second step,
we make important extensions to both the insertion procedure
and the suffix tree structure. First, we augment suffix-tree
nodes with prefix links, which are crucial to finding old regions
efficiently. We also show how to set up these links during
construction. Second, we show how to detect maximal old
regions without introducing additional performance overhead.
We describe these two extensions next.

Finding Old Regions Using Prefix Links: By inserting s′i,
the i-th suffix of p, into T , we can easily find the longest
common prefix between s′i and any suffixes that have been
already inserted. Let hi denote this string, which corresponds
to node α′

i, the parent of the leaf corresponding to s′i. On
the other hand, what we are looking for, ri, is the longest
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common prefix between s′i and any suffix of q, the old page.
Unfortunately, ri may not be the same as hi, because the suffix
tree at this time additionally contains suffixes s′1, . . . , s

′
i−1 of

p, inserted earlier than s′i.
However, it is not difficult to see that ri must be a prefix

of hi, because hi by definition cannot be shorter than any
common prefix between s′i and suffixes of q. To find ri, we
need to locate the last node on the path from the root to α′

i

with at least one descendant leaf corresponding to a suffix of q.
Efficiently finding this node, which we denote by δi, turns out
to be quite tricky. One might think that we should encounter
δi as we go down T when inserting s′i. However, recall from
Section V-A that we use suffix links to avoid quadratic-time
construction; thus, we reach α′

i without starting from the root,
and possibly without passing through δi.

To ensure the efficiency of locating δi, we add a prefix link
for each node of T . The prefix link of node γ, denoted Lp(γ),
points to its lowest ancestor with at least one descendant leaf
corresponding to a suffix of q. If γ itself has at least one
descendant leaf corresponding to a suffix of q, we do not
explicitly store a prefix link, but we implicitly understand that
Lp(γ) points to γ itself.

We construct prefix links as follows. Suppose we have
created the suffix tree T for q. Then there are no explicit
prefix links yet (i.e., every node’s prefix link implicitly points
to itself) because every node leads to a suffix of q. Now, for
every new leaf γ we create (for a suffix of p), we let Lp(γ)
point to the same node as γ’s parent’s prefix link. For an
internal node γ created by splitting an edge pointing to node
γ′, if Lp(γ′) points to γ′ itself, we let Lp(γ) point to γ itself;
otherwise, we set Lp(γ) = Lp(γ′). For example, Fig. 4.(a)
shows the suffix tree for q = “ac$.” Fig. 4.(b) shows the prefix
links (in solid arrows) after we insert the first two suffixes of
p = “baabaaabaaaa$.” The black leaves are corresponding to
the suffixes of q. For those nodes which have a prefix link to
itself, we do not show the links.

With prefix links, we now show how to find the longest
common prefix between a suffix s′i of p and any suffix of
q, while inserting s′i into the suffix tree. After a leaf has
been created for s′i, we check the node δi pointed to by the
prefix link of the leaf’s parent. The path label of δi gives us
the largest possible old region matching a prefix of s′i. For
example, Fig. 4.(c) shows the state of the suffix tree before
we inserting s′9, the ninth suffix of p, “aaaa$.” We omit the
irrelevant part of the tree (in triangle) and links from the figure.
Following the standard suffix-tree construction algorithm, we
first use the suffix link (in dotted arrow) of the parent node of
α8 to go across to θ′. Then we go down the tree and match



Algorithm 1 ST
1: Input: old data page q, new data page p
2: Output: all maximal old regions R in p
3: T ⇐ buildSuffixTree(q)
4: //initialization
5: R ⇐ ∅
6: α′

