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ABSTRACT
Most information extraction (IE) approaches have consid-
ered only static text corpora, over which we apply IE only
once. Many real-world text corpora however are dynamic.
They evolve over time, and so to keep extracted information
up to date we often must apply IE repeatedly, to consecutive
corpus snapshots. Applying IE from scratch to each snap-
shot can take a lot of time. To avoid doing this, we have
recently developed Cyclex, a system that recycles previous IE
results to speed up IE over subsequent corpus snapshots. Cy-

clex clearly demonstrated the promise of the recycling idea.
The work itself however is limited in that it considers only
IE programs that contain a single IE “blackbox.” In practice,
many IE programs are far more complex, containing multiple
IE blackboxes connected in a compositional “workflow.”

In this paper, we present Delex, a system that removes the
above limitation. First we identify many difficult challenges
raised by Delex, including modeling complex IE programs
for recycling purposes, implementing the recycling process
efficiently, and searching for an optimal execution plan in a
vast plan space with different recycling alternatives. Next
we describe our solutions to these challenges. Finally, we
describe extensive experiments with both rule-based and
learning-based IE programs over two real-world data sets,
which demonstrate the utility of our approach.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design, Experimentation, Performance

Keywords
Information Extraction, Optimization, Evolving Text

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

1. INTRODUCTION
Over the past decade, the problem of information extrac-

tion (IE) has attracted significant attention. Given a text
corpus (e.g., a collection of emails, Web pages, etc.), much
progress has been made on developing solutions for extract-
ing information from the corpus effectively [10, 2, 25, 15]
(see also [26, 14] for the latest survey and special issue).

Most of these IE solutions however have considered only
static text corpora, over which we typically have to apply
IE only once [26]. In practice, text corpora often are dy-
namic, in that documents are added, deleted, and modified.
Thus, to keep extracted information up to date, we often
must apply IE repeatedly, to consecutive corpus snapshots.
Consider for example DBLife [13, 12], a structured portal
for the database community. DBLife operates over a text
corpus of 10,000+ URLs. Each day it re-crawls these URLs
to generate a 120+ MB corpus snapshot, and then applies
IE to this snapshot to find the latest community informa-
tion (e.g., which database researchers have been mentioned
where in the past 24 hours). As another example, the Impli-
ance project at IBM Almaden seeks to build a system that
manages all information within an enterprise [4, 3]. This
system must regularly re-crawl and then re-apply IE to the
enterprise intranet, to infer the latest information. Recent
efforts (e.g., [22, 29, 9], freebase.com) have also focused on
converting Wikipedia and its wiki “siblings” into structured
databases, and hence must regularly re-crawl and re-extract
information. See [8, 16, 5] for other examples of dynamic
text corpora.

Despite the pervasiveness of dynamic text corpora, no sat-
isfactory solution has been proposed for IE over them. Given
such a corpus, the common solution today is to apply IE to
each corpus snapshot in isolation, from scratch. This solu-
tion is simple, but highly inefficient, with limited applicabil-
ity. For example, in DBLife re-applying IE from scratch takes
8+ hours each day, leaving little time for higher-level data
analysis. As another example, time-sensitive applications
(e.g., stock, auction, intelligence analysis) often want to re-
fresh information quickly, by re-crawling and re-extracting,
say, every 30 minutes. In such cases applying IE from scratch
is inapplicable if it already takes more than 30 minutes. Fi-
nally, this solution is ill-suited for interactive debugging of
IE applications over dynamic corpora, because such debug-
ging often requires applying IE repeatedly to multiple cor-
pus snapshots. Thus, given the growing need for IE over
dynamic text corpora, it has now become crucial to develop
efficient IE solutions for these settings.

In response, we have recently developed Cyclex, a solu-



tion for IE over evolving text data [6]. The key idea un-
derlying Cyclex is to recycle previous IE results, given that
consecutive snapshots of a text corpus often contain much
overlapping content. For example, suppose that a snapshot
contains the text fragment “The Cimple project will meet in
CS 105 at 3 pm”, from which we have extracted “CS 105”
as a room number. Then under certain conditions (see Sec-
tion 3), if a subsequent corpus snapshot also contains this
text fragment, we can immediately conclude that “CS 105”
is a room number, without having to run (often expensive)
IE operations.

The Cyclex work clearly established that recycling IE re-
sults for evolving text corpora is highly promising. The work
itself however suffers from a major limitation: it considers
only IE programs that contain a single IE “blackbox.” Real-
world IE programs, in contrast, often contain multiple IE
blackboxes connected in a compositional “workflow.” As a
simple example, a program to extract meetings may employ
an IE blackbox to extract locations (e.g., “CS 105”), another
IE blackbox to extract times (e.g., “3 pm”), then pairs lo-
cations and times and keeps only those that are within 20
tokens of each other (thus producing (“CS 105”, “3 pm”) as
a meeting instance in this case).

The IE blackboxes are either off-the-shelf (e.g., down-
loaded from public domains or purchased commercially) or
hand-coded (e.g., in Perl or Java), and they are typically
“stitched together” using a procedural (e.g., Perl) or declar-
ative language (e.g., UIMA, Gate, xlog [17, 11, 28]). Such
multi-blackbox IE programs could be quite complex, for ex-
ample, 45+ blackboxes stacked in five levels in DBLife, and
25+ blackboxes stacked in seven levels in Avatar [15]. Since
Cyclex is not aware of the compositional nature of such IE
programs (effectively treating the whole program as a large
blackbox), its utility is severely limited in such settings.

