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Abstract

Most current information extraction (IE) approaches
have considered only static text corpora, over which we typ-
ically have to apply IE only once. Many real-world text cor-
pora however are dynamic. They evolve over time, and to
keep extracted information up to date, we often must apply
IE repeatedly, to consecutive corpus snapshots. We describe
Cyclex, an approach that efficiently executes such repeated
IE, by recycling previous IE efforts. Specifically, given a
current corpus snapshotU , Cyclex identifies text portions
of U that also appears in the previous corpus snapshotV .
SinceCyclex has already executed IE overV , it can now
recycle the IE results of these parts, by combining these re-
sults with the results of executing IE over the remaining
parts ofU , to produce the complete IE results forU . Re-
alizingCyclex raises many challenges, including modeling
information extractors, exploring the trade-off between run-
time and completeness in identifying overlapping text, and
making informed, cost-based decisions between redoing IE
from scratch and recycling previous IE results. We describe
initial solutions to these challenges, and experiments over
two real-world data sets that demonstrate the utility of our
approach.

1 Introduction
Over the past decade, the problem of information extrac-

tion (IE) has received significant attention. Given atext cor-
pus (e.g., a collection of emails, Web pages, etc.), many
effective solutions have been developed to extract informa-
tion from the corpus, and much progress has been made
[20, 5, 2].

Most of these IE solutions have considered onlystatic
text corpora, over which we typically have to apply IE only
once. In practice, however, text corpora often aredynamic,
in that documents are added, deleted, and modified. They
evolve over time, and to keep extracted information up to
date, we often must apply IErepeatedly, to consecutive cor-
pus snapshots. Consider for exampleDBLife, a structured
portal for the database community that we have been devel-
oping [15]. DBLife operates over a text corpus of 10,000+
URLs. Each day it recrawls these URLs to generate a 120+

MB corpus snapshot, then applies IE to this snapshot to find
the latest community information (e.g., which database re-
searchers have been mentioned where in the past 24 hours).
As another example, the Impliance project at IBM Almaden
seeks to build a system that manages all information within
an enterprise [18]. This system must regularly recrawl the
enterprise intranet, then apply IE to the recrawled data to
infer the latest information. See [8, 9, 12, 21] for other ex-
amples of dynamic text corpora.

Despite their pervasiveness, no satisfactory solution ex-
ists currently for IE over dynamic text corpora. Given such
a corpus, the common solution is to apply IE to each corpus
snapshotin isolation, from scratch. This solution is simple,
but highly inefficient, with limited applicability. For exam-
ple, in DBLife reapplying IE from scratch takes 8+ hours
each day, leaving little time left for higher-level data anal-
ysis. As another example, time-sensitive applications (e.g.,
stock, auction, intelligence analysis) often want to refresh
information quickly, by recrawling and reextracting, say,
every 30 minutes. In such cases applying IE from scratch
is inapplicable if it already takes more than 30 minutes. Fi-
nally, this solution is ill-suited forinteractive debuggingof
IE applications over dynamic corpora, because such debug-
ging often requires applying IE repeatedly to multiple cor-
pus snapshots. Thus, given the growing need for IE over
dynamic text corpora, it has now become crucial to develop
efficient IE solutions for these settings.

In this paper we presentCyclex (Recycling extraction),
such a solution. The key idea underlyingCyclex is to re-
cycle previous IE results, given that consecutive snapshots
of a text corpus often contain much overlapping data. The
following example illustrates this idea:

Example 1.1. Consider a tiny corpus of a single URL that lists
project meetings. Figure 1 shows a snapshot of this corpus, which
is just a single data pagep (of the above URL), crawled today.
Suppose that we have applied an extractorE to this snapshot, to
extract the tuple (CS 105,2pm) which specifies a meeting. Suppose
tomorrow we crawl the above URL to obtain another corpus snap-
shot, which is the pageq shown in Figure 1. Then to extract meet-
ings fromq, current solutions would apply extractorE to q from
scratch, and produce tuples (CS 105,2pm) and (CS 310,4pm).

In contrast,Cyclex tries to recycle the IE results ofp. Specifi-
cally, it starts by “matching”q with p, to find text regions ofq that
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Figure 1. Two pages of the same URL, retrieved at dif-
ferent times.

also appear inp. Suppose it finds two regionsv1 andv2 of q that
also appear asu1 andu2 of p, respectively (see Figure 1).Cyclex
then does not applyE to v1 andv2, but copies over the mentions
of u1 andu2 instead.Cyclex appliesE only tov3, the sole region
of q that does not appear inp. The savings then come from not
having to applyE to the entire pageq.

While appealing, realizing the above idea raises difficult
challenges. The first challenge is that we cannot simply just
copy mentions over, e.g., from regionsu1 andu2 of page
p to v1 andv2 of pageq, as discussed in Example 1.1. To
see why, suppose extractorE is such that it only extracts
meetings if a page has fewer than five lines (otherwise it
produces no meetings). Then none of the mentions of page
p can be copied over to pageq, which has more than five
lines. In general, which mentions can be copied “safely”
depends on certain properties of extractorE. Thus, we must
model certain properties of extractorE, so that we can (a)
exploit these properties to reuse certain mentions, and (b)
prove that reusing will produce the same set of mentions as
applying IE from scratch. In this paper we define a small
set of such properties, show that many practical extractors
exhibit these properties (see Section 3), and develop incre-
mental re-extraction techniques by exploiting these proper-
ties.

Our second challenge is how to “match” two pages, e.g.,
p andq in Example 1.1, to find overlapping text regions.
We first developST, a powerful suffix-tree based matcher,
and prove that this matcher achieves the most complete re-
sult, i.e., finds all largest possible overlapping regions.We
then show that an entire spectrum of matchers exists, with
matchers trading off the completeness of the result for run-
time efficiency (see Section 5). Since no matcher is always
optimal, we provideCyclex with a set of alternative match-
ers (more can be added easily), and a way to select a good
one, as discussed below.

Since dynamic text corpora can easily contain tens of
thousands or millions of data pages, we must also develop
efficient solutions for reusing mentions and applying extrac-
tor E to non-overlapping text, in the presence of a large
amount of disk-resident data. We must also consider how to
efficiently interleave these steps with the step of matching
data pages (see Section 6).

Finally, addressing the above challenges results in a
space of execution plans, where the plans differ mainly on
the page matcher employed. Thus, in the final challenge we

must develop a cost model and use it to select the optimal
plan. Unlike RDBMS settings, our cost model is extraction-
specific. In particular, it tries to model the rate of change of
the text corpus, and the run time and result size of extractors
and matchers, among others (see Section 7).

In summary, we make the following contributions:

• We show that it is possible to exploit past IE work to
significantly speed up IE over evolving text. As far as
we know,Cyclex is the first solution to this important
problem.

• We show how to model certain common properties of
information extractors and how to exploit these prop-
erties to reuse past IE and to guarantee the correctness
of our approach.

• We show that a natural tradeoff exists for finding over-
lapping text regions. We examine the spectrum of
choices and develop a powerful suffix-tree based so-
lution.

