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Abstract MB corpus snapshot, then applies IE to this snapshot to find
the latest community information (e.g., which database re-
Most current information extraction (IE) approaches searchers have been mentioned where in the past 24 hours).
have considered only static text corpora, over which we typ- As another example, the Impliance project at IBM Almaden
ically have to apply IE only once. Many real-world text cor- seeks to build a system that manages all information within
pora however are dynamic. They evolve over time, and toan enterprise [18]. This system must regularly recrawl the
keep extracted information up to date, we often must applyenterprise intranet, then apply IE to the recrawled data to
|[E repeatedly, to consecutive corpus snapshots. We describinfer the latest information. See [8, 9, 12, 21] for other ex-
Cyclex, an approach that efficiently executes such repeatedamples of dynamic text corpora.
IE, by recycling previous IE efforts. Specifically, given a  Despite their pervasiveness, no satisfactory solution ex-
current corpus snapshdaf, Cyclex identifies text portions ists currently for IE over dynamic text corpora. Given such
of U that also appears in the previous corpus snapshot  a corpus, the common solution is to apply |IE to each corpus
SinceCyclex has already executed |IE ovéf, it can now snapshoin isolation, from scratchThis solution is simple,
recycle the IE results of these parts, by combining these re-but highly inefficient, with limited applicability. For exa-
sults with the results of executing IE over the remaining ple, in DBLife reapplying IE from scratch takes 8+ hours
parts of U, to produce the complete IE results for. Re- each day, leaving little time left for higher-level data bna
alizing Cyclex raises many challenges, including modeling ysis. As another example, time-sensitive applicatiors (e.
information extractors, exploring the trade-off betwean+ stock, auction, intelligence analysis) often want to r&ffre
time and completeness in identifying overlapping text, andinformation quickly, by recrawling and reextracting, say,
making informed, cost-based decisions between redoing IEevery 30 minutes. In such cases applying IE from scratch
from scratch and recycling previous IE results. We describe is inapplicable if it already takes more than 30 minutes. Fi-
initial solutions to these challenges, and experiments ove nally, this solution is ill-suited fomteractive debuggingf
two real-world data sets that demonstrate the utility of our |IE applications over dynamic corpora, because such debug-
approach. ging often requires applying IE repeatedly to multiple cor-
pus snapshots. Thus, given the growing need for IE over
dynamic text corpora, it has now become crucial to develop

1 Introduction _ _ efficient IE solutions for these settings.
_ Over the past (_jecad_e, t_h_e problem (_)f mformatlon extrac-  |n this paper we presefyclex (Recyclng extraction),
tion (IE) has received significant attention. Givetest cor- such a solution. The key idea underlyifigclex is to re-

pus(e.g., a collection of emails, Web pages, etc.), many cycle previous IE results, given that consecutive snagshot

effective solutions have been developed to extract inferma of a text corpus often contain much overlapping data. The
tion from the corpus, and much progress has been made&ollowing example illustrates this idea:
[20, 5, 2]. . . . .
Most of these IE solutions have considered ostgtic =~ Exa@mple 1.1. Co'?_snderftlr?y corpus ofismaleh_URL th;t ::;ts
text corpora, over which we typically have to apply IE only project meetings. Figure 1 shows a snapshot of this corphi;
. . is just a single data page (of the above URL), crawled today.
once In practice, however, text corpora often aymamic

. o Suppose that we have applied an extradibto this snapshot, to
in that documents are added, deleted, and modified. TheY,ytact the tuple (CS 105,2pm) which specifies a meetingpdsep

evolve over time, and to keep extracted information up t0 1omorrow we crawl the above URL to obtain another corpus snap
date, we often must apply ligpeatedlyto consecutive cor-  shot, which is the page shown in Figure 1. Then to extract meet-
pus snapshots. Consider for examplBLife, a structured  ings fromg, current solutions would apply extractdt to ¢ from
portal for the database community that we have been develscratch, and produce tuples (CS 105,2pm) and (CS 310,4pm).
oping [15]. DBLife operates over a text corpus of 10,000+ In contrast,Cyclex tries to recycle the IE results @f Specifi-
URLs. Each day it recrawls these URLSs to generate a 120+cally, it starts by “matching”q with p, to find text regions af that



Cimple Project Meetings } u, | cimple Project Mectings v must develop a cost model and use it to select the optimal
Wil mectin CS 105 at 2pm tis }uy| C8310atdpmontun20,todiscuss |1y, plan. Unlike RDBMS settings, our cost model is extraction-
ursday. . an . age . . .
g specific. In particular, it tries to model the rate of chanfje o

Will meet in CS 105 at 2pm this } v, A i
Thursday. the text corpus, and the run time and result size of extractor
P 4 and matchers, among others (see Section 7).
Figure 1. Two pages of the same URL, retrieved at dif- In summary, we make the following contributions:
ferent times. e We show that it is possible to exploit past IE work to
also appear inp. Suppose it finds two regions andw, of ¢ that significantly speed up IE over evolving text. As far as
also appear asi; andus of p, respectively (see Figure 1% yclex we know,Cyclex is the first solution to this important
then does not apply to v; andwvs, but copies over the mentions problem.
of u1 anduz instead.Cyclex appliesE only tovs, the sole region e We show how to model certain common properties of
of ¢ that does not appear ip. The savings then come from not information extractors and how to exploit these prop-
having to applyE to the entire page. erties to reuse past |IE and to guarantee the correctness

. : . ) _ o of our approach.
While appealing, realizing the above idea raises difficult

challenges. The first challenge is that we cannot simply just
copy mentions over, e.g., from regions andu, of page

p to v; andwv, of pageq, as discussed in Example 1.1. To
see why, suppose extractéiris such that it only extracts
meetings if a page has fewer than five lines (otherwise it e We show how to estimate cost for each of the points
produces no meetings). Then none of the mentions of page  in the spectrum, to find an IE plan with minimal esti-

e We show that a natural tradeoff exists for finding over-
lapping text regions. We examine the spectrum of
choices and develop a powerful suffix-tree based so-
lution.

p can be copied over to page which has more than five mated time.
lines. In general, which mentions can be copied “safely” o \we conduct extensive experiments over two real-world
depends on certain properties of extradfoThus, we must data sets that demonstrate the utility of our approach.