0 ⇐ T.root
7: for each suffix s′

i of p do
8: //locate the node corresponding to the longest common prefix of s′

i and any
suffixes in T and set up the suffix link of α′

i−1
9: α′

i ⇐ longestCommonPrefix(s′
i,T ,α′

i−1)
10: if α′

i is a new node created by splitting an edge pointed to γ then
11: //set up the prefix link of α′

i
12: if Lp(γ) = γ then
13: Lp(α′

i) ⇐ α′
i

14: else
15: Lp(α′

i) ⇐ Lp(γ)
16: end if
17: end if
18: Insert leaf η′

i as a child of α′
i

19: Lp(η′
i) ⇐ Lp(α′

i)
20: //find ri, the longest common prefix of s′

i and any suffix of q, using prefix link
of α′

i
21: ri ⇐ p[i..i + pathLength(T.root, Lp(α′

i)) − 1]
22: //compare the ending positions of ri and ri−1 to check if ri is a maximal old

region
23: if ri.end > ri−1.end or i = 1 then
24: R ⇐ R

S{ri}
25: end if
26: end for

the substring of u = “aaa” that follows “aa.” The matching
stops in the middle of the edge with label “abaaaa$,” which
leads to splitting the edge and creating a new internal node α′

9

with path label “aaa.” The leaf for s′9 is then inserted below
α′

9. The prefix links of α′
9 and the leaf point to the same node

pointed to by the prefix link (in solid arrow) of leaf 5. We
then use the prefix link of α′

9 to find “a,” the longest common
prefix between s′9 and any suffix of q.

Detecting Maximal Old Regions: So far, we have seen
how to find, for each suffix of p, the longest common prefix
between it and all suffixes of q. However, these prefix matches
are not necessarily maximal old regions (cf. Definition 5).
Although such matches cannot be extended any further to the
right, it may be possible to extend them to the left. How do
we then find the globally maximal old regions?

We make two observations. First, any maximal old region
must be the longest common prefix between some suffix of p
and suffixes of q. The second observation is captured by the
following lemma:

Lemma 1. Let p[i − 1..j] be the longest common prefix between
s′i−1, the (i− 1)-th suffix of p, and any suffix of q. Let p[i..k] be the
longest common prefix between s′i and any suffix of q. Then, p[i..k]
is a maximal old region if and only if k > j.

The above observations lead to a simple, efficient method
for identifying all maximal old regions in a streaming fashion
while we process suffixes of p one by one. After processing
the i-th suffix of p and finding the longest common prefix ri

between it and q’s suffixes, we compare the end position of
ri with that of ri−1 (identified while processing the (i− 1)-th
suffix of p). As long as the end position has advanced, we
output ri as a maximal old region.

The complete psudocode for ST is listed in Algorithm 1.

Runtime Complexity: We conclude this section by stating
the complexity of our suffix-tree matching algorithm in the
following theorem. The dominating cost, in terms of both time
and space, comes from standard suffix tree construction. Our
implementation uses balanced search trees to manage parent-
child relationships in the suffix tree, which implies that an
additional time cost factor c = O(log A), where A is the size
of the alphabet. Other alternatives with c = O(1) also exist,
but we have found our implementation to work well when A is
very large. This is probably because suffix trees with balanced
search trees to manage parent-child relationships take smaller
space and thus lead to fewer cache misses.

Theorem 1. ST takes O((|p| + |q|)c) time and O(|p| + |q|) space,
where c is the cost of looking up a child of a node in the suffix tree.

VI. THE REUSER + EXTRACTION MODULE

Suppose Cyclex has selected a page matcher M (see
Section IV). We now describe how M works in conjunction
with the reuser and the extraction module to recycle mentions
and extract new ones. We face two key challenges. First, since
corpus snapshots often are large, we must handle disk-resident
data efficiently. Second, we must employ scope α and context
β to identify precise text regions from which it is “safe”
to copy mentions or to apply extractor E. To address these
challenges, we proceed in the following three steps.

1. Find Copy Regions: We begin by reading pages from
disk-resident Pn+1 in a sequential manner. For each page p,
we find q ∈ Pn which shares the same URL with p. (If no such
q exists, we simply apply extractor E to p.) Next, we apply
M to p and q (in memory) to find old regions (see Section
V).

Not all mentions in old regions (if we find any) are safe to
be copied. This is illustrated by the following example.