• We show how to estimate cost for each of the points
in the spectrum, to find an IE plan with minimal esti-
mated time.

• We conduct extensive experiments over two real-world
data sets that demonstrate the utility of our approach.

2 Related Work
The problem of information extraction has received

much attention (see [20, 5, 2] for recent tutorials). The main
focus so far has been on improving the accuracy and run-
time of information extractors. But recent work has also
started to consider how to manage such extractors in large-
scale IE-centric applications [5, 2]. Our work fits into this
emerging direction, which is described in more detail in [2].

While we have focused on IE overunstructured text, our
work is related to wrapper construction, the problem of in-
ferring a set of rules (encoded as a wrapper) to extract in-
formation fromtemplate-based Web pages. Since wrappers
can be viewed as extractors (as defined in Section 3), our
techniques can potentially also apply to wrapper contexts.
In this context, the knowledge of page templates may help
us develop even more efficient IE algorithms.

Our work is also related to the problem of wrapper main-
tenance over evolving Web data (e.g., [17]). The focus
there, however, is on how to repair a wrapper (i.e., an ex-
tractor) so that it continues to extract semantically correct
data, as the underlying page template changes. In contrast,
we focus on efficiently reusing past extraction efforts to re-
duce the overall extraction time.

The problem of finding overlapping text regions is re-
lated to detecting duplicated Web pages. Many algorithms
have been developed in this area (e.g., [4, 10, 14]). But
when applied to our context they do not guarantee to find



all largest possible overlapping regions, in contrast to the
suffix-tree based algorithm developed in this work.

Once we have extracted entity mentions, we can perform
additional analysis, such as mention disambiguation (a.k.a.
record linkage, e.g., [13]). Thus, such analyses are higher
level and orthogonal to our current work.

Finally, optimizing IE programs and developing IE-
centric cost models have also been considered in several
recent papers [19, 16, 3]. These efforts have only consid-
ered static corpora.

3 Problem Definition

Data Sources, Pages, & Corpus Snapshots: Let S =
{S1, . . . , Sn} be a set ofdata sourcesconsidered by an
applicationA. We assume thatA crawls these sources at
regular intervals to retrieve sets ofdata pages. For exam-
ple,DBLife considers 10,000+ data sources, each specified
with a URL, and crawls these URLs (each to a pre-specified
depth) each day to retrieve a set of 14,000+ Web pages. We
will refer to Pi — the set of data pages retrieved at timei
— as thei-th snapshotof the evolving text corpusS.

Entities, Attributes, & Mentions: Data pages often men-
tion entities, which are real-world concepts, such as person,
paper, and meeting. We represent each entity typee with
a set ofattributesa1, . . . , ak, which can be atomic (e.g.,
meeting room) or set-valued (e.g., topics).

Given a data pagep, we refer to a consecutive sequence
of characters inp as astring, or atext fragment, or aregion
(we will use these notions interchangeably). We usep[i..j]
to denote the strings that starts with thei-th character and
ends with thej-th characters ofp. In this case, we will also
says.start = i ands.end = j.

A mentionof an atomic (set-valued) attributea is then a
string inp (a set of strings inp) that refers toa. We can now
define

Definition 1 (Entity mention). Let p be a data page, and
a1, . . . , ak be the attributes of an entity typee. Then a mention
of an instance of entity typee is a tuplem = (m1, . . . , mk),
where eachmi, i ∈ [1, k], is either a mention ofai in pagep,
or the special value “nil”, indicating that a mention ofai cannot
be extracted fromp. We also definem.start = mink

i=1 mi.start

andm.end = maxk
i=1 mi.end.

Example 3.1. Suppose the entity type “meeting” has three at-
tributes: room, time, and topics. Then tuple (CS 310, 4pm,
{CIM,IR}) is a mention of “meeting” in pageq of Figure 1. String
s = “CS 310” (wheres.start = 25 ands.end = 30) is a mention
of attribute “room”. “4pm” is a mention of “time”, and the setof
strings{“CIM”,“IR” } is a mention of “topics”.

Extractors: Real-world IE applications extract mentions
of one or multiple entity types from data pages. As a first
step, in this paper we consider extracting mentions of a sin-
gle entity typee (e.g., meeting). To extract such mentions,

current applications usually employ an extractorE which
is typically a learning-based program, or a set of extraction
rules encoded in, say, a Perl script [2]. We assume thatE
extracts mentions fromeach data page in isolation, e.g., ex-
tracting meetings as in Figure 1. Such per-page extractors
are pervasive (e.g., constituting 94% of extractors in the cur-
rent DBLife, see [2, 19] for many examples). Hence, we
start with such extractors, leaving more complex extractors
(e.g., those that extract mentions that span multiple pages)
for future work. We can now define extractors considered
in this paper as follows:

Definition 2 (Extractors). Let a1, . . . , ak be the attributes of an
entity typee. Then an extractorE : p → M takes as input a data
pagep and produces as output a setM of mentions ofe in pagep,
where each mention is of the form(m1, . . . , mk) as described in
Definition 1.

Modeling Properties of Extractors: Recall from the in-
troduction that we must model certain properties of extrac-
tors, so that we can reuse mentions and prove the correct-
ness of our algorithm. We now describe two such proper-
ties: scopeandcontext. To motivate scope, we observe that
attribute mentions of an entity often appear inclose prox-
imity in text pages. Consequently, an extractor often starts
by extracting attribute mentions, then combines the men-
tions and prunes those combinations that span more than a
maximal lengthα.

Example 3.2. Suppose we applyE to pageq in Figure 1 to extract
(room,time).E may start by extracting all room mentions: “CS
310”, “CS 105”, then all time mentions: “4pm”, “2pm”.E then
pairs room and time mentions, and prunes pairs that are not found
within, say, a length of 100 characters. Thus,E returns only the
pairs (CS 310,4pm) and (CS 105,2pm).

Thus, we can formalize the notion of scope as follows:

Definition 3 (Extractor scope). An extractorE has scopeα iff for
any mentionm produced byE we have (m.end−m.start) < α.

To motivate context, we observe that when extracting
mentions, many extractors examine only small “context
windows” to both sides of a mention, as the following ex-
ample illustrates:

Example 3.3. Let E be an extractor for (room,time,topics). Sup-
poseE extracts room mentions using a regular expression, e.g.,
“CS\s∗\d{3}” (“CS” followed by zero or more space characters
and then followed by a 3-digit number). Then the context window
for room mentions has size 0. That is, onceE has extracted a
room mention such asm = “CS 310” (see Figure 1), no matter
how we perturb the text surroundingm, E would still returnm

as a valid room mention. Now supposeE produces stringX as a
topic if (a)X matches a pre-defined word (e.g., “IR”), and (b) the
word “discuss” or “topic” occurs within a 30-character distance,
either to the left or to the right ofX. Then we say that the context
of topic mentions is 30 characters. That is, onceE has extracted
X as a topic, then no matter how we perturb the text outside a 30-
character window ofX (on both sides),E would still recognizeX
as a valid topic mention.
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Figure 2. TheCyclex architecture.