model certain properties of extractfy, so that we can (a)
exploit these properties to reuse certain mentions, and (b)
prove that reusing will produce the same set of mentions as2 ~ R€lated Work
applying |E from scratch. In this paper we define a small  The problem of information extraction has received
set of such properties, show that many practical extractorsmuch attention (see [20, 5, 2] for recent tutorials). Thermai
exhibit these properties (see Section 3), and develop-incre focus so far has been on improving the accuracy and run-
mental re-extraction techniques by exploiting these prope time of information extractors. But recent work has also
ties. started to consider how to manage such extractors in large-
Our second challenge is how to “match” two pages, e.g., scale IE-centric applications [5, 2]. Our work fits into this
p andq in Example 1.1, to find overlapping text regions. emerging direction, which is described in more detail in [2]
We first develoST, a powerful suffix-tree based matcher, While we have focused on |IE ovanstructured textour
and prove that this matcher achieves the most complete rework is related to wrapper construction, the problem of in-
sult, i.e., finds all largest possible overlapping regiong ferring a set of rules (encoded as a wrapper) to extract in-
then show that an entire spectrum of matchers exists, withformation fromtemplate-based Web pag&ince wrappers
matchers trading off the completeness of the result for run-can be viewed as extractors (as defined in Section 3), our
time efficiency (see Section 5). Since no matcher is alwaystechniques can potentially also apply to wrapper contexts.
optimal, we provide&Cyclex with a set of alternative match-  In this context, the knowledge of page templates may help
ers (more can be added easily), and a way to select a goodis develop even more efficient IE algorithms.
one, as discussed below. Our work is also related to the problem of wrapper main-
Since dynamic text corpora can easily contain tens of tenance over evolving Web data (e.g., [17]). The focus
thousands or millions of data pages, we must also developthere, however, is on how to repair a wrapper (i.e., an ex-
efficient solutions for reusing mentions and applying edtra  tractor) so that it continues to extract semantically octrre
tor E to non-overlapping text, in the presence of a large data, as the underlying page template changes. In contrast,
amount of disk-resident data. We must also consider how towe focus on efficiently reusing past extraction efforts to re
efficiently interleave these steps with the step of matching duce the overall extraction time.
data pages (see Section 6). The problem of finding overlapping text regions is re-
Finally, addressing the above challenges results in alated to detecting duplicated Web pages. Many algorithms
space of execution plans, where the plans differ mainly on have been developed in this area (e.g., [4, 10, 14]). But
the page matcher employed. Thus, in the final challenge wewhen applied to our context they do not guarantee to find



all largest possible overlapping regions, in contrast to the current applications usually employ an extractomhich

suffix-tree based algorithm developed in this work. is typically a learning-based program, or a set of extractio
Once we have extracted entity mentions, we can performrules encoded in, say, a Perl script [2]. We assume khat

additional analysis, such as mention disambiguationga.k. €xtracts mentions froreach data page inisolatiom.g., ex-

record linkage, e.g., [13]). Thus, such analyses are highertracting me_zetings as in F_igu_re 1. Such per-page extractors
level and orthogonal to our current work are pervasive (e.g., constituting 94% of extractors in tire ¢

Finally, optimizing IE programs and developing IE- rent DBLife, see [2, 19] for many examples). Hence, we

: , . tart with such extractors, leaving more complex extractor
centric cost models have also been considered in severafe_g_’ those that extract mentions that span multiple pages

recent papers [19, 16, 3]. These efforts have only consid-for future work. We can now define extractors considered
ered static corpora. in this paper as follows:

Definition 2 (Extractors) Letaq,. .., ar be the attributes of an
entity typee. Then an extractoF : p — M takes as input a data
pagep and produces as output a skf of mentions oé in pagep,
where each mention is of the forfm, ..., my) as described in
Definition 1.

3 Problem Definition

Data Sources, Pages, & Corpus Snapshots: Let S =
{S1,...,5,} be a set ofdata sourcesconsidered by an
applicationA. We assume thatl crawls these sources at
regular intervals to retrieve sets déta pages For exam-  Modeling Properties of Extractors: Recall from the in-

ple, DBLife considers 10,000+ data sources, each specifiediroduction that we must model certain properties of extrac-
with a URL, and crawls these URLSs (each to a pre-specifiedtors, so that we can reuse mentions and prove the correct-
depth) each day to retrieve a set of 14,000+ Web pages. Weness of our algorithm. We now describe two such proper-

will refer to P, — the set of data pages retrieved at tiine
— as thei-th snapshobf the evolving text corpus.

Entities, Attributes, & Mentions: Data pages often men-
tion entities which are real-world concepts, such as person,
paper, and meeting. We represent each entity typdth

a set ofattributesay, ..., ax, which can be atomic (e.g.,
meeting room) or set-valued (e.qg., topics).

Given a data pagge, we refer to a consecutive sequence
of characters i as astring, or atext fragmentor aregion
(we will use these notions interchangeably). We plge;]
to denote the string that starts with thé-th character and
ends with thej-th characters of. In this case, we will also
says.start = i ands.end = j.

A mentionof an atomic (set-valued) attributeis then a
string inp (a set of strings ip) that refers ta. We can now
define

Definition 1 (Entity mention) Let p be a data page, and
ai,...,ar be the attributes of an entity type Then a mention
of an instance of entity type is a tuplem (mi,...,mg),
where eachm;, i € [1,k], is either a mention ofi; in pagep,
or the special value “nil”, indicating that a mention af; cannot
be extracted fronp. We also definen.start = min%_; m;.start
andm.end = maXi?:l m;.end.

Example 3.1. Suppose the entity type “meeting” has three at-
tributes: room, time, and topics. Then tuple (CS 310, 4pm,
{CIM,IR}) is a mention of “meeting” in page of Figure 1. String

s ="“CS 310" (where s.start = 25 ands.end = 30) is a mention

of attribute “room”. “4pm” is a mention of “time”, and the sebf
strings{“CIM",“IR” } is a mention of “topics”.

Extractors: Real-world IE applications extract mentions
of one or multiple entity types from data pages. As a first

step, in this paper we consider extracting mentions of a sin-

gle entity typee (e.g., meeting). To extract such mentions,

ties: scopeandcontext To motivate scope, we observe that
attribute mentions of an entity often appearcinse prox-
imity in text pages. Consequently, an extractor often starts
by extracting attribute mentions, then combines the men-
tions and prunes those combinations that span more than a
maximal lengthn.

Example 3.2. Suppose we appl¥ to pageq in Figure 1 to extract
(room,time). £ may start by extracting all room mentions: “CS
3107, “CS 105", then all time mentions: “4pm”, “2pm”. E then
pairs room and time mentions, and prunes pairs that are naotdo
within, say, a length of 100 characters. Thugreturns only the
pairs (CS 310,4pm) and (CS 105,2pm).

Thus, we can formalize the notion of scope as follows:

Definition 3 (Extractor scope) An extractorE' has scopev iff for
any mentionn produced byF we have {u.end — m.start) < a.

To motivate context, we observe that when extracting
mentions, many extractors examine only small “context
windows” to both sides of a mention, as the following ex-
ample illustrates:

Example 3.3. Let E be an extractor for (room,time,topics). Sup-
pose E' extracts room mentions using a regular expression, e.g.,
“CS\sx\d{3}" (“CS” followed by zero or more space characters
and then followed by a 3-digit number). Then the context aind
for room mentions has size 0. That is, onEehas extracted a
room mention such as: = “CS 310" (see Figure 1), no matter
how we perturb the text surrounding, E would still returnm

as a valid room mention. Now suppoEBeproduces stringX as a
topic if (a) X matches a pre-defined word (e.g., “IR"), and (b) the
word “discuss” or “topic” occurs within a 30-character disince,
either to the left or to the right oK. Then we say that the context
of topic mentions is 30 characters. That is, orf¢das extracted

X as a topic, then no matter how we perturb the text outside a 30-
character window ofX (on both sides)E would still recognizeX

as a valid topic mention.
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Let m be a mention produced by an extractoin page
p. Then we formalize the notion of context as follows:

Definition 4 (B-context of mention) The -context ofm (or
context for short when there is no ambiguity) is the string
pl(m.start — 3)..(m.end + B)], i.e., the string ofn being ex-
tended on both sides I/characters.