Example 5. Let q = “Dr. John Doe is a CS prof.”. Suppose extractor
E declares string n to be a person name if it is two capitalized words
preceded by “Dr. ”. Then E has context β = 3, and produces “John
Doe” as a mention of q. Now consider p = “John Doe is a CS
professor”. Suppose M declares o = “John Doe is a CS prof” to
be an old region of p. Then since “John Doe” is a mention (of q) in
o, we may think that it will also be a mention of p. However, this is
incorrect because applying E to p would produce no mention.

In general, we can copy a mention only if both the mention
(e.g., “John Doe”) and its context (e.g., “Dr.”) are contained
in an old region. Specifically, if p[c..c + k] is an old region
because it matches q[c′..c′+k], then we copy a mention m only
if it is contained in the region q[c′+β..c′+k−β]. We refer to
such regions, from which it is safe to copy mentions, as copy
regions. We now describe finding copy regions, distinguishing
two cases: disjoint old regions, and overlapping old regions.
• Old regions are disjoint: Let r1, . . . , rk be old regions of
p (discovered by matcher M ). We represent each ri as a tuple
(idp, idq, sp, sq, l), where idp and idq are IDs of p and q, sp

and sq are the start positions of the old region in p and q,
respectively, and l is the length of the old region.

Suppose old regions represented by r1, . . . , rk are disjoint.
Then we simply construct for each ri a copy region hi which
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is a tuple (idp, idq, s
′
p, s

′
q, l

′), where s′p = sp +β, s′q = sq +β,
and l′ = l − 2β. Next, we insert hi into a memory-resident
table H .
• Old regions are overlapping: In this case we extend
the above algorithm so that we copy each mention in the
overlapping regions only once. First, we construct a set of
copy region candidates by chopping β characters at both ends
of each old region, as we described in the disjoint case. Let
the resulting set of regions be r′1, . . . , r

′
k. This step gives us a

set of regions where we are sure that if a mention is contained
in one of those regions, it will be extracted by E from p, and
thus it can be safely copied. However, since regions r′1...r

′
k

can overlap, a mention can be contained in more than one
region and copied more than once. The following two steps
ensure that any mentions contained in at least one of r′1...r

′
k

will be copied exactly once.
Let a and b be two overlapping regions from r′1, . . . , r

′
k.

Then a corresponds to a copy region candidate p[i..j] and b
corresponds to another copy region candidate p[k..l] such that
i < k < j < l. Then we discard a and b and generate instead
the following regions: (1) regions c, d, e that corresponds to
p[i..k − 1], p[k..j], p[j + 1..l], respectively. These regions are
created so that we can avoid copying mentions in region d
twice. (2) regions f, g that corresponds to p[k−α..k+α], p[j−
α..j +α], respectively. These regions are created to catch any
mention that may cross the splitting points k and j and thus
is not contained in any of the above regions.

We insert the tuples corresponding to these regions into table
H . Fig. 5 shows the data flows of Cyclex for the step of
finding copying regions in phase I.

2. Find Extraction Regions & Apply Extractor E: Let
c1, . . . , ct be the copy regions of p, identified as in Step 1. We
now find extraction regions, those regions of p on which we
must apply extractor E, to ensure the correctness of Cyclex.

To obtain extraction regions, at a first glance, it appears that
we can simply remove copy regions from p. However it is not
difficult to construct examples where this would “remove too
much,” thus dropping mentions that we should have found for
p. In general, we can prove that if p[c..c+k] is an old region,
then it is safe to remove only region p[c+γ..c+k−γ], where
γ = 2β+α−1. We now describe finding extraction regions for
two cases: disjoint old regions, and overlapping old regions.
• Old regions are disjoint: Let R be the set of disjoint old

regions of p. We begin by initializing c, the start position of
the next extraction region, to 1. Then we scan regions of R
sequentially, in increasing value of their start positions. For
each r ∈ R, we create p[c..(r.sp − 1 + γ)] as an extraction
region. Then we update c = r.sp + r.l−γ. The last extraction
region ends at position |p|.
• Old regions are overlapping: In this case, the extraction
regions identified by the above algorithm might not be minimal
in the sense that if we remove some parts of the extraction re-
gions, we can still guarantee correctness of Cyclex. Hence,we
waste the time of applying E over the additional regions.