Let m be a mention produced by an extractorE in page
p. Then we formalize the notion of context as follows:

Definition 4 (β-context of mention). The β-context ofm (or
context for short when there is no ambiguity) is the string
p[(m.start − β)..(m.end + β)], i.e., the string ofm being ex-
tended on both sides byβ characters.

Definition 5 (Extractor context). Let p′ be a page obtained from
pagep by perturbing the text ofp outside theβ-context ofm (e.g.,
by deleting, inserting, replacing characters). Then we sayextrac-
tor E has a contextβ iff for any m andp′ obtained as described
above, applyingE to p′ still producesm as a mention.

We assume that each extractorE comes with a scopeα
and a contextβ. These values can be supplied by whoever
implementingE or knowing howE works (e.g., the appli-
cation builder, after examiningE’s description or code). As
we show in the experiments,α and β do not have to be
“tight” in order for us to benefit from recycling IE results.
However, the “tighter” (i.e., smaller) these values are, the
larger the benefits.

Problem Definition: We can now describe our problem
as follows. LetP1, . . . , Pn be consecutive snapshots of a
text corpus,E be an extractor with scopeα and context
β, and M1, . . . , Mn be the set of mentions extracted by
E from P1, . . . , Pn, respectively. LetPn+1 be the corpus
snapshot immediately followingPn. Then develop a solu-
tion to extract the set of mentionsMn+1 from Pn+1 in a
minimal amount of time, by utilizingP1, . . . , Pn, α, β, and
M1, . . . , Mn. In the rest of the paper we describeCyclex,
our solution to this problem.

4 The Cyclex Solution Approach
To describeCyclex, we begin with two notions:

Definition 6 (Old region & maximally old region). A regionr in
a data pagep of snapshotPn+1 is an old region if it occurs in a
pageq of snapshotPn. r is a maximally old region if it cannot be
extended on either side and still remains an old region.

To extract mentions fromPn+1, Cyclex then considers each
pagep in Pn+1 and “matches”, i.e., comparesp with pages
in Pn, to find old regions ofp. It then applies extractorE
only to the new regions ofp, and copies over the mentions
of the old regions.

Since pages retrieved (in consecutive snapshots) from
the same URL often share much overlapping data, to find

old regions ofp, Cyclex currently matchesp only with q,
the page inPn that shares the same URL withp. (If q does
not exist, thenCyclex declares thatp has no old regions.)
Section 8 shows that the choice of matching pages with the
same URL already significantly reduces IE time. Consider-
ing more complex choices (e.g., matchingp with all pages
in Pn) is an ongoing research.

We call algorithms that matchp andq to find old regions
in p page matchers. Sections 5 shows that such matchers
span an entire spectrum, trading off result completeness for
runtime, and that no matcher is always optimal. For exam-
ple, theST matcher described below returns all maximally
old regions, thus providing the most opportunities for recy-
cling past IE results. But it may also incur more runtime
than matchers that return only some old regions. So, a pri-
ori we do not know if it would be better than these other
matchers.

The above result leads to theCyclex architecture in Fig-
ure 2. Given snapshotPn+1, the matcher selector employs a
cost model (that utilizes statistics computed over the pastw
snapshots) to select a page matcher from a library of match-
ers. The page matcher then finds old regions of pages in
Pn+1. Next, the extraction module applies extractorE to
new regions of pages inPn+1, and the reuser copies over
mentions of the old regions.Cyclex then combines the re-
sults of both the extraction module and the reuser to produce
the final IE result forPn+1. The next three sections de-
scribe the matchers, the reuser and extraction module, and
the matcher selector in detail.

5 The Page Matchers
Recall from Section 4 that a page matcher compares

pagesp andq to find old regions ofp. We have provided
the currentCyclex with three page matchers:DN, UD, and
ST (more matchers can be easily plugged in as they become
available). DN incurs zero runtime, as it immediately de-
clares that pagep has no old region.Cyclex with DN thus
is equivalent to applying IE from scratch toPn+1.

UD employs an Unix-diff-command like algorithm [11],
which splits pagesp andq into lines, then employs a heuris-
tic to find common lines. Thus,UD is relatively fast (takes
time linear in |p| + |q|), but finds only some old regions.
We omit further description for space reason, but refer the
reader to [11].

ST is a novel suffix-tree based matcher that we have de-
veloped, which findsall maximal old regionsof p using time
linear in |p| + |q|. ST andDN thus represent the two ends
of a spectrum of matchers that trade off the result complete-
ness for runtime efficiency, whileUD represents an inter-
mediate point on this spectrum.

In the rest of this section we describeST in detail.
Roughly speaking,ST inserts all suffixes ofq andp into
one suffix treeT [7]. As we insert each suffix ofp, T helps
us identify the longest prefix of this suffix that also appears



in q. To realize this intuition, however, we must handle a
number of intricacies, so that we can locate all maximal old
regions without slowing downST to quadratic time.

5.1 Suffix Tree Basics

The suffix tree for a stringq is a treeT with |q| leaves,
each describing a suffix ofq. T must satisfy the followings:
(1) Each non-root internal node has at least two children.
(2) Each edge is labeled with a nonempty substring ofq, and
no two edges out of a node can have labels beginning with
the same character. (3) Thepath labelof a node is the con-
catenation of all edge labels on the path from the root to this
node; each suffix ofq corresponds to the path label of a leaf.
(4) Each non-root internal node with path labelλu (where
λ is a single character andu is a string) hasa suffix linkto
the node with path labelu; the root has a suffix link to itself.
Figure 3(a) shows the suffix tree for “ababbabaab$,” where
symbol $ terminates the string. Suffix links are showed as
dotted lines.

To construct a suffix tree forq, we insert all suffixes of
q one by one into an initially empty tree. For example,
the suffixes of “ababbabaab$” are “ababbabaab$,” “bab-
babaab$,” “abbabaab$,”. . ., “b$.” Let si denoteq[i..|q|],
thei-th suffix of q. Conceptually, to insertsi, we first look
up si, matchingsi against edge labels as we go down the
tree until no more characters can be matched. If lookup
stops at a node, we insertsi as a leaf below that node; if
lookup stops in the middle of an edge, we add a new node
to split the edge right before the point where it diverges from
si, and then insertsi as a leaf of the new node.

Unfortunately, if we insert everysi by starting the lookup
from the root, we would end up with a quadratic-time algo-
rithm. The secret to more efficient suffix-tree construction
is to exploit the suffix links, which allow us to leverage the
matching work we have already done when insertingsi−1.
We now sketch the construction algorithm below.