To remove this limitation, in this paper we describe Delex,
a solution for effectively executing multi-blackbox IE pro-
grams over evolving text data. Like Cyclex, Delex aims at
recycling IE results. However, compared with Cyclex, devel-
oping Delex is fundamentally much harder, for three reasons.

First, since the target IE programs for Delex are multi-
blackbox and compositional, we face many new and diffi-
cult problems. For example, how should we represent multi-
blackbox IE programs, e.g., how to stitch together IE black-
boxes? How to translate such programs into execution plans?
At which level should we reuse such plans? We show for in-
stance that reusing at the level of each IE blackbox (i.e.,
storing its input/output for subsequent reuse), like Cyclex

does, is suboptimal in the compositional setting. Once we
have decided on the level of reuse, what kind of data should
we capture and store for subsequent reuse? Can we reuse
across IE blackboxes? These are examples of problems that
Cyclex did not face.

Second, since a target IE program now consists of many
blackboxes, all attempting reuse at the same time, Delex

faces a far harder challenge of coordinating their execution
and reuse to ensure efficient movement of large quantities
of data between disk and memory. In contrast, Cyclex only
had to worry about the efficient execution of a single IE
blackbox.

Finally, the main optimization challenge in Cyclex is to
decide which matcher to assign to the sole IE blackbox. (A
matcher encodes a way to find overlapping text regions be-
tween the current corpus snapshot and the past ones, for

the purpose of recycling IE results; see Section 3.) Thus,
the Cyclex plan space is bounded by the (relatively small)
number of matchers. In contrast, Delex can assign to each IE
blackbox in the program a different matcher. Hence, it must
search a blown-up plan space (exponential in the number of
blackboxes). To exacerbate the search problem, optimiza-
tion in this case is “non-decomposable;” i.e., we cannot just
optimize parts of a plan, then glue the parts together to
obtain an optimized whole.

In this paper we develop solutions to the above challenges.
As we will show in Sections 4-6, our solutions heavily exploit
properties of text and information extraction. Overall, we
make the following contributions.

• We establish that it is possible to exploit work done
by previous IE runs to significantly speed up complex,
multi-blackbox IE programs over evolving text. As far
as we know, Delex is the first solution to this important
problem.

• We show how to instrument such complex IE programs
for reuse. We decide the level of reuse, what to cap-
ture for reuse, and how to efficiently store the captured
results.

• We show how to reuse efficiently while executing an
instrumented IE program. The solution involves com-
plex coordination among multiple IE blackboxes on
extraction and reuse, across all data pages in a corpus
snapshot as well as across IE blackboxes.

• We show how to estimate cost of each plan (that con-
siders a reuse alternative), and how to efficiently search
a vast plan space for a good one.

• We conduct extensive experiments with both rule-based
and learning-based IE programs over two real-world
data sets to demonstrate the utility of our approach.
We show in particular that Delex can cut Cyclex’s time
by as much as 71%.

2. RELATED WORK
The problem of information extraction has received much

attention [26, 14, 2, 15, 10]. Numerous rule-based extrac-
tors (e.g., those relying on regular expressions or dictionaries
[12, 25]) and learning-based extractors (e.g., those employ-
ing classifiers, CRF models [30, 27, 26]) have been devel-
oped. Delex can handle both types of extractors (as we show
in the experiments).

Much work has tried to improve the accuracy and runtime
of these extractors [26]. But recent work has also considered
how to combine and manage such extractors in large-scale
IE applications [2, 15, 1]. Our work fits into this emerging
direction.

In terms of IE over evolving text data, Cyclex [6] is the
closest work to ours. But Cyclex is limited in that it con-
siders only IE programs that contain a single IE blackbox,
as we have discussed. [23] also considers evolving text data,
but in different problem contexts. They focus on how to
incrementally update an inverted index, as the indexed Web
pages change.

Recent work [31, 19] has also exploited overlapping text
data, but again in different problem contexts. These works
observe that document collections often contain overlapping
text. They then consider how to exploit such overlap to
“compress” the inverted indexes over these documents, and
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Figure 1: Two pages p and q of the same URL, re-
trieved at different times. A matcher has found that
regions u1 and u2 of page p match regions v1 and v2

of page q, respectively.

how to answer queries efficiently over such compressed in-
dexes. In contrast, we exploit the IE results over the over-
lapping text regions to reduce the overall extraction time.

Our work is also related to incremental view maintenance
[18] – namely, if changes to the input of a dataflow program
are small, then incrementally computing changes to the re-
sult can be more efficient than recomputing the dataflow
from scratch. But the works differ in many important ways.
First, our inputs are text documents instead of tables. Most
work on view maintenance assumes that changes to the in-
puts (base tables) are readily available (e.g., from database
logs), while we also face the challenge of how to characterize
and efficiently detect portions of the input texts that re-
main unchanged. Most importantly, view maintenance only
needs to consider a handful of standard operators with well-
defined semantics. In contrast, we must deal with arbitrary
IE blackboxes.

Finally, optimizing IE programs and developing IE-centric
cost models have also been considered in several recent pa-
pers [28, 20, 21]. These efforts however have considered only
static corpus contexts, not dynamic ones as we do in this pa-
per.

3. PROBLEM DEFINITION
Data Pages, Extractors, and Mentions: We now
briefly describe Cyclex [6], then build on it to define the
problem considered in this paper. Cyclex considers an appli-
cation that crawls a set of data sources at regular intervals
to retrieve data pages. We refer to the set of data pages
retrieved at time i as Pi, the i-th snapshot of the evolving
text corpus.