To ensure that an identified extraction region is not con-
tained in any old region, we extend the algorithm for disjoint
old regions case as follows. First, we repeatly concatenate any
two overlapping old regions p[i..j] and p[k..l] if the length of
the overlapping part is larger than γ. Without loss of generality,
suppose i < k < j < l. Since j − k ≥ γ + 1, the maximal
length of the β-context of any mention extracted by E, the
β-context of any mention across the two old regions p[i..j]
and p[k..l] is either contained in p[i..j] or p[k..l], and thus the
mention will be copied. Hence, we can ignore the adjacent
boundaries of p[i..j] and p[k..l] when identifying extraction
regions. We refer to the concatenated regions as super old
regions. Let the set of super old regions be R′. Any mention
such that both itself and its context is contained in a region
r′ ∈ R′ will be copied.

Next, we create a set of extraction regions to catch any
mention that will not be copied. For each r′ corresponding
to p[i..j] in R′, we create a removal region p[i + γ..j − γ].
Since the length of the overlapping part of any two regions
in R′ is at most γ, the removal regions created at this step
are disjoint. Let the set of removal regions be D. Finally, we
remove D form p and the remaining set of regions are the
extraction regions.

Once we have identified all extraction regions of a page
p, we apply extractor E to these regions. To guarantee cor-
rectness of Cyclex, among all extracted mentions, we only
retain those such that both the mentions and their contexts are
contained in an extraction region. We then insert the retained
mentions into a memory-resident table N . N is flushed to the
disk-resident table Mn+1 (which stores all mentions extracted
from Pn+1) whenever it is full. Fig. 5 shows the data flow of
Cyclex for the step of finding extraction regions and applying
extractor E in phase I.

3. Copy Mentions from Copy Regions: We repeat step
1 and step 2 until we have processed all pages p in Pn+1.
At this point, we have extracted mentions from all extraction
regions. We have also stored all copy regions (actually, only
the start- and end-positions of these regions, not the regions
themselves) in table H . Now we must copy to N any mention
that (a) exists in Mn (the IE result over the previous snapshot
Pn) and (b) can be found in a region stored in H .

Since Mn can be large, we assume it is on disk. Further-
more, since each application may want to store the mentions
in a particular order (for further processing, e.g., mention



disambiguation), we do not assume any particular order for
mentions in Mn. Rather, we proceed as follows. We perform
a sequential scan of Mn. For each mention m of Mn, we
immediately probe m against regions of table H (implemented
as a hash table, with key idq , sq and l). In case of a hit,
m appears in one of the copy regions, thus, we construct an
appropriate mention m′ of p (that correspond to m), then insert
m′ into table N . Fig. 5 shows the data flow of Cyclex for the
step of copying mentions in phase II.

The following theorem states the correctness of Cyclex:
Theorem 2 (Correctness of Cyclex). Let Mn+1 be the set of
mentions obtained by applying extractor E from scratch to snapshot
Pn+1. Then Cyclex is correct in that when applied to Pn+1 it
produces exactly Mn+1.

VII. THE COST-BASED MATCHER SELECTOR

We now describe how the matcher selector employs a cost
model to select the best matcher (one that minimizes Cyclex’s
runtime).

Our cost model captures the three execution steps of
Section VI. We model the elapsed time of each step as a
weighted sum of I/O and CPU costs. The weights are measured
empirically, allowing us to account for varying execution
characteristics across steps, implementations, and platforms.
With the weights, we can reasonably capture completion times
of highly tuned implementations that overlap I/O with CPU
computation (in this case, the dominated cost component will
be completely masked and therefore have weight 0) as well
as simple implementations that do not exploit parallelism.