Suppose we have just insertedsi−1 as a leaf child of node
αi−1; note thatαi−1 is the only possibly new internal node
created during the insertion ofsi−1. Next, we want to in-
sertsi into the suffix tree, and ensure thatαi−1’s suffix link
is properly set up. To this end, we follow a series ofup,
across, anddown moves in the suffix tree. Supposeαi−1’s
path label isλu, whereλ is a single character; note thatu
is a prefix ofsi. First, we goup from αi−1 to its parentθ,
whose path label isλu′, whereu′ is a prefix ofu. Then,
following the suffix link of θ, we goacrossto θ′, whose
path label isu′. Next, starting fromθ′, we godown the
tree, matchingu−u′, the substring ofu that followsu′. We
end up with nodeβ with path labelu, to which we set the
suffix link of αi−1. If β does not currently exist in the tree,
we createβ by splitting the edge right where the matching
of u − u′ stops; we then addsi (which, as we recall, begins
with u) as a child ofβ. On the other hand, ifβ already exists
in the tree, we continue to godown the tree fromβ, match-
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Figure 3. An example of inserting a suffix.

ing si − u, the substring ofsi that followsu, and insertsi

at the point where matching stops; this process may create
a new internal node. It can be shown that this construction
algorithm is linear in the size of the string [7].

Example 5.1. Figure 3.b shows the suffix tree before insertings7

of “ababbabaab$”. The only new internal node in the tree now
is α6 (the dark node). The path label for the dark node is “aba”
and u is “ba”. First, we go up from the dark node to its parent
θ. Then we follow the suffix link ofθ and goacross to θ′ (the
dotted node). Notice that we skip looking up the first “b” ins7

by following the suffix link. Next, from the dotted node, we go
down the tree, matching the substring ofu that follows “b”. The
matching stops in the middle of the edge with label “ab” out from
the dotted node, which leads to splitting the edge and creating a
new nodeβ. In Figure 3.c,β is the dark node. We then insert the
leaf corresponding tos7 as the child ofβ. Finally, we set up the
suffix link fromα6 to β.

5.2 ST: The Suffix-Tree Matcher

ST starts by building a suffix treeT for q, the old page,
as described in Section 5.1. Next, it inserts the suffixes ofp,
the new page, one by one, intoT , and reports each maximal
old region as soon as it is detected. To carry out this second
step, we make important extensions to both the insertion
procedure and the suffix tree structure. First, we augment
suffix-tree nodes withprefix links, which are crucial to find-
ing old regions efficiently. We also show how to set up these
links during construction. Second, we show how to detect
maximalold regions without introducing additional perfor-
mance overhead. We describe these two extensions next.

Finding Old Regions Using Prefix Links: By inserting
s′i, thei-th suffix ofp, intoT , we can easily find the longest
common prefix betweens′i and any suffixes that have been
already inserted. Lethi denote this string, which corre-
sponds to nodeα′

i, the parent of the leaf corresponding to
s′i. On the other hand, what we are looking for,ri, is the
longest common prefix betweens′i and any suffix ofq, the
old page. Unfortunately,ri may not be the same ashi, be-
cause the suffix tree at this time additionally contains suf-
fixess′1, . . . , s

′
i−1 of p, inserted earlier thans′i.

However, it is not difficult to see thatri must be a pre-
fix of hi, becausehi by definition cannot be shorter than
any common prefix betweens′i and suffixes ofq. To find
ri, we need to locate the last node on the path from the
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root to α′
i with at least one descendant leaf corresponding

to a suffix ofq. Efficiently finding this node, which we de-
note byδi, turns out to be quite tricky. One might think
that we should encounterδi as we go downT when insert-
ing s′i. However, recall from Section 5.1 that we use suffix
links to avoid quadratic-time construction; thus, we reach
α′

i without starting from the root, and possibly without pass-
ing throughδi.

To ensure the efficiency of locatingδi, we add aprefix
link for each node ofT . The prefix link of nodeγ, denoted
Lp(γ), points to its lowest ancestor with at least one de-
scendant leaf corresponding to a suffix ofq. If γ itself has
at least one descendant leaf corresponding to a suffix ofq,
we do not explicitly store a prefix link, but we implicitly
understand thatLp(γ) points toγ itself.

We construct prefix links as follows. Suppose we have
created the suffix treeT for q. Then there are no explicit
prefix links yet (i.e., every node’s prefix link implicitly
points to itself) because every node leads to a suffix ofq.
Now, for every new leafγ we create (for a suffix ofp), we
let Lp(γ) point to the same node asγ’s parent’s prefix link.
For an internal nodeγ created by splitting an edge point-
ing to nodeγ′, if Lp(γ

′) points toγ′ itself, we letLp(γ)
point to γ itself; otherwise, we setLp(γ) = Lp(γ

′). For
example, Figure 4.(a) shows the suffix tree forq = “ac$”.
Figure 4.(b) shows the prefix links (in solid arrows) after
we insert the first two suffixes ofp = “baabaaabaaaa$”.
The black leaves are corresponding to the suffixes ofq. For
those nodes which have a prefix link to itself, we do not
show the links.

With prefix links, we now show how to find the longest
common prefix between a suffixs′i of p and any suffix ofq,
while insertings′i into the suffix tree. After a leaf has been
created fors′i, we check the nodeδi pointed to by the pre-
fix link of the leaf’s parent. The path label ofδi gives us
the largest possible old region matching a prefix ofs′i. For
example, Figures 4.(c) shows the state of the suffix tree be-
fore we insertings′9, the ninth suffix ofp, “aaaa$.” We omit
the irrelevant part of the tree (in triangle) and links from
the figure. Following the standard suffix-tree construction
algorithm, we first use the suffix link (in dotted arrow) of
the parent node ofα8 to goacrossto θ′. Then we godown
the tree and match the substring ofu = “aaa” that follows
“aa”. The matching stops in the middle of the edge with
label “abaaaa$”, which leads to splitting the edge and creat-

ing a new internal nodeα′
9 with path label “aaa”. The leaf

for s′9 is then inserted belowα′
9. The prefix links ofα′

9 and
the leaf point to the same node pointed to by the prefix link
(in solid arrow) of leaf 5. We then use the prefix link ofα′

9

to find “a,” the longest common prefix betweens′9 and any
suffix of q.

Detecting Maximal Old Regions: So far, we have seen
how to find, for each suffix ofp, the longest common pre-
fix between it and all suffixes ofq. However, these prefix
matches are not necessarily maximal old regions (cf. Defi-
nition 6). Although such matches cannot be extended any
further to the right, it may be possible to extend them to the
left. How do we then find the globally maximal old regions?

We make two observations. First, any maximal old re-
gion must be the longest common prefix between some suf-
fix of p and suffixes ofq. The second observation is cap-
tured by the following lemma:

Lemma 1. Let p[i − 1..j] be the longest common prefix between
s′i−1, the(i − 1)-th suffix ofp, and any suffix ofq. Letp[i..k] be
the longest common prefix betweens′i and any suffix ofq. Then,
p[i..k] is a maximal old region if and only ifk > j.

Proof. (If) If k > j, thenp[i − 1..k] cannot be a substring
of q, becausep[i − 1..j] is already the longest common
prefix betweens′i−1 and any suffix ofq. In other words,
p[i..k] cannot be extended further to the left. Furthermore,
p[i..k] cannot be extended further to the right because it is
already the longest common prefix betweens′i and any suf-
fix of q. Therefore,p[i..k] is a maximal old region.(Only
if) If p[i..k] is a maximal old region, thenp[i− 1..k] cannot
be a substring ofq, which implies thatj < k.