Definition 5 (Extractor context) Let p’ be a page obtained from
pagep by perturbing the text af outside the3-context ofm (e.g.,
by deleting, inserting, replacing characters). Then we edyac-
tor E has a contexts iff for any m and p’ obtained as described
above, applying® to p’ still producesm as a mention.

We assume that each extracforcomes with a scope
and a contexti. These values can be supplied by whoever
implementingE or knowing howE works (e.g., the appli-
cation builder, after examining's description or code). As
we show in the experiments;, and 5 do not have to be
“tight” in order for us to benefit from recycling IE results.
However, the “tighter” (i.e., smaller) these values are, th
larger the benefits.

Problem Definition: We can now describe our problem
as follows. LetPy,..., P, be consecutive snapshots of a
text corpus,FE be an extractor with scope and context
8, and My, ..., M, be the set of mentions extracted by
E from Py,..., P,, respectively. LetP,; be the corpus
shapshot immediately following,,. Then develop a solu-
tion to extract the set of mention¥,,; from P, in a
minimal amount of time, by utilizing, ..., P,, «, 8, and
M, ..., M,. Inthe rest of the paper we descriBgclex,
our solution to this problem.

4 The Cyclex Solution Approach

To describeCyclex, we begin with two notions:

Definition 6 (Old region & maximally old region) A regionr in

a data pagep of snapshotP,+; is an old region if it occurs in a
pageq of snapshotP,. r is a maximally old region if it cannot be
extended on either side and still remains an old region.

To extract mentions fron®,, 1, Cyclex then considers each
pagep in P,; and “matches”, i.e., compargsvith pages
in P,, to find old regions op. It then applies extractafl
only to the new regions gf, and copies over the mentions
of the old regions.

old regions ofp, Cyclex currently matcheg only with ¢,
the page inP, that shares the same URL with (If ¢ does
not exist, therCyclex declares thap has no old regions.)
Section 8 shows that the choice of matching pages with the
same URL already significantly reduces IE time. Consider-
ing more complex choices (e.g., matchimgyith all pages
in P,) is an ongoing research.

We call algorithms that matgihandgq to find old regions
in p page matchers Sections 5 shows that such matchers
span an entire spectrum, trading off result completeness fo
runtime, and that no matcher is always optimal. For exam-
ple, theST matcher described below returns all maximally
old regions, thus providing the most opportunities for recy
cling past IE results. But it may also incur more runtime
than matchers that return only some old regions. So, a pri-
ori we do not know if it would be better than these other
matchers.

The above result leads to tyclex architecture in Fig-
ure 2. Given snapsha?, . 1, the matcher selector employs a
cost model (that utilizes statistics computed over the past
shapshots) to select a page matcher from a library of match-
ers. The page matcher then finds old regions of pages in
P,11. Next, the extraction module applies extractorto
new regions of pages iR,.1, and the reuser copies over
mentions of the old regionLyclex then combines the re-
sults of both the extraction module and the reuser to produce
the final IE result forP, ;. The next three sections de-
scribe the matchers, the reuser and extraction module, and
the matcher selector in detail.

5 The Page Matchers

Recall from Section 4 that a page matcher compares
pagesp andgq to find old regions ofp. We have provided
the currenCyclex with three page matcherBN, UD, and
ST (more matchers can be easily plugged in as they become
available). DN incurs zero runtime, as it immediately de-
clares that pagg has no old regionCyclex with DN thus
is equivalent to applying IE from scratch £, ;.

UD employs an Unixdiff-command like algorithm [11],
which splits pagep andg into lines, then employs a heuris-
tic to find common lines. Thu4JD is relatively fast (takes
time linear in|p| + |g|), but finds only some old regions.
We omit further description for space reason, but refer the
reader to [11].

ST is a novel suffix-tree based matcher that we have de-
veloped, which findall maximal old region®f p using time
linear in|p| + |¢|. ST andDN thus represent the two ends
of a spectrum of matchers that trade off the result complete-
ness for runtime efficiency, whilelD represents an inter-
mediate point on this spectrum.

In the rest of this section we descril&T in detail.
Roughly speakingST inserts all suffixes of; andp into

Since pages retrieved (in consecutive snapshots) fromone suffix treel” [7]. As we insert each suffix gf, T' helps
the same URL often share much overlapping data, to findus identify the longest prefix of this suffix that also appears



in ¢. To realize this intuition, however, we must handle a
number of intricacies, so that we can locate all maximal old
regions without slowing dowBT to quadratic time.

5.1 Suffix Tree Basics

The suffix tree for a string is a treeT with |¢| leaves,
each describing a suffix @f 7" must satisfy the followings:
(1) Each non-root internal node has at least two children.
(2) Each edge is labeled with a nonempty substring ahd
no two edges out of a node can have labels beginning with Figure 3. An example of inserting a suffix.
the same character. (3) Thath labelof a node is the con-
catenation of all edge labels on the path from the root to this
node; each suffix of corresponds to the path label of a leaf.
(4) Each non-root internal node with path labed (where
A is a single character andis a string) has suffix linkto
the node with path label; the root has a suffix link to itself. =~ Example 5.1. Figure 3.b shows the suffix tree before inserting
Figure 3(a) shows the suffix tree for “ababbabaab$,” whereof “ababbabaal$’. The only new internal node in the tree now

symbol $ terminates the string. Suffix links are showed as iS as (the dark node). The path label for the dark node is “aba”
dotted lines. andw is “ba”. First, we go up from the dark node to its parent
6. Then we follow the suffix link &f and goacross to 0’ (the
dotted node). Notice that we skip looking up the first “b”dn

by following the suffix link. Next, from the dotted node, we go

ing s; — u, the substring of; that followswu, and inserts;

at the point where matching stops; this process may create
a new internal node. It can be shown that this construction
algorithm is linear in the size of the string [7].