Let m be the number of pages in Pn+1, mb be the total size
of Pn+1 on disk (in blocks), and l be the average page size
(in bytes). Let n be the number of mentions in the previous
mention table Mn, and nb be the total size of Mn on disk
(in blocks). Let b be the number of buckets in the in-memory
hash table H (cf. Section VI). We model the completion time
of a Cyclex plan on Pn+1 as:

ŵ1,IO · mb · f̂ + ŵ1,mat · m · l · f̂ + ŵ1,ex · m · l · f̂ · ĝ (1)

+ŵ2,IO · nb + ŵ2,find · n · m · f̂ · ĥ
b

(2)

+ŵ3,IO · mb(1 − f̂) + ŵ3,ex · m · l · (1 − f̂), (3)

where f̂ is the fraction of pages in Pn+1 with a match in
Pn; ĝ measures, on average, what fraction of the text within
a matched page still needs re-extraction; and ĥ is the average
number of tuples inserted into hash table H per matched page.
The ŵ’s are weights, whose numeric subscripts reflect which
phases incur the associated costs.

Line (1) models the completion time of the first execution
step. This includes I/O cost of reading in matching pages
from Pn+1 and Pn, CPU cost of matching the pairs of pages
to identify copy regions, and the CPU cost of applying E
to extraction regions. Line (2) models the second step. This
includes I/O cost of reading in Mn, and CPU cost of probing
H to determine whether to copy each mention. The term m·f̂ ·ĥ

b
estimates the number of hash table entries per bucket. Finally,
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Fig. 6. Data sets and extractors for our experiments

Line (3) models I/O cost of reading in unmatched pages in
Pn+1, and CPU cost of applying E to them. In all three steps,
we ignore the cost of writing out mentions in Pn+1, since this
cost is the same for all matcher choices.

As a special case for DN, which simply runs E over the
entire Pn+1, Lines (1) and (2) are always 0, and f̂ = 0 on
Line (3). For UD and ST, f̂ is the same. In general, however,
the hatted parameters f̂ , ĝ, ĥ, and ŵ’s need be estimated, and
their values may differ across alternatives. On the other hand,
unhatted parameters do not need to be estimated, because
their exact values are directly available from either the corpus
metadata (for m, mb, l, n, and nb) or the execution context
(for b).

We estimate the parameters using a small sample S of Pn

as well as the past k snapshots, for a pre-specified k. For space
reasons, we do not discuss parameter estimation further, but
refer the reader to the full paper that is available online [6].
Section VIII demonstrates empirically that small |S| and k
are sufficient for our applications of Cyclex, meaning that
parameter estimation and cost-based plan selection adds very
little overhead to the overall cost.

VIII. EMPIRICAL EVALUATION

We now empirically evaluate the utility of Cyclex. Fig. 6 de-
scribes two real-world data sets and six extractors used in our
experiments. DBLife consists of 30 consecutive one-day snap-
shots from DBLife system [18], and Wikipedia dataset con-
sists of 20 consecutive snapshots obtain from Wikipedia.com.
The DBLife extractors extract mentions of academic entities
and their relationships, and the three Wikipedia extractors
extract mentions of entertainment entities and relationships
(see the figure).

We obtained extractor scopes and contexts by analyzing
the extractors. For example, “talk” extractor detects speakers,
time and topics by matching a set of regular expressions. The
length of extraction context for these attribute is 0. Then “talk”
detects location attribute by (a) detecting a set of keywords
such as “Location: ,” “Room: ” etc., and (b) extracting 1-2
capitalized words immediately following the detected keyword
as the location. We thus set the context β of “talk” to be the
maximal length of all keywords.

Runtime Comparison: For each of the above six extraction
tasks, Fig. 7 shows the runtime of Cyclex vs. DNplan, STplan,
and UDplan, three plans that employ matchers DN, ST, and
UD, respectively, over all consecutive snapshots (the X axis).
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The runtimes of DNplan are significantly higher than those of
the other three plans. Hence, to clearly show the differences
in the runtimes among all plans in one figure, we only plot
the curves of STplan, UDplan, and Cyclex, and summarize
the trends of the curves of DNplan. Note that for each
snapshot, Cyclex employs a cost model to pick and execute the
best among the above three plans. Cyclex’s runtime includes
statistic collection, optimization, and execution times.