The above observations lead to a simple, efficient
method for identifying all maximal old regions in a stream-
ing fashion while we process suffixes ofp one by one. After
processing thei-th suffix of p and finding the longest com-
mon prefixri between it andq’s suffixes, we compare the
end position ofri with that of ri−1 (identified while pro-
cessing the(i − 1)-th suffix ofp). As long as the end posi-
tion has advanced, we outputri as a maximal old region.

The complete psudocode forST is listed in Algorithm 1.

Runtime Complexity: We conclude this section by stat-
ing the complexity of our suffix-tree matching algorithm in
the following theorem. The dominating cost, in terms of
both time and space, comes from standard suffix tree con-
struction. Our implementation uses balanced search trees to
manage parent-child relationships in the suffix tree, which
implies that an additional time cost factorc = O(log A),
whereA is the size of the alphabet. Other alternatives with
c = O(1) also exist, but we have found our implementa-
tion to work well whenA is very large. This is probably
because suffix trees with balanced search trees to manage
parent-child relationships take smaller space and thus lead
to fewer cache misses.



Algorithm 1 ST
1: Input: old data pageq, new data pagep
2: Output: all maximal old regionsR in p
3: T ⇐ buildSuffixTree(q)
4: //initialization
5: R ⇐ ∅
6: α′

0
⇐ T.root

7: for each suffixs′

i of p do
8: //locate the node corresponding to the longest common prefixof s′

i and any
suffixes inT and set up the suffix link ofα′

i−1

9: α′

i ⇐ longestCommonPrefix(s′

i,T ,α′

i−1
)

10: if α′

i is a new node created by splitting an edge pointed toγ then
11: //set up the prefix link ofα′

i

12: if Lp(γ) = γ then
13: Lp(α′

i) ⇐ α′

i

14: else
15: Lp(α′

i) ⇐ Lp(γ)
16: end if
17: end if
18: Insert leafη′

i as a child ofα′

i

19: Lp(η′

i) ⇐ Lp(α′

i)
20: //find ri, the longest common prefix ofs′

i and any suffix ofq, using prefix
link of α′

i

21: ri ⇐ p[i..i + pathLength(T.root, Lp(α′

i)) − 1]
22: //compare the ending positions ofri andri−1 to check ifri is a maximal

old region
23: if ri.end > ri−1.end or i = 1 then
24: R ⇐ R

S

{ri}
25: end if
26: end for

Theorem 1. ST takesO((|p|+|q|)c) time andO(|p|+|q|) space,
wherec is the cost of looking up a child of a node in the suffix tree.

Proof. First, we prove thatST takesO((|p| + |q|)c) time.
ST proceeds in two phases. In the first phase, it builds a
suffix treeT (line 3) forq usingO(|q|c) time [7].

In the second phase,ST finds all the maximal old regions
while it inserts each suffix ofp into T (line 4-26). Except
the step of locatingα′

i (line 9), each of the other steps takes
constant times. Therefore, line 2-8 and line 10-26 take a
total ofO(|p|) time. [7] shows that the total time of locating
α′

i is dominated by the total time of lookups of children at
nodes visited inT . The total number of nodes visited is
O(|p| + |q|) and the cost of each lookup isc. Therefore,
line 9 takes a total ofO((|p| + |q|)c) time. Hence, the total
time of the second phase isO((|p| + |q|)c) and the overall
runtime ofST is O((|p| + |q|)c).

Now, we prove thatST takesO(|p| + |q|) space. ST
needs space to store the suffix tree and the ending position
of the longest common prefix between the most recently in-
serted suffix ofp and all suffixes ofq. The latter only needs
O(1) space.

A standard suffix tree for a string of lengthl has at most
2l number of nodes and takesO(l) space [7]. A suffix tree
augmented with prefix links has one prefix link per node.
Therefore, the augmented tree still takesO(l) space. ST
builds a suffix treeT with prefix links to store all suffixes
of p andq. Therefore,T has at most2(|p| + |q|) number of
nodes and takesO(|p|+ |q|) space. Hence, the overall space
taken byST is O(|p| + |q|).
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Figure 5. Data flow ofCyclex.

6 The Reuser + Extraction Module
SupposeCyclex has selected a page matcherM (see

Section 4). We now describe howM works in conjunction
with the reuser and the extraction module to recycle men-
tions and extract new ones. We face two key challenges.
First, since corpus snapshots often are large, we must han-
dle disk-resident data efficiently. Second, we must employ
scopeα and contextβ to identify precise text regions from
which it is “safe” to copy mentions or to apply extractorE.
To address these challenges, we proceed in the following
three steps.

1. Find Copy Regions: We begin by reading pages from
disk-residentPn+1 in a sequential manner. For each page
p, we findq ∈ Pn which shares the same URL withp. (If
no suchq exists, we simply apply extractorE to p.) Next,
we applyM to p andq (in memory) to find old regions (see
Section 5).

Not all mentions in old regions (if we find any) are safe
to be copied. This is illustrated by the following example.

Example 6.1. Let q = “Dr. John Doe is a CS prof.”. Suppose
extractorE declares stringn to be a person name if it is two capi-
talized words preceded by “Dr. ”. ThenE has contextβ = 3, and
produces “John Doe” as a mention ofq. Now considerp = “John
Doe is a CS professor”. SupposeM declareso = “John Doe is
a CS prof” to be an old region ofp. Then since “John Doe” is a
mention (ofq) in o, we may think that it will also be a mention ofp.
However, this is incorrect because applyingE to p would produce
no mention.

In general, we can copy a mention only if both the men-
tion (e.g., “John Doe”) and its context (e.g., “Dr.”) are
contained in an old region. Specifically, ifp[c..c + k] is
an old region because it matchesq[c′..c′ + k], then we
copy a mentionm only if it is contained in the region
q[c′+β..c′+k−β]. We refer to such regions, from which it
is safe to copy mentions, ascopy regions. We now describe
finding copy regions, distinguishing two cases: disjoint old
regions, and overlapping old regions.
• Old regions are disjoint: Let r1, . . . , rk be old regions
of p (discovered by matcherM ). We represent eachri as
a tuple(idp, idq, sp, sq, l), whereidp andidq are IDs ofp



andq, sp andsq are the start positions of the old region inp
andq, respectively, andl is the length of the old region.

Suppose old regions represented byr1, . . . , rk are dis-
joint. Then we simply construct for eachri a copy re-
gion hi which is a tuple(idp, idq, s

′
p, s

′
q, l

′), wheres′p =
sp + β, s′q = sq + β, andl′ = l − 2β. Next, we inserthi

into a memory-resident tableH .
• Old regions are overlapping:In this case we extend the
above algorithm so that we copy each mention in the over-
lapping regions only once. First, we construct a set of copy
region candidates by choppingβ characters at both ends of
each old region, as we described in the disjoint case. Let
the resulting set of regions ber′1, . . . , r

′
k. This step gives

us a set of regions where we are sure that if a mention is
contained in one of those regions, it will be extracted byE
from p, and thus it can be safely copied. However, since
regionsr′1...r

′
k can overlap, a mention can be contained in

more than one region and copied more than once. The fol-
lowing two steps ensure that any mentions contained in at
least one ofr′1...r

′
k will be copied exactly once.