To construct a suffix tree fay, we insert all suffixes of
g one by one into an initially empty tree. For example,
the suffixes of “ababbabaab$” are “ababbabaab$, bab'dovwn the tree, matching the substring @fthat follows “b”. The

babaab$,” ‘_‘abbabaab$.,’i - "b$. Lgt Si denoteg[z‘..|q|], matching stops in the middle of the edge with label “ab” owinfr
thei-th suffix of . Conceptually, to insext;, we first ook the dotted node, which leads to splitting the edge and argai
up s;, matchings; against edge labels as we go down the new nodes. In Figure 3.c,3 is the dark node. We then insert the
tree until no more characters can be matched. If lookup leaf corresponding t@- as the child of3. Finally, we set up the
stops at a node, we insest as a leaf below that node; if  suffix link fromag to 3.
lookup stops in the middle of an edge, we add a new node
to split the edge right before the point where it divergesfro  2+2 ST: The Suffix-Tree Matcher
si, and then insert; as a leaf of the new node. ST starts by building a suffix tre€ for ¢, the old page,
Unfortunately, if we insert every; by starting the lookup ~ @S described in Section 5.1_. Next, it inserts the sufflxegs of
from the root, we would end up with a quadratic-time algo- the new page, one by one, irifg and reports each maximal
rithm. The secret to more efficient suffix-tree construction ©!d région as soon as it is detected. To carry out this second
is to exploit the suffix links, which allow us to leverage the Step, we make important extensions to both the insertion
matching work we have already done when inserting . procedure and the suffix tree structure. First, we augment
We now sketch the construction algorithm below. suffix-tree nodes witlprefix links which are crucial to find-
Suppose we have justinserted; as a leaf child of node i_ng old re_gions eﬁiciently. We also show how to set up these
ai_1; note thaty,_1 is the only possibly new internal node links during construction. Second, we show how to detect

created during the insertion of_;. Next, we want to in-  Maximalold regions without introducing additional perfor-

serts, into the suffix tree, and ensure that ;s suffix link mance overhead. We describe these two extensions next.
is properly set up. To this end, we follow a seriesupf Finding Old Regions Using Prefix Links: By inserting
across anddown moves in the suffix tree. Suppoag_;’s s}, thei-th suffix ofp, into T', we can easily find the longest
path label is\u, where) is a single character; note that common prefix betwees and any suffixes that have been
is a prefix ofs;. First, we goup from «;_1 to its paren®, already inserted. Lek; denote this string, which corre-
whose path label isw’, wherew’ is a prefix ofu. Then, sponds to node;, the parent of the leaf corresponding to
following the suffix link of §, we goacrossto ', whose st. On the other hand, what we are looking fey, is the
path label isu’. Next, starting fron¥’, we godown the longest common prefix betweef and any suffix of;, the

tree, matching. — v/, the substring of: that followsu’. We old page. Unfortunately;; may not be the same &s, be-
end up with node3 with path label:, to which we setthe  cause the suffix tree at this time additionally contains suf-
suffix link of ;1. If 8 does not currently exist in the tree, fixessy, ..., s,_; of p, inserted earlier thas.

we creates by splitting the edge right where the matching However, it is not difficult to see that must be a pre-

of u — ' stops; we then adel (which, as we recall, begins fix of h;, becausé; by definition cannot be shorter than
with u) as a child of3. On the other hand, jf already exists ~ any common prefix betweesj and suffixes ofy. To find

in the tree, we continue to giown the tree from3, match- r;, we need to locate the last node on the path from the



ing a new internal nodey with path label “aaa”. The leaf
for s; is then inserted belowy,. The prefix links ofxg, and
the leaf point to the same node pointed to by the prefix link
(in solid arrow) of leaf 5. We then use the prefix link«ff

to find “a,” the longest common prefix betweghand any
suffix of q.

Figure 4. An example of prefix links. Detecting Maximal Old Regions: So far, we have seen
how to find, for each suffix op, the longest common pre-
root to o, with at least one descendant leaf corresponding fix between it and all suffixes of. However, these prefix
to a suffix ofq. Efficiently finding this node, which we de- matches are not necessarily maximal old regions (cf. Defi-
note byd;, turns out to be quite tricky. One might think nition 6). Although such matches cannot be extended any
that we should encountéy as we go dowrf” when insert-  further to the right, it may be possible to extend them to the
ing s;. However, recall from Section 5.1 that we use suffix left. How do we then find the globally maximal old regions?
links to avoid quadratic-time construction; thus, we reach ~ We make two observations. First, any maximal old re-

o, without starting from the root, and possibly without pass- gion must be the longest common prefix between some suf-
ing throughy;. fix of p and suffixes ofj. The second observation is cap-

tured by the following lemma:

geeeeqEEEqe

(a)

To ensure the efficiency of locating, we add aprefix
link for each node of". The prefix link of nodey, denoted | emma 1. Letp[i — 1..j] be the longest common prefix between
Ly(7), points to its lowest ancestor with at least one de- s,_,, the (i — 1)-th suffix ofp, and any suffix of. Letpl[i..k] be
scendant leaf corresponding to a suffixqoflf v itself has the longest common prefix betwe€nand any suffix of. Then,
at least one descendant leaf corresponding to a sufigx of p[i..k] is a maximal old region if and only ¥ > j.
we do not explicitly store a prefix link, but we implicitly
understand that,, () points toy itself.

We construct prefix links as follows. Suppose we have
created the suffix tre@ for ¢. Then there are no explicit
prefix links yet (i.e., every node’s prefix link implicitly
points to itself) because every node leads to a suffiy. of
Now, for every new leaf we create (for a suffix of), we
let L,,(+y) point to the same node g% parent’s prefix link.
For an internal node created by splitting an edge point-

Proof. (If) If k£ > j, thenp[i — 1..k] cannot be a substring
of ¢, becausep[i — 1..j] is already the longest common
prefix betweens,_, and any suffix ofg. In other words,
pli..k] cannot be extended further to the left. Furthermore,
pli..k] cannot be extended further to the right because it is
already the longest common prefix betweégand any suf-

fix of ¢. Thereforep[i..k] is a maximal old region(Only

if) If p[i..k] is @ maximal old region, thep(i — 1..k] cannot

ing to node’, if L,(y) points to~y’ itself, we letL,(v) be a substring of, which implies thay < k. O
point to~y itself; otherwise, we sef,(vy) = L,(y'). For The above observations lead to a simple, efficient
example, Figure 4.(a) shows the suffix tree jor “ac$”. method for identifying all maximal old regions in a stream-

Figure 4.(b) shows the prefix links (in solid arrows) after ing fashion while we process suffixespbne by one. After
we insert the first two suffixes gf = “baabaaabaaaa$”. processing thé-th suffix of p and finding the longest com-
The black leaves are corresponding to the suffixes r ~ mon prefixr; between it and’'s suffixes, we compare the
those nodes which have a prefix link to itself, we do not end position ofr; with that of ;_; (identified while pro-

show the links. cessing thei — 1)-th suffix of p). As long as the end posi-
With prefix links, we now show how to find the longest tion has advanced, we outpytas a maximal old region.
common prefix between a suffif of p and any suffix of;, The complete psudocode 8 is listed in Algorithm 1.

while insertings; into the suffix tree. After a leaf has been Runtime Complexity: We conclude this section by stat-
created fors;, we check the nodg; pointed to by the pre-  ing the complexity of our suffix-tree matching algorithm in
fix link of the leaf’s parent. The path label éf gives us the following theorem. The dominating cost, in terms of
the largest possible old region matching a prefix/ofFor both time and space, comes from standard suffix tree con-
example, Figures 4.(c) shows the state of the suffix tree be-struction. Our implementation uses balanced search wwees t
fore we insertingsg, the ninth suffix ofp, “aaaa$.” We omit ~ manage parent-child relationships in the suffix tree, which
the irrelevant part of the tree (in triangle) and links from implies that an additional time cost factor= O(log A),

the figure. Following the standard suffix-tree construction whereA is the size of the alphabet. Other alternatives with
algorithm, we first use the suffix link (in dotted arrow) of ¢ = O(1) also exist, but we have found our implementa-
the parent node afg to goacrossto ¢#’. Then we galown tion to work well whenA is very large. This is probably
the tree and match the substringwof= “aaa” that follows because suffix trees with balanced search trees to manage
“aa”. The matching stops in the middle of the edge with parent-child relationships take smaller space and thuk lea
label “abaaaa$”, which leads to splitting the edge and ereat to fewer cache misses.