The goal of Cyclex is to extract a target relation R from
the data pages. To do so, it employs an extractor E, which
is typically a learning-based program or a set of extraction
rules encoded in, say, a Perl script [15]. Formally:

Definition 1 (extractor). An extractor
E : p→ R(a1, . . . , an) extracts mentions of relation R from
page p. A mention of R is a tuple (m1, . . . , mn), such that
mi is either a mention of attribute ai (i.e., a string in page
p that provides a value for ai) or nil (if E did not find a
value for ai).

For example, from page p in Figure 1, an extractor E may ex-
tract mention (“CS 105”,“2pm”) of the target relation MEET-
ING(room,time), where“CS 105”and“2pm”are mentions of
attributes room and time, respectively.

As Definition 1 suggests, we assume that E extracts men-
tions from each data page in isolation. Such per-page extrac-
tors are pervasive (e.g., constituting 94% of extractors in the
current DBLife [15, 28]). Hence, we currently consider only
such extractors, leaving multi-page extractors (e.g., those

that extract mentions spanning multiple pages) for future
work.

The Cyclex Problem and Solution: Given the above set-
ting, Cyclex then exploits IE results over past corpus snap-
shots P1, . . . , Pn to speed up IE over the current snapshot
Pn+1. The following example illustrates this idea.

Example 1. Figure 1 show two pages p and q with the
same URL, but obtained in consecutive snapshots. Suppose
that extractor E has extracted mention (“CS 105”, “2pm”)
from page p. When applying E to q, Cyclex attempts to recy-
cle the above result. To do so, it first “matches” q with p to
find overlapping text regions. Next, it copies over mentions
found in the overlapping regions (regions u1 and u2 of page
p in Figure 1, which match regions v1 and v2 of page q, re-
spectively), and then applies E only to the non-overlapping
portion of q (region v3 in this case).

To realize the above idea, Cyclex addresses a series of chal-
lenges. First, it develops a set of“matchers,”which find over-
lapping regions of two input pages. These matchers trade
off the completeness of result for running time, so each of
them may be appropriate under different circumstances.

Second, it turns out that we cannot simply copy over the
mentions in overlapping regions. To see why, suppose a hy-
pothetical extractor E extracts meetings only if a page has
fewer than five lines (otherwise E produces no meetings).
Then, none of the mentions of a four-line page p can be
copied over to a six-line page q, even if the text in p is fully
contained in q. To address this problem, a key idea behind
Cyclex is to model certain extractor properties, then exploit
them to reuse mentions and to guarantee the correctness of
the reuse.

Specifically, Cyclex defines two properties: scope and con-
text. An extractor E has scope α iff all of the mentions that
it extracts do not exceed α in length. Formally:

Definition 2 (extractor scope). Let s.start and
s.end be the start and end character positions of a string s

in a page p. We say an extractor E has scope α iff for any
mention m = (m1, . . . , mn) produced by E, (maxi mi.end−
mini mi.start) < α, where mi.start and mi.end are the start
and end character positions of attribute mention mi in page
p.

We say that extractor E has context β iff whether it ex-
tracts any mention m depends only on the small “context
windows” of size β to both sides of m. Formally:

Definition 3 (extractor context). The β-context
of mention m in page p is the string p[(m.start−β)..(m.end+
β)], i.e., the string of m being extended on both sides by β

characters. We say extractor E has context β iff for any
m and p′ obtained by perturbing the text of p outside the β-
context of m, applying E to p′ still produces m as a mention.

In the worst case, the scope and context of an extractor E

can be set to be the length of the longest page. In practice,
however, they often can be set to far smaller values with
some knowledge of how E works (e.g., by the developer,
or anyone with access to E’s code), as illustrated by the
following examples:

Example 2. To extract (room,time), suppose E always
extracts all room and time mentions, then pairs them and
keeps only those that are spanning at most 100 characters.
Then E’s scope can be set to 100.
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R1: titles(d,title) :- docs(d), extractTitle(d,title).

R2: abstracts(d,abstract) :- docs(d), extractAbstract(d,abstract).

R3: talks(d,title,abstract) :- titles(d,title), abstracts(d,abstract),

immBefore(title,abstract), approxMatch(abstract,“relevance feedback”).

Figure 2: (a) A multi-blackbox IE program P in xlog,

and (b) an execution plan for P.

Example 3. Suppose E produces string X as a topic if
X matches a pre-defined word (e.g., “IR”) and the word “dis-
cuss” occurs within a 30-character distance, either to the left
or to the right of X. Then the context of X can be set to 30.
That is, once E has extracted X as a topic, then no matter
how we perturb the text outside a 30-character window of X

(on both sides), E would still recognize X as a valid topic
mention.

The experiment section describes more examples of setting
the scope and context.

Using scope α and context β, Cyclex then shows how to
“safely” copy the mentions from past IE results [6]. The
smaller the values of α and β, the more IE results we can
“safely” reuse [6].

In the next step, since text corpora can be quite large
(e.g., tens of thousands or millions of pages), Cyclex devel-
ops a solution that efficiently interleaves the steps of page
matching, reusing, and re-extracting, over a large amount of
disk-resident data.

Finally, addressing the above challenges results in a space
of execution plans, where the plans differ mainly on the page
matcher employed. Thus, in the final step, Cyclex develops
a cost model and uses it to select the optimal plan. The
cost model is extraction-specific in that it models the rate
of change of the text corpus, the running time, and the result
size of extractors and matchers, among other factors.