Let a andb be two overlapping regions fromr′1, . . . , r
′
k.

Thena corresponds to a copy region candidatep[i..j] and
b corresponds to another copy region candidatep[k..l] such
that i < k < j < l. Then we discarda andb and gen-
erate instead the following regions: (1) regionsc, d, e that
corresponds top[i..k − 1], p[k..j], p[j + 1..l], respectively.
These regions are created so that we can avoid copying
mentions in regiond twice. (2) regionsf, g that corresponds
to p[k − α..k + α], p[j − α..j + α], respectively. These re-
gions are created to catch any mention that may cross the
splitting pointsk andj and thus is not contained in any of
the above regions.

We insert the tuples corresponding to these regions into
tableH . Figure 5 shows the data flows ofCyclex for the
step of finding copying regions in phase I.

2. Find Extraction Regions & Apply Extractor E: Let
c1, . . . , ct be the copy regions ofp, identified as in Step 1.
We now findextraction regions, those regions ofp on which
we must apply extractorE, to ensure the correctness ofCy-
clex.

To obtain extraction regions, at a first glance, it appears
that we can simply remove copy regions fromp. However
this would “remove too much” and thus drop mentions that
we should have found inp, as illustrated by the following
example.

Example 6.2. Letq = “John Doe is a CS prof.”. Suppose extractor
E declares stringn to be a person name if it is two capitalized
words preceded by “Dr. ”. ThenE does not produce any mentions
fromq. Now, considerp = “Dr. John Doe is a CS prof.”. Suppose
the matcherM declareso = “John Doe is a CS prof.” to be an old
region ofp. We first copy mentions ofq according to the steps we
discussed above. BecauseE does not produce any mentions inq,
no mention is copied. Then we might removeo fromp and applyE

e1
e2 e3

d2

d1
γ γ

γγ

r1 r2(a)

(b)

(c)

Figure 6. An example of identifying extraction regions.

to the remaining part “Dr. ”. However, this is incorrect because
E would not produce mention ”John Doe” as it should have if we
appliedE to the entirep.

In general, we can remove a regionr only if no new men-
tion (e.g. “John Doe”) or its context (e.g. “Dr. ”) overlaps
with r. Specifically, ifp[c..c + k] is an old region, then it
is safe to remove only regionp[c + γ..c + k − γ], where
γ = 2β + α − 1. We now describe finding extraction re-
gions for two cases: disjoint old regions, and overlapping
old regions.
• Old regions are disjoint:Let R be the set of disjoint old
regions ofp. We begin by initializingc, the start position
of the next extraction region, to 1. Then we scan regions of
R sequentially, in increasing value of their start positions.
For eachr ∈ R, we createp[c..(r.sp − 1 + γ)] as an extrac-
tion region. Then we updatec = r.sp + r.l − γ. The last
extraction region ends at position|p|.
• Old regions are overlapping:In this case, the extraction
regions identified by the above algorithm might not be min-
imal in the sense that if we remove some parts of the extrac-
tion regions, we can still guarantee correctness ofCyclex.
Hence,we waste the time of applyingE over the additional
regions. This is illustrated by the following example.

Example 6.3. Figure 6.(a) shows two overlapping old regions:r1

andr2. In particular, the length of the overlapping part is larger
thanγ. Figure 6.(b) showsd1 andd2: the regions removed fromr1

andr2 respectively according to the above algorithm. Figure 6.(c)
shows the remaining extraction regions:e1, e2 and e3. Recall
that the algorithm of finding copy regions guarantees to copyany
mention such that both the mention itself and its contexts are con-
tained in an old region. Sincee2 is contained in both old regions,
any mentions extracted frome2 will be copied. Therefore we can
removee2 without losing any mentions.

To ensure that an identified extraction region is not con-
tained in any old region, we extend the algorithm for dis-
joint old regions case as follows. First, we repeatly concate-
nate any two overlapping old regionsp[i..j] andp[k..l] if the
length of the overlapping part is larger thanγ. Without loss
of generality, supposei < k < j < l. Sincej − k ≥ γ + 1,
the maximal length of theβ-context of any mention ex-
tracted byE, theβ-context of any mention across the two
old regionsp[i..j] andp[k..l] is either contained inp[i..j] or
p[k..l], and thus the mention will be copied. Hence, we can



ignore the adjecent boundaries ofp[i..j] andp[k..l] when
identifying extraction regions. We refer to the concatenated
regions assuper old regions. Let the set of super old regions
beR′. Any mention such that both itself and its context is
contained in a regionr′ ∈ R′ will be copied.

Next, we create a set of extraction regions to catch any
mention that will not be copied. For eachr′ corresponding
to p[i..j] in R′, we create aremovalregionp[i + γ..j − γ].
Since the length of the overlapping part of any two regions
in R′ is at mostγ, the removal regions created at this step
are disjoint. Let the set of removal regions beD. Finally,
we removeD form p and the remaining set of regions are
the extraction regions.

Once we have identified all extraction regions of a page
p, we apply extractorE to these regions. To gaurantee cor-
rectness ofCyclex, among all extracted mentions, we only
retain those such that both the mentions and their contexts
are contained in an extraction region. We then insert the
retained mentions into a memory-resident tableN . N is
flushed to the disk-resident tableMn+1 (which stores all
mentions extracted fromPn+1) whenever it is full. Figure 5
shows the data flow ofCyclex for the step of finding extrac-
tion regions and applying extractorE in phase I.

3. Copy Mentions from Copy Regions: We repeat step
1 and step 2 until we have processed all pagesp in Pn+1.
At this point, we have extracted mentions from all new re-
gions. We have also stored all copy regions (actually, only
the start- and end-positions of these regions, not the regions
themselves) in tableH . Now we must copy toN any men-
tion that (a) exists inMn (the IE result over the previous
snapshotPn) and (b) can be found in a region stored inH .

SinceMn can be large, we assume it is on disk. Further-
more, since each application may want to store the mentions
in a particular order (for further processing, e.g., mention
disambiguation), we do not assume any particular order for
mentions inMn. Rather, we proceed as follows. We per-
form a sequential scan ofMn. For each mentionm of Mn,
we immediately probem against regions of tableH (imple-
mented as a hash table, with keyidq, sq andl). In case of
a hit, m appears in one of the copy regions, thus, we con-
struct an appropriate mentionm′ of p (that correspond to
m), then insertm′ into tableN . Figure 5 shows the data
flow of Cyclex for the step of copying mentions in phase II.

The following theorem states the correctness ofCyclex:
Theorem 2(Correctness ofCyclex). LetMn+1 be the set of men-
tions obtained by applying extractorE from scratch to snapshot
Pn+1. ThenCyclex is correct in that when applied toPn+1 it
produces exactlyMn+1.

Proof. Let M ′
n+1 be the set of mentions produced by ap-

plying Cyclex to Pn+1. Let Mn be the set of mentions
produced by applyingE to Pn.

(Soundness)For anym in M ′
n+1, it is produced in one

of the following three ways.