Algorithm 1 ST

1: Input: old data page, new data page
2: Output: all maximal old regionsk in p
3: T < buildSuffixTreeg)
4: /finitialization
5: R« 10
6: af) <= T.root
7: for each suffixs’ of p do
8: INocate the node corresponding to the longest common péfik and any
suffixes inT" and set up the suffix link ofe;_;
9: a; <~ longestCommonPrefiz(sg,T,a27])
10: if o} is a new node created by splitting an edge pointegl toen
11: IIset up the prefix link ot
12: if L,(v) =~then
13: Ly(af) < o
14: else
15: Lp(aj) <= Lp(7)
16: end if
17: end if
18: Insert leafn; as a child ofx
190 Ly(n;) < Lp(ay)
20: [ffind ri,,/the longest common prefix &f, and any suffix of, using prefix
link of o}
21: r; <= pli..i + pathLength(T.root, L,(a})) — 1]
22: /lcompare the ending positionsof andr; 1 to check ifr; is a maximal
old region
23: if r;.end > r;_1.endori = 1then
24: R < RU{ri}
25: end if
26: end for

Theorem 1. ST takesO((|p|+|q|)c) time andO(|p|+ |¢|) space,
wherec is the cost of looking up a child of a node in the suffix tree.

Proof. First, we prove thaST takesO((|p| + |g|)c) time.

ST proceeds in two phases. In the first phase, it builds a

suffix treeT (line 3) for ¢ usingO(|¢|c) time [7].

In the second phas8T finds all the maximal old regions
while it inserts each suffix gf into T" (line 4-26). Except
the step of locating; (line 9), each of the other steps takes

constant times. Therefore, line 2-8 and line 10-26 take a

total of O(|p|) time. [7] shows that the total time of locating
o is dominated by the total time of lookups of children at
nodes visited ifll’. The total number of nodes visited is
O(|p| + |q|) and the cost of each lookup is Therefore,
line 9 takes a total o®((|p| + |¢|)c) time. Hence, the total
time of the second phase @((|p| + |¢|)c) and the overall
runtime of ST is O((|p| + |q])¢).
Now, we prove thaST takesO(|p| + |q|) space. ST

needs space to store the suffix tree and the ending position

of the longest common prefix between the most recently in-
serted suffix ofp and all suffixes of;. The latter only needs
O(1) space.

A standard suffix tree for a string of lengtihas at most
21 number of nodes and tak€x!) space [7]. A suffix tree
augmented with prefix links has one prefix link per node.
Therefore, the augmented tree still take€) space. ST
builds a suffix treel” with prefix links to store all suffixes
of p andq. Therefore" has at mos®(|p| + |¢|) number of
nodes and takeS(|p| + |¢|) space. Hence, the overall space
taken byST is O(|p| + |q]). O
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6 The Reuser + Extraction Module

SupposeCyclex has selected a page matchidr (see
Section 4). We now describe haW works in conjunction
with the reuser and the extraction module to recycle men-
tions and extract new ones. We face two key challenges.
First, since corpus snapshots often are large, we must han-
dle disk-resident data efficiently. Second, we must employ
scopex and contexis to identify precise text regions from
which it is “safe” to copy mentions or to apply extractor
To address these challenges, we proceed in the following
three steps.

1. Find Copy Regions: We begin by reading pages from
disk-residentP,; in a sequential manner. For each page
p, we findg € P, which shares the same URL with (If
no suchg exists, we simply apply extractdt to p.) Next,
we applyM to p andg (in memory) to find old regions (see
Section 5).

Not all mentions in old regions (if we find any) are safe
to be copied. This is illustrated by the following example.

Example 6.1. Let ¢ = “Dr. John Doe is a CS prof”. Suppose
extractor F/ declares string: to be a person name if it is two capi-
talized words preceded by “Dr. ”. TheR has contex = 3, and
produces “John Doe” as a mention gf Now considep = “John
Doe is a CS professor”. Suppoge declareso = “John Doe is
a CS prof” to be an old region gb. Then since “John Doe” is a
mention (of;) in o, we may think that it will also be a mentionaf
However, this is incorrect because applyifigo p would produce
no mention.

In general, we can copy a mention only if both the men-
tion (e.g., “John Doe”) and its context (e.g., “Dr.”) are
contained in an old region. Specifically, jifc..c + k| is
an old region because it matcheg’..c’ + k], then we
copy a mentionm only if it is contained in the region
qld' +..c' +k— ). We refer to such regions, from which it
is safe to copy mentions, aspy regionsWe now describe
finding copy regions, distinguishing two cases: disjoirat ol
regions, and overlapping old regions.

e Old regions are disjoint: Let 1, ..., be old regions
of p (discovered by matchev/). We represent each as

a tuple(idy, idy, sp, sq,1), whereid, andid, are IDs ofp



andg, s, ands, are the start positions of the old regiorpin | | | | |
andq, respectively, andis the length of the old region. I
Suppose old regions representediy. .., r; are dis- ‘ ] (7 ‘
joint. Then we simply construct for eaeh a copy re- 4,
gion h; which is a tuple(idy, idy, s, s, 1"), wheres;, = \ L v ] | v \
sp + 83,5, = 84 + B, andl’ = I — 23. Next, we insert; d,
into a memory-resident tablé. | ] [] [ |
e Old regions are overlappingin this case we extendthe ——— = 5
above algorithm so that we copy each mention in the over- o (C), o ) )
lapping regions only once. First, we construct a set of copy Figure 6. An example of identifying extraction regions.
region candidates by choppingcharacters at both ends of - 14 the remaining part “Dr. ”. However, this is incorrect bease
each old region, as we described in the disjoint case. Letg would not produce mention "John Doe” as it should have if we
the resulting set of regions bg, ..., r.. This step gives  appliedE to the entirep.
us a set of regions where we are sure that if a mention is
contained in one of those regions, it will be extractediy
from p, and thus it can be safely copied. However, since
regionsr}...r;. can overlap, a mention can be contained in
more than one region and copied more than once. The fo
lowing two steps ensure that any mentions contained in at
least one of] ...r;. will be copied exactly once.
Let o andb be two overlapping regions from, ..., ..
Thena corresponds to a copy region candidate.j] and
b corresponds to another copy region candigigte!] such
thati < k < j < I. Then we discard andb and gen-
erate instead the following regions: (1) regiang, e that
corresponds tp[i..k — 1], p[k..j], p[J + 1..1], respectively.
These regions are created so that we can avoid copyin
mentions in regiow twice. (2) regions, g that corresponds