The Generality of Our IE Model: It is important
to emphasize that the IE model defined above is quite gen-
eral. First, Definition 1 does not limit the type of extractor
“blackboxes” in our model. Such extractor blackboxes can
be either rule-based (e.g., those that rely on regular expres-
sions or dictionaries) or learning-based (e.g., those that use
classifiers or learning models such as CRFs, Hidden Markov
Models). In fact, our experiments in Section 8 show that
Delex can efficiently handle both types of extractors.

Second, so far we have defined extractor scope and context
at the character level (see Definitions 2-3), and in this paper,
for ease of exposition, we will limit our discussion to only
the character level. However, Cyclex and Delex can be easily
generalized to work with scope/context at higher-granularity
levels (e.g., word, sentence, paragraph), should that be more
appropriate for the target extractors.

Compositional, Multi-Blackbox IE Programs: As
discussed in Section 1, Cyclex has clearly demonstrated the
potential of recycling IE. However, it handles only single-
blackbox IE programs, which severely limits its applicability.
Thus, in this paper, we build on Cyclex to develop an efficient

solution for multi-blackbox IE programs.
To do so, we must first decide how to represent such pro-

grams. Many possible representations exist (e.g., [17, 11,
28]). As a first step, in this paper we will use xlog [28], a
recently developed declarative IE representation. Extending
our work to other IE representations is a subject for future
research.

We now briefly describe xlog (see [28] for a detailed discus-
sion). xlog is a Datalog variant with embedded procedural
predicates. Like Datalog, each xlog program consists of mul-
tiple rules p :− q1, . . . , qn, where the p and qi are predicates.
For example, Figure 2.a shows an xlog program P with three
rules R1, R2, and R3, which extract talk titles and abstracts
from seminar announcement pages. Currently xlog does not
yet support negation or recursion.

xlog predicates can be intensional or extensional, as in
Datalog, but can also be procedural. A procedural predi-
cate, or p-predicate for short, q(a1, . . . , an, b1, . . . , bm) is as-
sociated with a procedure g (e.g., written in Java or Perl)
that takes as input a tuple (a1, . . . , an) and produces as out-
put tuples of the form (a1, . . . , an, b1, . . . , bm). For example,
extractT itle(d, title) is a p-predicate in P that takes a doc-
ument d and returns a set of tuples (d, title), where title is
a talk title appearing in d. We define p-functions similarly.
We single out a special type of p-predicate that we call IE
predicate, defined as:

Definition 4 (IE predicate). An IE predicate q ex-
tracts one or more output text spans from a single input
span. Formally, q is a p-predicate q(a1, . . . , an, b1, . . . , bm),
where there exist i and j such that (a) ai is either a docu-
ment or a text span variable, (b) bj is a span variable, and
(c) for any output tuple (u1, . . . , un, v1, . . . , vm), ui contains
vj (i.e., q extracts span vj from span ui).

In Figure 2.a, extractT itle(d, title) is an IE predicate that
extracts title span from document d. The p-predicate
extractAbstract(d, abstract) is another IE predicate, whereas
immBefore(title, abstract) (a p-predicate that evaluates to
true if title occurs immediately before abstract) is not.

Thus, an xlog program cleanly encapsulates multiple IE
blackboxes using IE predicates, and then stitches them to-
gether using Datalog. To execute such a program, we must
translate (and possibly optimize) it to obtain an execution
plan that mixes relational operators with blackbox proce-
dures. Figure 2.b shows a possible execution plan T for pro-
gram P in Figure 2.a. T extracts all titles and abstracts from
d, and keeps only those (title, abstract) pairs where the title
occurs immediately before the abstract. Finally, T retains
only talks whose abstracts contain the phrase “relevance
feedback” (allowing for misspelling and synonym matching).

Problem Definition: We are now in a position to define
the problem considered in this paper.

Problem Definition Let P1, . . . , Pn be consecutive snap-
shots of a text corpus, P be an IE program written in xlog,
E1, . . . , Em be the IE blackboxes (i.e., IE predicates) in P,
and (α1, β1), . . . , (αm, βm) be the estimated scopes and con-
texts for the blackboxes, respectively. Develop a solution to
execute P over corpus snapshot Pn+1 with minimal cost, by
reusing extraction results over P1, . . . , Pn.

To address this problem, a simple solution is to detect iden-
tical pages, then reuse IE results on those. This reuse-at-
page-level solution however provides only limited reuse op-
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portunities, and does not work well when the text corpus
changes frequently.

Another solution is to apply Cyclex to the whole program
P, effectively treating it as a single IE blackbox. We how-
ever found that this reuse-at-whole-program-level solution
does not work well either (see Section 8). The main reason
is that estimating “tight” α and β for the whole IE program
P is very difficult. Whether we do so directly, by analyzing
the behavior of P (which tends to be a large and complex
program), or indirectly, by using the (αi, βi) of its compo-
nent blackboxes, we often end up with large α and β, which
limit reuse opportunities.

These problems suggest that we should try to reuse at a
finer granularity: regions in a page instead of whole page,
and at a finer level: program components instead of whole
program. The Delex solution captures this intuition. In the
rest of the paper we describe Delex in detail.

4. CAPTURING IE RESULTS
We will explain Delex in a bottom-up fashion. Let T be

an execution plan of the target IE program P (see Problem
Definition). In this section we consider what to capture for
reuse, when executing T on a corpus snapshot Pn.

Section 5 then discusses how to reuse the captured result
when executing T on Pn+1. Section 6 describes how to select
such a plan T in a cost-based fashion. Section 7 puts all of
these together and describes the end-to-end Delex solution.