Case 1:If m is produced by copying, according to the
algorithm of finding copying regions, there must exist some
m′ ∈ Mn, some regionr in a data pagep ∈ Pn+1, and
some regionr′ in a data pageq ∈ Pn such thatm = m′,
theβ-context ofm is contained inr , theβ-context ofm′ is
contained inr′ andr matchesr′. Therefore theβ-context
of m matches theβ-context ofm′, which implies theβ-
context ofm′ is contained inr, and thus inp. Hence,p
can be obtained by perturbing the text ofq outside theβ-
context ofm′. SinceE has a contextβ, this implies that if
we applyE to p, we will obtainm′ and thusm. Therefore,
m ∈ Mn+1.

Case 2:If m is produced by applyingE to an extrac-
tion regionr in pagep ∈ Pn+1, m is produced only if its
β-context is contained inr. Sincep can be generated by per-
turbing the text ofr outside theβ-context ofm, thereforem
can also be produced by applyingE to p. Thusm ∈ Mn+1.

Case 3:If m is produced by applyingE to the entire data
pagep ∈ Pn+1 (e.g. there does not existq ∈ Pn such thatq
shares the same URL withp), then obviouslym ∈ Mn+1.

(Completeness)For anym in Mn+1, we distinguish
three cases according to its position.

Case 1:If m is from data pagep which does not share
the same URL with any data page inPn, thenm is produced
by Cyclex when it appliesE over the entirep. Therefore
m ∈ M ′

n+1.
Case 2: If the β-context ofm is contained in an old

regionr of pagep, then the algorithm of finding copy re-
gions (for both disjoint and overlapping old regions) guar-
antees thatm will be produced by copying. In fact, givenr,
Cyclex identifies one or multiple copy regions such that if
there is a mention contained inp[r.sp + β..r.sp + r.l − β],
then it is contained in one of the corresponding copy re-
gions, and thus will be copied. Since theβ-context ofm
is contained inp[r.sp..r.sp + r.l], m must be contained in
p[r.sp + β..r.sp + r.l − β]. Thereforem will be produced
by Cyclex by copying.

Case 3: If the β-context ofm is not contained in any
old region andm is from a pagep that shares the same
URL with a pageq ∈ Pn, the β-contex ofm must be
contained in one of the extraction regions inp. Otherwise,
suppsem overlaps (or is contained in) a removal regiond.
Then there must exist an old region or a concatenated su-
per old region (for overlapping old regions)p[i..j] such that
d = p[i+γ..j−γ] whereγ = 2β +α−1. This implies that
m’s β-context, which is at most as long as2β +α, i.e.γ +1
, must be contained inp[i..j]. If p[i..j] is an old region, this
contradicts the assumption that theβ-context ofm is not
contained in any old region. Ifp[i..j] is a super old region
resulted from concatenating old regionsr1, ..., rk, then the
β-context ofm must be contained in at least one of regions
r1, ..., rk, which also contradicts the assumption. There-
fore, theβ-context ofm is contained in one of the extraction



regions and thusm will be extracted by appplyingE.

7 The Cost-Based Matcher Selector
We now describe how the matcher selector employs a

cost model to select the best matcher (one that minimizes
Cyclex’s runtime).

Our cost model captures the three execution steps of
Section 6. We model the elapsed time of each step as a
weighted sum of I/O and CPU costs. The weights are mea-
sured empirically, allowing us to account for varying execu-
tion characteristics across steps, implementations, and plat-
forms. With the weights, we can reasonably capture com-
pletion times of highly tuned implementations that overlap
I/O with CPU computation (in this case, the dominated cost
component will be completely masked and therefore have
weight0) as well as simple implementations that do not ex-
ploit parallelism.

Let m be the number of pages inPn+1, mb be the to-
tal size ofPn+1 on disk (in blocks), andl be the average
page size (in bytes). Letn be the number of mentions in
the previous mention tableMn, andnb be the total size of
Mn on disk (in blocks). Letb be the number of buckets in
the in-memory hash tableH (cf. Section 6). We model the
completion time of aCyclex plan onPn+1 as:

ŵ1,IO · mb · f̂ + ŵ1,mat · m · l · f̂ + ŵ1,ex · m · l · f̂ · ĝ (1)

+ŵ2,IO · nb + ŵ2,find · n ·
m · f̂ · ĥ

b
(2)

+ŵ3,IO · mb(1 − f̂) + ŵ3,ex · m · l · (1 − f̂), (3)

wheref̂ is the fraction of pages inPn+1 with a match inPn;
ĝ measures, on average, what fraction of the text within a
matched page still needs re-extraction; andĥ is the average
number of tuples inserted into hash tableH per matched
page. Thêw’s are weights, whose numeric subscripts reflect
which phases incur the associated costs.

Line (1) models the completion time of the first execu-
tion step. This includes I/O cost of reading in matching
pages fromPn+1 andPn, CPU cost of matching the pairs
of pages to identify copy regions, and the CPU cost of ap-
plying E to extraction regions. Line (2) models the second
step. This includes I/O cost of reading inMn, and CPU cost
of probingH to determine whether to copy each mention.

The termm·f̂ ·ĥ
b

estimates the number of hash table entries
per bucket. Finally, Line (3) models I/O cost of reading
in unmatched pages inPn+1, and CPU cost of applyingE
to them. In all three steps, we ignore the cost of writing out
mentions inPn+1, since this cost is the same for all matcher
choices.

As a special case forDN, which simply runsE over the
entirePn+1, Lines (1) and (2) are always0, and f̂ = 0
on Line (3). ForUD andST, f̂ is the same. In general,
however, the hatted parametersf̂ , ĝ, ĥ, and ŵ’s need be
estimated, and their values may differ across alternatives.

On the other hand, unhatted parameters do not need to be
estimated, because their exact values are directly available
from either the corpus metadata (form, mb, l, n, andnb) or
the execution context (forb).

Parameter Estimation: For each corpus snapshotPt, we
choose a subset of the pagesS ⊆ Pt as a sample. We apply
all three alternative plans to this sample, profile their exe-
cution, and then use the information collected to estimate
the hatted cost model parameters for the current snapshot.
Because of space constraints, we only outline the estima-
tion procedure for the five parameters on Line (1) relevant
in costing the first phase of the plan; other parameters can
be estimated in an analogous manner.

We profile the execution of the first phase (separately for
UD andST) over the sampleS as follows. We recordF , the
total number of pages inS with a matching page inPt−1;
we can then estimate parameterf̂ asF/|S|. For matched
pages inS, we examine the re-extraction regions identified
by the plan, and measure the average ratio of the size of
the re-extraction regions to the size of the page; this aver-
age gives uŝg. In addition, for each matched page inS,
we measure the total elapsed time of the first phase, the
number of disk reads, the CPU time spent on identifying
copy regions, and the CPU time spent on applying extrac-
tion on re-extraction regions. The total time and the three
component costs over all matched pages, together with the
estimated value of̂g, allow us to estimate weightŝw1,IO,
ŵ1,mat, andŵ1,ex.