In general, we can remove a regioanly if no new men-
tion (e.g. “John Doe") or its context (e.g. “Dr. ") overlaps
with r. Specifically, ifp[c..c + k] is an old region, then it
|is safe to remove only regiopic + ~..c + k — 7], where
v = 208 4+ o — 1. We now describe finding extraction re-
gions for two cases: disjoint old regions, and overlapping
old regions.
¢ Old regions are disjoint:Let R be the set of disjoint old
regions ofp. We begin by initializinge, the start position
of the next extraction region, to 1. Then we scan regions of
R sequentially, in increasing value of their start positions
For each € R, we create|c..(r.s, — 1+ )] as an extrac-
9tion region. Then we update= r.s, + r.l — . The last
extraction region ends at positi¢y.

) ; . e Old regions are overlappingin this case, the extraction
toplk —a.k+a],plj — e..j + o], respectively. These re- regions ?dentified by the gﬁoge algorithm might not be min-

glons are c_reated to 'catch any mention th"’_‘t may Cross th&mal in the sense that if we remove some parts of the extrac-
splitting pointsk and;j and thus is not contained in any of - tjon regions, we can still guarantee correctnes€yptlex.

the above regions. _ ~ Hence,we waste the time of applyifgover the additional
We insert the tuples corresponding to these regions intoregions. This is illustrated by the following example.

table H. Figure 5 shows the data flows Gfyclex for the i ) )
Example 6.3. Figure 6.(a) shows two overlapping old regions:

step. of finding (.:opylng .reglons in phase|. andr2. In particular, the length of the overlapping part is larger
2. Find Extraction Regions & Apply Extractor E: Let than-~. Figure 6.(b) shows; andds: the regions removed from

c1,...,c be the copy regions qof, identified as in Step 1. andr, respectively according to the above algorithm. Figure 6.(c
We now findextraction regionsthose regions gf on which shows the remaining extraction regions;, e> and e;. Recall
we must apply extractat, to ensure the correctness@y- that the algorithm of finding copy regions guarantees to capy
clex. mention such that both the mention itself and its contextscan-

To obtain extraction regions, at a first glance, it appearstai”ed in an old region. Since; i_s containt_ad in both old regions,
that we can simply remove copy regions framHowever any mentlons extract.ed from will pe copied. Therefore we can
this would “remove too much” and thus drop mentions that remover; without losing any mentions.
we should have found ip, as illustrated by the following To ensure that an identified extraction region is not con-
example. tained in any old region, we extend the algorithm for dis-

joint old regions case as follows. First, we repeatly cogcat

Example 6.2. Letq = “John Doe is a CS prof.”. Suppose extractor nate any two overlapping old regiop..j] andp[k..[] if the

E declares stringn to be a person name if it is two capitalized . - -
words preceded by “Dr. ”. Therf does not produce any mentions length of the overlapping part is larger thanWithout loss

from¢. Now, considep = “Dr. John Doe is a CS prof”. Suppose of generality, suppose< k < j <. Sincej —k > 7y +1,

the matcher\I declareso = “John Doe is a CS prof” tobe anold ~ the maximal length of thes-context of any mention ex-
region ofp. We first copy mentions gfaccording to the steps we  tracted byE, the -context of any mention across the two
discussed above. BecauBedoes not produce any mentionsgn old regions[i..j] andplk..l] is either contained ip[i..j] or

no mention is copied. Then we might remoe¥em p and applyE plk..l], and thus the mention will be copied. Hence, we can



ignore the adjecent boundariesji..j] and p[k..I] when
identifying extraction regions. We refer to the concatedat
regions asuper old regionsLet the set of super old regions

be R’. Any mention such that both itself and its context is

contained in a region’ € R’ will be copied.

Case 1:If m is produced by copying, according to the
algorithm of finding copying regions, there must exist some
m' € M,, some regiorr in a data page € P,.1, and
some region”’ in a data pagg € P, such thatn = m/,
the 3-context ofm is contained in- , the 3-context ofm’ is

Next, we create a set of extraction regions to catch anycontained in~’ andr matches”’. Therefore the3-context

mention that will not be copied. For eachcorresponding
to p[i..j] in R’, we create aemovalregionp[i + v..j — 7].

of m matches the3-context ofm’, which implies thes-
context ofm’ is contained inr, and thus inp. Hence,p

Since the length of the overlapping part of any two regions can be obtained by perturbing the textqbutside thes-
in R’ is at mosty, the removal regions created at this step context ofm’. SinceE has a contex®, this implies that if

are disjoint. Let the set of removal regions be Finally,

we applyE to p, we will obtainm’ and thusn. Therefore,

we removeD form p and the remaining set of regions are m € M,,;1.

the extraction regions.

Case 2:If m is produced by applyind to an extrac-

Once we have identified all extraction regions of a page tion regionr in pagep € P, .1, m is produced only if its
p, We apply extractoF to these regions. To gaurantee cor- 3-contextis contained in. Sincep can be generated by per-

rectness ofCyclex, among all extracted mentions, we only

turbing the text of- outside the3-context ofm, thereforen

retain those such that both the mentions and their contextsan also be produced by applyifgto p. Thusm € M, 1.

are contained in an extraction region. We then insert the

retained mentions into a memory-resident tae N is
flushed to the disk-resident tabld,,,; (which stores all
mentions extracted fromR,, ;1) whenever it is full. Figure 5
shows the data flow a@yclex for the step of finding extrac-
tion regions and applying extractérin phase I.

3. Copy Mentions from Copy Regions: We repeat step
1 and step 2 until we have processed all pgg@s P, 1.

Case 3:If mis produced by applying to the entire data
pagep € P41 (e.g. there does not exigte P,, such thay
shares the same URL wig}), then obviouslyn € M, 1.

(Completeness)For anym in M, 1, we distinguish
three cases according to its position.

Case 1:If m is from data page which does not share
the same URL with any data pagef), thenm is produced
by Cyclex when it appliestl over the entiren. Therefore

At this point, we have extracted mentions from all new re- ,, ¢ M., .

gions. We have also stored all copy regions (actually, only

Case 2:If the g-context of m is contained in an old

the start- and end-positions of these regions, notthemegio egion; of pagep, then the algorithm of finding copy re-

themselves) in tablé/. Now we must copy taV any men-
tion that (a) exists inV,, (the IE result over the previous
snhapshof?,) and (b) can be found in a region storedHn

SinceM,, can be large, we assume itis on disk. Further- {here is a mention containedgfr.s, + 5..r.s, + r.l — f]

gions (for both disjoint and overlapping old regions) guar-
antees thain will be produced by copying. In fact, given
Cyclex identifies one or multiple copy regions such that if

more, since each application may want to store the mentiongpen it is contained in one of the corresponding copy re-

in a particular order (for further processing, e.g., mamtio

gions, and thus will be copied. Since tffecontext ofm

disambiguation), we do not assume any particular order foris contained inp[r.sp..r.s, + .1, m must be contained in

mentions inM,,. Rather, we proceed as follows. We per-

form a sequential scan @ff,,. For each mentiom of M,
we immediately probe: against regions of table (imple-
mented as a hash table, with k&Y, s, and!). In case of

a hit, m appears in one of the copy regions, thus, we con- URL with a pageg €

struct an appropriate mention’ of p (that correspond to
m), then insertn’ into table N. Figure 5 shows the data
flow of Cyclex for the step of copying mentions in phase .