In what follows we describe how to decide on the level
of reuse, what to capture, and how to store the captured
results, when executing T on snapshot Pn.

Level of Reuse: Recall that we want to reuse at the
granularity of program components, instead of the whole
program. The question is which components. A natural
choice would be the individual IE blackboxes. For example,
given the execution tree1 T in Figure 3.a, the four IE black-
boxes E1, . . . , E4 would become “reuse units,” whose input
and output would be captured for subsequent reuse.

Reusing at the IE-blackbox level however turns out to
be suboptimal. To explain, consider for instance blackbox
E1 (Figure 3.a), and let σ(E1) denote the edge of T that
applies the selection operator σ to the output of E1. Instead
of storing the output of E1, we can store that of σ(E1).
Doing so does not affect reuse (as we will see below), but is
better in two ways. First, it would incur less storage space,
because σ(E1) often produces far fewer output tuples than
E1. Second, less storage space in turn reduces the time of

1In the rest of the paper we will use “tree,”“execution tree,”
and “execution plan” interchangeably.

writing to disk (while executing T on Pn) and reading from
disk (for reuse, while executing T on Pn+1). Consequently,
we reuse at the level of IE units, defined as

Definition 5 (IE Unit). Let X = N1 ← N2 ← · · · ←
Nk denote a path on tree T that applies Nk−1 to Nk, Nk−2 to
Nk−1, and so on. We say X is an IE unit of T iff (a) Nk is
an IE blackbox, (b) N1, . . . , Nk−1 are relational operators σ

and π, and (c) X is maximal in that no other path satisfying
(a) and (b) contains X.

For example, tree T in Figure 3.a consists of four IE units
U, V, Y , and Z, as shown in Figure 3.b.

In essence, each IE unit can be viewed as a generalized
IE blackbox, with similar notions of scope α and context β.
In this setting, it is easy to prove that we can set the (α, β)
of an IE unit N1 ← N2 ← · · · ← Nk to be exactly those of
the IE blackbox Nk. This property is desirable and explains
why we do not include join operator ⊲⊳ in the definition of
IE unit: doing so would prevent us from guaranteeing the
above “wholesale transfer” of (α, β) values.

IE Results to Capture: Next we consider what to cap-
ture for each IE unit U of tree T . Conceptually, each such
unit U (which is an IE blackbox E augmented with σ and π

operators, whenever possible) can be viewed as extracting a
set of mentions from a text region of a document. Formally,
we can write U : (did, s, e, c)→ {(did, m, c′)}, where

• did is the ID of a document d,

• s and e are the start and end positions of a text region
S in d,

• c denotes the rest of the input parameter values (see
the example below),

• m denotes a mention (of a target relation) extracted
from text region S, and

• c′ denotes the rest of the output values.

Example 4. Consider a hypothetical IE unit
σallcap(title)(extractT itle(d, maxlength, title, numtitles)),

which extracts all titles not exceeding maxlength from doc-
ument d, selects only those in all capital letters, and outputs
them as well as the number of such titles.

Here, for the input tuple, did is the ID of document d,
s and e are the positions of the first and last characters of
d (because text region S is the entire document d), and c

denotes maxlength. For the output tuple, m is an extracted
title, and c′ denotes numtitles.

In order to reuse the results of U later, at the minimum
we should record all mentions m produced by U (recall that
given an input tuple (did, s, e, c), U produces as output a set
of tuples (did, m, c′)). Then, whenever we want to apply U

to a region S in a page p, we can just copy over all mentions
of a region S′ in some page q in a past snapshot, which
we have recorded when applying U to S′, provided that S

matches S′ and that it is safe to copy the mentions (see
Section 3).

This is indeed what Cyclex does. In the Delex context,
however, it turns out that since we employ multiple IE black-
boxes that can be “stacked” on top of one another, we must
record more information to guarantee correct reuse, as the
following example illustrates.



Example 5. Consider a page p = “Midwest DB Courses:
CS764 (Wisc), CS511 (Illinois)”. Suppose we have applied
an IE unit V to p to remove the headline (by ignoring all
text before “:”), and then applied another IE unit U to the
rest of the page to extract locations “Wisc” and “Illinois”.

Suppose the next day the page is modified into p′ = “Mid-
west DB Courses This Year CS764 (Wisc), CS511 (Illi-
nois)”, where character “:” has been omitted (and some new
text has been added). Consequently, V does not remove any-
thing from p′, and p′ ends up sharing the region S = “Mid-
west DB Courses” with p. Thus, when applying U to p′,
we will attempt to copy over mentions found in this region.
Since no such mention was recorded, however, we will con-
clude that applying U to region S in p′ produces no mention.
This conclusion is incorrect, since “Midwest” is a valid loca-
tion mention in S.

The problem is that no mention has been recorded in re-
gion S for U and p, not because U failed to extract any such
mentions from S, but rather because U has never been ap-
plied to S. U can only take as input whichever regions V

outputs, and V did not output S when it operated on p.

Thus, we must record not only the previously extracted
mentions, but also the text regions that an IE unit has op-
erated over. Specifically, for an IE unit U : (did, s, e, c) →
{(did, m, c′)}, we record all pairs (s, e) and the mentions m

associated with those. It is easy to see that we must record
c as well, for otherwise we do not know the exact conditions
under which a mention m was produced, and hence cannot
recycle it appropriately.