Since aggregate change characteristics of a corpus often
remain relatively stable over time, we also exploit the cost
model parameter estimates we have obtained in the recent
past. To estimate a particular parameter for snapshott + 1,
we average its estimated values for the lastW snapshots.
For example,f̂ (t+1), the value off̂ for Pt+1, can be esti-
mated as(

∑t

i=t−W+1 f̂ (t))/W .
Both the sample size|S| and the window lengthW are

tunable parameters ofCyclex’s statistics collection module.
In Section 8, we experimentally study the settings of these
parameters, and show that small|S| andW are sufficient for
our applications ofCyclex, meaning that parameter estima-
tion and cost-based plan selection adds very little overhead
to the overall cost.

8 Empirical Evaluation
We now empirically evaluate the utility ofCyclex. Fig-

ure 7 describes two real-world data sets and six extrac-
tors used in our experiments.DBLife consists of 30 con-
secutive one-day snapshots fromDBLife system [15], and
Wikipedia dataset consists of 20 consecutive snapshots ob-
tain from Wikipedia.com. TheDBLife extractors extract
mentions of academic entities and their relationships, and
the threeWikipedia extractors extract mentions of enter-
tainment entities and relationships (see the figure).
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Figure 7. Data sets and extractors for our experiments.

We obtained extractor scopes and contexts by analyzing
the extractors. For example, “talk” extractor detects speak-
ers, time and topics by matching a set of regular expres-
sions. The length of extraction context for these attributeis
0. Then “talk” detects location attribute by (a) detecting a
set of keywords such as “Location: ”, “Room: ” etc., and
(b) extracting 1-2 capitalized words immediately following
the detected keyword as the location. We thus set the con-
textβ of “talk” to be the maximal length of all keywords.

Runtime Comparison: For each of the above six ex-
traction tasks, Figure 8 shows the runtime ofCyclex vs.
DNplan, STplan, and UDplan, three plans that employ
matchersDN, ST, andUD, respectively, over all consec-
utive snapshots (the X axis). Note that for each snapshot,
Cyclex employs a cost model to pick and execute the best
among the above three plans.Cyclex’s runtime includes
statistic collection, optimization, and execution times.

The results show that in all cases except “actor”, UD-
plan, STplan, andCyclex drastically cut runtime of DNplan
(which always applies extraction from scratch to the current
snapshot), by 50-90%. This suggests that recycling past IE
efforts can be highly beneficial.

Next, the results show that none of DNplan, STplan, and
UDplan is uniformly better than the others. For example,
for “actor”, where the changes between two consecutive
snapshots are substantial and the extraction cost is fairly
low, DNplan outperforms UDplan and STplan. In contrast,
for “play” and “award” , where the change of data is still
substantial but extraction is very expensive, STplan is the
winner. ForDBLife cases, where the consecutive snapshots
change little and matching regions detected byUD andST
are quite similar, UDplan is the winner.

The above results underscore the importance of opti-
mization to select the best plan for a particular extraction
situation. They also show thatCyclex handles this opti-
mization well. It successfully picks the fastest plan in all
six cases, while incurring only a modest overhead of 4-13%
the runtime of the fastest plan.

Contributions of Components: Figure 9 shows the de-
composition of runtime of various plans (numbers in the
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Figure 9. Runtime decomposition of different plans.
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Figure 10. IO times versus total runtimes in seconds of
different plans on 6 IE tasks.

figure are averaged over five random snapshots per IE task).
“Match” is time to match pages, “Extraction” is time to ap-
ply IE, “Copy” is time to copy mentions, “Opt” is optimiza-
tion time ofCyclex, and “Others” is the remaining time (to
read file indices, doing scoping, etc.).

The results show that matching and extracting dominate
runtimes, hence we should focus on optimizing these com-
ponents. The suffix-tree matcherST clearly spends more
time finding old regions than the Unix-diff matcherUD.
However, the figure shows that this effort clearly pays off
in certain cases, such as “play” and “award”, where IE is
expensive and the consecutive snapshots change substan-
tially. Here, STplan saves significant time avoiding IE. Fi-
nally, the results show that the overhead ofCyclex (statistic
collection, etc.) remains insignificant compared to the over-
all runtime.

Figure 10 shows IO times versus total runtimes of vari-
ous plans. The IO times are time to read data pages, read
old mentions (for UDplan and STplan) and write extracted
mentions. Numbers in the figure are averaged over the same
snapshots used in the experiment reported in Figure 9.

The results show that DNplan (i.e., applying IE from
scratch) incurs very little IO time in most tasks (less than
3% of total runtimes). In addition, the IO times of both
UDplan and STplan are more than those of DNplan, as they
read more data pages than DNplan and they also read old
mentions. However, on most tasks, the additional IO times
incurred by UDplan and STplan is only a small amount,
namely less than 2%, of the CPU times saved from recy-
cling past IE. Thus, it is important to optimize CPU time, as
we do in this work.

Sensitivity Analysis: Finally, we examined the sensitiv-
ity of Cyclex wrt the main input parameters:k and|S|, the
number of snapshots and size of sample used in statistic es-
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Figure 11. Accuracy of cost models as a function of (a)
number of snapshotsk, (b) sample size|S|, (c) α, (d) β.

timation, and the scope and context values.

Figure 11.a plots the “accuracy” ofCyclex as a function
of k, where “accuracy” is the fraction of snapshots where
Cyclex picks the correct (i.e., fastest) plan. We show results
for “affiliation” and “play” only, results for other IE tasks
show similar phenomenons.

Figures 11.b-d plots the “accuracy” ofCyclex in a simi-
lar fashion against changes in the sample size|S|, scopeα,
and contextβ, respectively.

The results show thatCyclex only needs a few recent
snapshots (3) and a small number of sample size (30 pages)
to do well. Regarding scope and context, the results show
that for “affiliation”, Cyclex performs well even when we
increasedα andβ significantly, by 5 and 100 times, respec-
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Figure 12. Ratio of runtimes as a function ofα andβ.

tively. For “play”, Cyclex performs well untilα was in-
creased by 4 times. Asα increases, the difference between
the fastest plan, STplan, and the second fastest plan, UD-
plan, becomes smaller and smaller, thus causing the opti-
mizer to mistakenly select the second fastest plan on certain
snapshots.

In the final experiment, Figure 12 shows the runtime ra-
tio of STplan and UDplan as a function ofα andβ. The run-
time ratio is the ratio of the runtime of these plans over the
runtime of DNplan. The results show that this ratio changes
only slowly, as we increaseα andβ. This suggests that a
rough estimation ofα andβ does increase the runtime of
the various plans, but only in a graceful fashion.

9 Conclusions & Future Work
A growing number of real-world applications must deal

with IE over dynamic text corpora. We have shown that
executing such IE in a straightforward manner is very ex-
pensive, and have developedCyclex, an efficient solution
that recycles past IE results. As far as we know,Cyclex is
the first in-depth solution in this direction. It opens up sev-
eral interesting research directions that we are planning to
pursue. These include (a) how to handle multiple extractors,
in these cases it is yet unclear how to extract copy and ex-



traction regions of a page, and (b) how to handle extractors
that extract mentions across multiple pages.
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