The following theorem states the correctnes€ptlex:
Theorem 2(Correctness afyclex). Let M, be the set of men-
tions obtained by applying extractdr from scratch to snapshot
P.+1. ThenCyclex is correct in that when applied t#, 1 it
produces exactiy/,, 4 1.

Proof. Let M),
plying Cyclex to P,,,1. Let M,, be the set of mentions
produced by applyind’ to P,.

(Soundness)or anym in M, ,, it is produced in one

of the following three ways.

plr.sp + B..1.s, + 1.l — []. Thereforem will be produced
by Cyclex by copying.

Case 3:If the 5-context ofm is not contained in any
old region andm is from a pagep that shares the same
P,, the g-contex of m must be
contained in one of the extraction regionginOtherwise,
suppsen overlaps (or is contained in) a removal regién
Then there must exist an old region or a concatenated su-
per old region (for overlapping old regiong)..j] such that
d = pli+~..j —~] wherey = 26+ a— 1. This implies that
m’s §-context, which is at most as long 28 + o, i.e.y +1
, must be contained ip[i..j]. If p[i..j] is an old region, this
contradicts the assumption that tBecontext ofm is not

be the set of mentions produced by ap- contained in any old region. f[i..j] is a super old region

resulted from concatenating old regions..., r, then the
(-context ofm must be contained in at least one of regions
ry,...,t, Which also contradicts the assumption. There-
fore, thes-context ofm is contained in one of the extraction



regions and thus: will be extracted by appplying. O On the other hand, unhatted parameters do not need to be
estimated, because their exact values are directly al&ilab
7 The Cost-Based Matcher Selector from either the corpus metadata (fax my, [, n, andn;) or

We now describe how the matcher selector employs athe execution context (fdr).

cost model to select the best matcher (one that minimizesprgmeter Estimation: For each corpus snapsht, we
Cyclex’s runtime). . choose a subset of the pageés. P, as a sample. We apply
Our cost model captures the three execution steps 0fy)| three alternative plans to this sample, profile their-exe
Section 6. We model the elapsed time of each step as gytion, and then use the information collected to estimate
weighted sum of /O and CPU costs. The weights are mea-the hatted cost model parameters for the current snapshot.
sured empirically, allowing us to account for varying execu Because of space constraints, we only outline the estima-
tion characteristics across steps, implementations, &d p  tion procedure for the five parameters on Line (1) relevant
forms. With the weights, we can reasonably capture com-jn costing the first phase of the plan; other parameters can
pletion times of highly tuned implementations that overlap pe estimated in an analogous manner.
I/0 with CPU computation (in this case, the dominated cost |\ profile the execution of the first phase (separately for

component will be completely masked and therefore havejp andST) over the samplé as follows. We record, the
weight0) as well as simple implementations that do not ex- igtal number of pages i with a matching page itP;_1;

ploit parallelism. _ we can then estimate paramefeas F//|S|. For matched
Let mn be the number of pages ifl,.+1, m; be the to- pages inS, we examine the re-extraction regions identified

tal size OfP."“ on disk (in blocks), and be the average by the plan, and measure the average ratio of the size of
page size (in bytes). Let be the number of mentions in . . : e
the re-extraction regions to the size of the page; this aver-

the previous mention tabl&/,,, andn, be the total size of . " "
M,, on disk (in blocks). Leb be the number of buckets in @9€ gives ug. In addition, for each matched page $i

the in-memory hash tabl (cf. Section 6). We model the ~We measure the total elapsed time of the first phase, the

completion time of &Cyclex plan onP, as: number of disk reads, the CPU time spent on identifying
. . . copy regions, and the CPU time spent on applying extrac-
W1,10 *Mp + f+ W1mat M- f +Drex-m-L-f-g (1) tion on re-extraction regions. The total time and the three
. . m-fh component costs over all matched pages, together with the
FW2,10 - 1 + W2 find -1 —— @ estimated value of, allow us to estimate weight$; 10,
+d3,10 - mp(1 = f) + sex-m -1+ (1= f), 3) W1, mat, ANAW1 ex.
Since aggregate change characteristics of a corpus often
wheref is the fraction of pages iR, 1 withamatchinP,,; remain relatively stable over time, we also exploit the cost

§ measures, on average, what fraction of the text within a model parameter estimates we have obtained in the recent
matched page still needs re-extraction; arid the average  past. To estimate a particular parameter for snapshat,
number of tuples inserted into hash talifeper matched  we average its estimated values for the EStsnapshots.
page. Theb's are weights, whose numeric subscripts reflect For example f(+1), the value off for P4, can be esti-
which phases incur the associated costs. mated ag>";_, ., fO)/W.

Line (1) models the completion time of the first execu- Both the sample sizg5| and the window lengthiV are
tion step. This includes 1/O cost of reading in matching tunable parameters @yclex’s statistics collection module.
pages fromP,,; and P,, CPU cost of matching the pairs In Section 8, we experimentally study the settings of these
of pages to identify copy regions, and the CPU cost of ap- parameters, and show that small andV are sufficient for
plying E to extraction regions. Line (2) models the second our applications o€yclex, meaning that parameter estima-
step. Thisincludes I/O cost of reading/ii,, and CPU cost  tion and cost-based plan selection adds very little overhea
of probing H to determine whether to copy each mention. to the overall cost.
The termm'Tf'h estimates the number of hash table entries . .
per bucket. Finally, Line (3) models 1/O cost of reading 8 EmMpirical Evaluation
in unmatched pages iR, 11, and CPU cost of applying We now empirically evaluate the utility @yclex. Fig-
to them. In all three steps, we ignore the cost of writing out ure 7 describes two real-world data sets and six extrac-
mentions inP,,+1, since this cost is the same for all matcher tors used in our experiment®BLife consists of 30 con-

choices. secutive one-day snapshots fr@BLife system [15], and
As a special case fdN, which simply runs over the Wikipedia dataset consists of 20 consecutive snapshots ob-
entire P, 1, Lines (1) and (2) are alway® andf = 0 tain from Wikipedia.com. ThéBLife extractors extract

on Line (3). ForUD andST, fAis the same. In general, mentions of academic entities and their relationships, and
however, the hatted parametefsg, h, andw's need be  the threeWikipedia extractors extract mentions of enter-
estimated, and their values may differ across alternatives tainment entities and relationships (see the figure).