Storing Captured IE Results: We now describe how
to store the above intermediate results while executing tree
T on a corpus snapshot Pn. Our goal is to produce, at the
end of the run on Pn, two reuse files In

U and On
U for each IE

unit U in tree T .
During the run, whenever U takes as input a tuple (did, s, e,

c), we append a tuple (tid, did, s, e, c), where tid is a tuple
ID (unique within In

U ), to In
U , to capture the region that

U operates on. Whenever U produces as output a tuple
(did, m, c′), we append a tuple (tid, itid, m, c′) to On

U , to
capture the mentions extracted by U . Here, tid is a tuple
ID (unique within On

U ), and itid is the ID of the tuple in
In

U that specifies the text region from which m is extracted.
Hence, tuples are appended to In

U and On
U in the order they

are generated. After executing T over Pn, each IE unit U is
associated with two reuse files In

U and On
U that store inter-

mediate IE results for U for later reuse.
To avoid excessive disk writes caused by individual append

operations, we use one block of memory per reuse file to
buffer the writes. Whenever a block fills up, we flush the
buffered tuples to the end of the corresponding reuse file.
The memory overhead during execution is 2|T | blocks (one
per file), where |T | is the number of IE units in T . The I/O
overhead, same as the total storage requirement for reuse
files, is exactly

P

U∈T
(B(In

U )+B(On
U )) blocks, where B(In

U )
and B(On

U ) represent the number of blocks occupied by In
U

and On
U , respectively. Although it is conceivable for an IE

unit to produce more mentions than the size of the input
document, in practice the number of mentions is usually no
more (and often far smaller) than the input size. Therefore,
both the total storage and the I/O overhead are usually
bounded by O(|T |B(Pn)), where B(Pn) denotes the size of
Pn in blocks.
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Figure 4: Movement of data between disk and mem-
ory during the execution of IE unit U on page p1.

5. REUSING CAPTURED IE RESULTS
We have described how to capture IE results in reuse files

while executing a tree T on snapshot Pn. We now describe
how to use these results to speed up executing T over the
subsequent snapshot Pn+1.

5.1 Scope of Mention Reuse
As discussed earlier, to reuse, we must match each page

p ∈ Pn+1 with pages in the past snapshots, to find overlap-
ping regions. Many such matching schemes exist. Currently,
we match each page p only with the page q in Pn at the same
URL as p. (If q does not exist then we declare p to have no
overlapping regions.) This simplification is based on the
observation that pages with the same URL often change rel-
atively slowly across consecutive snapshots, and hence often
share much overlapping data. Extending Delex to handle
more general matching schemes, such as matching within
the same Web site, or matching over all pages of all past
snapshots, is an ongoing work.

5.2 Overall Processing Algorithm
Within the above reuse scope, we now discuss how to pro-

cess Pn+1. Since Pn+1 can be quite large (tens of thousands
or millions of pages), we will scan it only once, and process
each page in turn in memory in a streaming fashion.

In particular, to process tree T on a page p ∈ Pn+1 (once
it has been brought into memory), we need page q ∈ Pn

(the previous snapshot) with the same URL, as well as all
intermediate IE results that we have recorded while execut-
ing tree T on q. These IE results are scattered in various
reuse files (Section 4), which can be large and often do not
fit into memory. Consequently, we must ensure that in ac-
cessing intermediate IE results, we do not probe the reuse
files randomly. Rather, we want to read them sequentially
and access IE results in that fashion.

The above observation led us to the following algorithm.
Let q1, q2, . . . , qk be the order in which we processed pages
in Pn. That is, we first executed T on q1, then on q2, and
so on. The way we wrote reuse files, as described earlier in
Section 4, ensures that the IE results in each reuse file are
stored in the same order. For example, In

U stores all input
tuples (for U) on page q1 first, then all input tuples on page
q2, and so on.

Consequently, we will process pages in Pn+1 following the
same order. That is, let pi be the page with same URL as
qi, i = 1, . . . , k. Then we process p1, then p2, and so on.
(If a page p ∈ Pn+1 does not have a corresponding page in
Pn, then we can process it at any time, by simply running
extraction on it.) By processing in the same order, we only
need to scan each reuse file sequentially once.



Figure 4 illustrates the above idea. Suppose we are about
to process page p1 ∈ Pn+1. First, we read p1 and q1 into
memory (buffers B1 and B2 in the figure).

Next, we execute T on p1 in a bottom-up fashion. Con-
sider the execution tree T in Figure 3.b. We start with
executing IE unit U . To do so, we bring all intermediate
IE results recorded while executing U on q1 (back when we
processed Pn) into memory. Specifically, let In

U (q1) denote
the input tuples for U on page q1. Since q1 is the first page
in Pn, In

U (q1) must appear at the beginning of file In
U , and

hence can be immediately brought into memory (buffer B3

in Figure 4). Similarly, On
U (q1)—the tuples output by U on

page q1—must occupy the beginning of file On
U and can be

immediately read into memory (buffer B4 in Figure 4).
The details of how to execute IE unit U on p1 will be

presented next in Section 5.3. Roughly speaking, we identify
overlapping regions between q1 and p1, and leverage In

U (q1)
and On

U (q1) for reuse. Note that In
U (q1) and On

U (q1) store
only the start and end positions of regions in q1, so we need
q1 in memory to access these regions. During the execution
of U on p1, we produce the input and output tuples of U ,
In+1

U (p1) and On+1
U (p1), in memory (buffers B5 and B6 in

Figure 4, respectively). As described in Section 4, these
tuples are also appended to reuse files In+1

U and On+1
U .