The results show that in all cases except “actor,” UDplan,
STplan, and Cyclex drastically cut runtime of DNplan (which
always applies extraction from scratch to the current snapshot),
by 50-90%. This suggests that recycling past IE efforts can be
highly beneficial.

Next, the results show that none of DNplan, STplan, and
UDplan is uniformly better than the others. For example, for
“actor,” where the changes between two consecutive snapshots
are substantial and the extraction cost is fairly low, DNplan
outperforms UDplan and STplan. In contrast, for “play” and
“award,” where the change of data is still substantial but
extraction is very expensive, STplan is the winner. For DBLife
cases, where the consecutive snapshots change little and
matching regions detected by UD and ST are quite similar,
UDplan is the winner.

The above results underscore the importance of optimization
to select the best plan for a particular extraction situation.
They also show that Cyclex handles this optimization well.
It successfully picks the fastest plan in all six cases, while
incurring only a modest overhead of 4-13% the runtime of the
fastest plan.

Contributions of Components: Fig. 8 shows the decompo-
sition of runtime of various plans (numbers in the figure are
averaged over five random snapshots per IE task). “Match”
is time to match pages, “Extraction” is time to apply IE,
“Copy” is time to copy mentions, “Opt” is optimization time
of Cyclex, and “Others” is the remaining time (to read file
indices, doing scoping, etc.).

The results show that matching and extracting dominate
runtimes, hence we should focus on optimizing these com-
ponents. The suffix-tree matcher ST clearly spends more time
finding old regions than the Unix-diff matcher UD. However,
the figure shows that this effort clearly pays off in certain
cases, such as “play” and “award,” where IE is expensive and
the consecutive snapshots change substantially. Here, STplan
saves significant time avoiding IE. Finally, the results show
that the overhead of Cyclex (statistic collection, etc.) remains
insignificant compared to the overall runtime.

We also found that DNplan (i.e., applying IE from scratch)
incurs very little IO time in most tasks (less than 3% of total
runtimes, numbers not shown due to space reasons) Thus, it
is important to optimize CPU time, as we do in this work.

Sensitivity Analysis: Finally, we examined the sensitivity of
Cyclex wrt the main input parameters: k and |S|, the number
of snapshots and size of sample used in statistic estimation,
and the scope and context values.

Fig. 9.a plots the “accuracy” of Cyclex as a function of k,
where “accuracy” is the fraction of snapshots where Cyclex
picks the correct (i.e., fastest) plan. We show results for
“affiliation” and “play” only, results for other IE tasks show
similar phenomenons.

Fig. 9.b-d plots the “accuracy” of Cyclex in a similar
fashion against changes in the sample size |S|, scope α, and
context β, respectively.

The results show that Cyclex only needs a few recent
snapshots (3) and a small number of sample size (30 pages)
to do well. Regarding scope and context, the results show that
for “affiliation,” Cyclex performs well even when we increased
α and β significantly, by 5 and 100 times, respectively. For
“play,” Cyclex performs well until α was increased by 4 times.
As α increases, the difference between the fastest plan, STplan,
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and the second fastest plan, UDplan, becomes smaller and
smaller, thus causing the optimizer to mistakenly select the
second fastest plan on certain snapshots.

In the final experiment, Fig. 10 shows the runtime ratio of
STplan and UDplan as a function of α and β. The runtime ratio
is the ratio of the runtime of these plans over the runtime of
DNplan. The results show that this ratio changes only slowly,
as we increase α and β. This suggests that a rough estimation
of α and β does increase the runtime of the various plans, but
only in a graceful fashion.

IX. CONCLUSIONS & FUTURE WORK

A growing number of real-world applications must deal with
IE over dynamic text corpora. We have shown that executing
such IE in a straightforward manner is very expensive, and
have developed Cyclex, an efficient solution that recycles
past IE results. As far as we know, Cyclex is the first in-
depth solution in this direction. It opens up several interesting
research directions that we are planning to pursue. These
include (a) how to handle multiple extractors, in these cases
it is yet unclear how to extract copy and extraction regions of

a page, and (b) how to handle extractors that extract mentions
across multiple pages.
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