runtime (s) researcher affiliation talk

Data Sets DBLife Wikipedia 800 2281 3027 11198
# Data Sources 980 925 600
Time Interval 1 day 21 days 400
# Snapshots 30 20 200
Avg # Page per Snapshot 10155 3038 0
Avg Size per Snapshot 180M 35M DNplan UDplan STplan Cyclex DNplan UDplan STplan Cyclex DNplan UDplan STplan Cyclex
- runtime (s) actor play 3885 award
Extractors for DBLife o B 1000
researcher (first name, mid name, last name) 32 3 800
affiliation (researcher name, organization) 93 7 igg
talk (speaker, time, location, topics) 400 10 200
- — 0
Extractors m,r Wikipedia o B DNplan UDplan STplan Cyclex DNplan UDplan STplan Cyclex DNplan UDplan STplan Cyclex
actor (first name, mid name, last name) 35 3
play (actor name, mov1e). 96 4 ‘ D Match . Extraction . Copy l:‘ Opt D Others
award (actor name, award, movie, role) 250 10

. . Figure 9. Runtime decomposition of different plans.
Figure 7. Data sets and extractors for our experiments.

researcher | affiliation talk actor play award
We obtained extractor scopes and contexts by analyzing| bnplan | 702261 | 69/3027 | 70/11198 | 23/93 | 22/829 | 223885
the extractors. For example, “talk” extractor detects kpea | UDplan | 108277 | 107/289 | 109/543 | 30/160 | 29/341 | 29/856
ers, time and topics by matching a set of regu]ar expres- STplan 109/450 107/463 110/713 30/189 29/301 29/597
sions. The length of extraction context for these attritisite Figure 10. 10 times versus total runtimes in seconds of
0. Then “talk” detects location attribute by (a) detecting a  different plans on 6 IE tasks.
set of keywords such as “Location: ”, “Room: " etc., and
(b) extracting 1-2 capitalized words immediately follogin
the detected keyword as the location. We thus set the con
text 3 of “talk” to be the maximal length of all keywords.

figure are averaged over five random snapshots per IE task).
“Match” is time to match pages, “Extraction” is time to ap-
ply IE, “Copy” is time to copy mentions, “Opt” is optimiza-
Runtime Comparison: For each of the above six ex- tion time ofCyclex, and “Others” is the remaining time (to
traction tasks, Figure 8 shows the runtime@fclex vs. read file indices, doing scoping, etc.).

DNplan, STplan, and UDplan, three plans that employ  The results show that matching and extracting dominate
matchersDN, ST, andUD, respectively, over all consec- runtimes, hence we should focus on optimizing these com-
utive snapshots (the X axis). Note that for each snapshotponents. The suffix-tree match8f clearly spends more
Cyclex employs a cost model to pick and execute the besttime finding old regions than the Unix-diff matcheiD.
among the above three plan€yclex's runtime includes  However, the figure shows that this effort clearly pays off
statistic collection, optimization, and execution times. in certain cases, such as “play” and “award”, where IE is

The results show that in all cases except “actor”, UD- expensive and the consecutive snapshots change substan-
plan, STplan, an@yclex drastically cut runtime of DNplan tially. Here, STplan saves significant time avoiding IE. Fi-
(which always applies extraction from scratch to the curren nally, the results show that the overheadgtlex (statistic
snapshot), by 50-90%. This suggests that recycling past IEcollection, etc.) remains insignificant compared to therove
efforts can be highly beneficial. all runtime.

Next, the results show that none of DNplan, STplan,and  Figure 10 shows IO times versus total runtimes of vari-
UDplan is uniformly better than the others. For example, ous plans. The IO times are time to read data pages, read
for “actor”, where the changes between two consecutive old mentions (for UDplan and STplan) and write extracted
snapshots are substantial and the extraction cost is fairlymentions. Numbersin the figure are averaged over the same
low, DNplan outperforms UDplan and STplan. In contrast, snapshots used in the experiment reported in Figure 9.
for “play” and “award” , where the change of data is still  The results show that DNplan (i.e., applying IE from
substantial but extraction is very expensive, STplan is thescratch) incurs very little 10 time in most tasks (less than
winner. ForDBLIife cases, where the consecutive snapshots394 of total runtimes). In addition, the 10 times of both
change little and matching regions detected tty andST UDplan and STplan are more than those of DNplan, as they
are quite similar, UDplan is the winner. read more data pages than DNplan and they also read old

The above results underscore the importance of opti-mentions. However, on most tasks, the additional 10 times
mization to select the best plan for a particular extraction incurred by UDplan and STplan is only a small amount,
situation. They also show th&yclex handles this opti-  namely less than 2%, of the CPU times saved from recy-
mization well. It successfully picks the fastest plan in all cling past IE. Thus, it is important to optimize CPU time, as
six cases, while incurring only a modest overhead of 4-13% we do in this work.

the runtime of the fastest plan. Sensitivity Analysis: Finally, we examined the sensitiv-

Contributions of Components: Figure 9 shows the de- ity of Cyclex wrt the main input parameters:and|S|, the
composition of runtime of various plans (numbers in the number of snapshots and size of sample used in statistic es-
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timation, and the scope and context values.
Figure 11.a plots the “accuracy” @fyclex as a function
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Figure 12. Ratio of runtimes as a function of and3.

tively. For “play”, Cyclex performs well untila was in-
creased by 4 times. As increases, the difference between
the fastest plan, STplan, and the second fastest plan, UD-
plan, becomes smaller and smaller, thus causing the opti-
mizer to mistakenly select the second fastest plan on certai
shapshots.

In the final experiment, Figure 12 shows the runtime ra-
tio of STplan and UDplan as a functione@fandg. The run-
time ratio is the ratio of the runtime of these plans over the
runtime of DNplan. The results show that this ratio changes
only slowly, as we increase and3. This suggests that a
rough estimation ofx and 3 does increase the runtime of

of k, where “accuracy” is the fraction of snapshots where 4 various plans, but only in a graceful fashion.

Cyclex picks the correct (i.e., fastest) plan. We show results

for “affiliation” and “play” only, results for other IE tasks
show similar phenomenons.

Figures 11.b-d plots the “accuracy” Gf/clex in a simi-
lar fashion against changes in the sample s¥escopen,
and contexf3, respectively.

The results show thafyclex only needs a few recent

9 Conclusions & Future Work

A growing number of real-world applications must deal
with IE over dynamic text corpora. We have shown that
executing such IE in a straightforward manner is very ex-
pensive, and have develop€gyclex, an efficient solution
that recycles past IE results. As far as we knGwyglex is

shapshots (3) and a small number of sample size (30 pageghe first in-depth solution in this direction. It opens up-sev
to do well. Regarding scope and context, the results showeral interesting research directions that we are planring t

that for “affiliation”, Cyclex performs well even when we
increasedv andg significantly, by 5 and 100 times, respec-

pursue. These include (a) how to handle multiple extractors
in these cases it is yet unclear how to extract copy and ex-
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