Once we are done with U (for p1), memory reserved for
In

U (q1), On
U (q1), and In+1

U (p1) can be discarded; however,
On+1

U (p1) will be retained in memory until it is consumed
by the parent operator or IE unit of U in T (in this case,
the join operator in Figure 3.b).

Next, we move on to IE unit V . We read in In
V (q1) and

On
V (q1) from the corresponding reuse files In

V and On
V , and

generate In+1
V (p1) and On+1

V (p1) in memory. Again, once V

finishes, only On+1
V (p1) needs to stay in memory to provide

input to V ’s parent in T . This process continues until we
have executed the entire T .

Once the entire T finishes execution on p1, we move on
to process T on page p2, then p3, and so on. Note that
each time we process a page pi, the intermediate IE results
of qi will be at the start of the unread portion of the reuse
files, and thus can be read in easily. Consequently, we only
have to scan each reuse file once during the entire run over
Pn+1. The total number of I/Os is thus

P

U∈T
(B(In

U ) +

B(On
U ) + B(In+1

U ) + B(On+1
U )) + B(Pn) + B(Pn+1), i.e.,

one pass over the current and previous corpus snapshots
and all reuse files for the two snapshots. At any point in
time (say, when executing IE unit U on page pi), we only
need to keep in memory pi, qi, In

U (qi), On
U (qi), In+1

U (pi),
On+1

U (pi), as well as On+1
U′ (pi) for any child U ′ of U . There-

fore, the maximum memory requirement for the algorithm
(not counting memory needed for buffering writes to reuse
files discussed in Section 4, or by the IE units and rela-
tional operators themselves) is O(maxi(B(pi)+B(qi)+(F (T )+

1) maxU∈T (B(In
U (qi)), B(On

U (qi)), B(In+1
U

(pi)), B(On+1
U

(pi)))))

blocks, where F (T ) is the maximum fan-in of T . In prac-
tice, under the reasonable assumption that the total size
of the extracted mentions is linear in the size of the input
page, the memory requirement comes down to O((F (T ) +
1)maxi(B(pi) + B(qi))).

5.3 IE Unit Processing
We now describe in more detail how to execute an IE

unit U on a particular page p (in snapshot Pn+1), whose
previous version is q (in snapshot Pn). The overall algorithm

E x t r a c t i o nr e g i o n sC o p yr e g i o n s
M a t c h i n g

Figure 5: An illustration of executing an IE unit.

is depicted in Figure 5.
We start with In+1

U (p), the set of input tuples to U . Each
input tuple (tid, did, s, e, c) ∈ In+1

U (p) represents a text re-
gion [s, e] of page p to which we want to apply U , with
additional input parameter values d. There are two cases.
If U has a child in T , this set is produced by the execution
of the child. If U is a leaf in T , which operates directly on
page p, there is only one input tuple (did, s, e, c), where did

is the ID of p, s and e are set to 0 and the length of p, and
c denotes all other input parameters.

To identify reuse opportunities, we consult In
U (q), which

contains the input tuples to U when it executed on q. This
set is read in from the reuse file In

U as discussed in Sec-
tion 5.2. Each tuple in In

U (q) has the form (tid′, did′, s′, e′, c′),
where did′ is the ID of q, and c′ records the values of ad-
ditional input parameters that U took when applied to re-
gion [s′, e′] of q. To find results to reuse for input tuple
(did, s, e, c) ∈ In+1

U (p), we “match” the region [s, e] of p with
regions of q encoded by tuples in In

U (q) with c′ = c. This
matching is done using one of the matchers to be described
later in Section 5.4 (Section 6 discusses how to select a good
matcher).

We repeat the matching step for each input tuple in In+1
U (p)

to find its matching input tuples in In
U (q). From the corre-

sponding pairs of matching regions in p and q as well as the
scope and context properties of U (Section 3), we derive the
extraction regions and copy regions. Because of space con-
straint, we do not discuss the derivation process further, but
instead refer the reader to [6] for details.

Extraction regions require new work: we run U over these
regions of p. Copy regions represent reuse. If a copy region
is derived from input tuple (tid′, did′, s′, e′, c′) ∈ In

U (q), we
find the joining output tuples (with the same tid′) in On

U (q).
Recall that On

U (q) contains the output tuples of U when it
executed on q, and this set is read in from the reuse file
On

U as discussed in Section 5.2. The On
U (q) tuples with tid′

represent the mentions extracted from region [s′, e′] of q,
which can be reused by U to produce output tuples for the
corresponding copy region.

Regardless of how U produces its output tuples (through
reuse or new execution), they are appended to the reuse file
On+1

U (as described in Section 4), and kept in memory until
consumed by a parent operator or IE unit in T (as described
in Section 5.2).

5.4 Identifying Reuse With Matchers
Delex currently employs four matchers—DN, UD, ST, and

RU—for matching regions between two pages (more match-
ers can be easily plugged in as they become available). We
describe the first three matchers here only briefly, since they



come from Cyclex. Then, we focus on RU, a novel contribu-
tion of Delex that allows sharing the work of matching across
IE units.

Given two text regions R (of page p ∈ Pn+1) and S (of
page q ∈ Pn) to match, DN immediately declares that the
two regions have no matching portions, incurring zero run-
ning time. Using DN thus amounts to applying IE from
scratch to R. UD employs a Unix-diff-command like algo-
rithm [24]. It is relatively fast (takes time linear in |R|+|S|),
but finds only some matching regions. ST is a suffix-tree
based matcher, which finds all matching regions of R using
time linear in |R| + |S|. We do not discuss these Cyclex

matchers further; see [6] for more details.
The development of RU is based on the observation that

we can often avoid repeating much of the matching work
for different IE units. This opportunity does not arise in
Cyclex because Cyclex considers only a single IE blackbox.
To illustrate the idea in a multi-blackbox setting, consider
again executing tree T of Figure 3.b on page p ∈ Pn+1, and
suppose that we execute IE units U , V , Y , and Z, in that
order. During U ’s execution we would have matched page
p with page q ∈ Pn with the same URL to find overlapping
regions on which we can reuse mentions.

Now consider executing V . Here, we would need to match
p and q again; clearly, we should take advantage of the
matching work we have already performed on behalf of U .
Next, consider executing Y . Here, we often have to match
a region R of p with a set of regions S1, . . . , Sk of q (as
described in Section 5.3) to detect overlapping regions (on
which we can reuse mentions produced by Y on page q).
However, since we have already matched p with q while exe-
cuting U , we should be able to leverage that result to quickly
find all overlapping regions between R of p and Si of q.

In general, since all regions to be matched by IE units
of an execution tree come from two pages (one from Pn

and the other from Pn+1), and since IE units often match
successively smaller regions that are extracted from longer
regions (matched by lower IE units), it follows that higher-
level IE units can often reuse matching results of lower ones,
as described earlier.

We now briefly describe RU, a novel matcher that draws on
this idea. While T executes on a page p, RU keeps track of all
triples (R, S,O), whenever a ST or UD matcher has matched
a region R of p with a region S of q and found overlapping
regions O. Now suppose an IE unit X calls RU to match
two regions R′ and S′. RU computes the intersection of R′

with all recorded R regions, the intersection of S′ with all
recorded S regions, and then uses these intersections and
the recorded overlapping regions O to quickly compute the
set of overlapping regions for R′ and S′. We omit further
details for space reasons.

The four matchers in Delex make different trade-offs be-
tween result completeness and runtime efficiency. The next
section discusses how Delex assigns appropriate matchers to
IE units, thereby selecting a good IE plan.

6. SELECTING A GOOD IE PLAN
Given an execution tree T , we now discuss how to select

appropriate matchers for T using a cost-based approach. We
first describe the space of alternatives, then our cost-driven
search strategy, and finally the cost model itself.

Z
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C4C2 C3
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U1 VU2 U3

UD DN ST
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Figure 6: IE chains and sharing the work of match-
ing across them.

6.1 Space of Alternatives
For each corpus snapshot, we consider assigning a matcher

to each IE unit of tree T , and then use the so-augmented
tree to process pages in the snapshot. Let |T | be the number
of IE units in T , and k be the number of matchers available
to choose (Section 5.4). We would have a total of up to k|T |

alternatives. For ease of exposition, we will refer to such an
alternative as an IE plan whenever there is no ambiguity.

Note that we could make the choice of matchers at even
finer levels, such as whenever we must match two regions
(while executing T on a page p). However, such low-level
assignments would produce a vast plan space that is practi-
cally unmanageable. Hence, we assign matchers only at the
IE-unit level. Even at this level, the plan space is already
huge, ranging from 1 million plans for 10 IE units and four
possible matchers, to 1 billion plans for 15 IE units, and
beyond.

Furthermore, for most plans in this space, optimization is
not “decomposable,” in that “gluing” the locally optimized
subplans together does not necessarily yield a globally opti-
mized plan. The following example illustrates this point.

Example 6. Consider a plan of two IE units A(B), where
we apply A to the output of B. When optimizing A and B in
isolation, we may find that matcher UD works best for both.
So the best global plan appears to be applying UD to both
units. However, when optimizing A(B) as whole, we may
find that applying ST to A and RU to B produces a better
plan. The reason is that for A ST may be more expensive
(i.e., takes longer to run) than UD, but it generates more
matching regions, and B can just use RU to recycle these
regions at a very low cost.

For the above reasons, we did not look for an exact algo-
rithm that finds the optimal plan. Rather, as a first step, in
this paper we develop a greedy solution that can quickly find
a good plan in the above huge plan space. We now describe
this solution.

6.2 Searching for Good Plans
Our solution breaks tree T into smaller pieces, finds a good

plan for some initial pieces, and iteratively builds on them
to find a good plan to cover other pieces until the entire T is
covered. To describe the solution, we start with the concept
of IE chain:

Definition 6 (IE Chain). An IE chain is a path in
tree T such that (a) the path contains a sequence of IE units
A1, · · · , Ak, (b) the path begins with A1 and ends with Ak,
(c) between each pair of adjacent IE units Ai and Ai+1, there
are no other IE units, and Ai extracts mentions from regions
output by Ai+1, and (d) the chain is maximal in that we can



Algorithm 1 Searching for Execution Plan

1: Input: IE execution tree T
2: Output: execution plan G
3: C ⇐ partition T //C is a set of chains
4: C1, · · · , Ch ⇐ sort C in decreasing order of cost estimate
5: g1 ⇐ findBest(C1)
6: G ⇐ {g1}
7: for 2 ≤ i ≤ h do

8: g′

i ⇐ findBest(Ci)
9: B ⇐ bottom IE units for all chains in G

10: if (any U ∈ B has the raw data page as input and is assigned
ST or UD) then

11: g′′

i ⇐ assign RU to all IE units of Ci reusing the matching
results of U

12: gi ⇐ select g′

i or g′′

i with the smaller cost estimate
13: G ⇐ G ∪ {gi}
14: else

15: G ⇐ G ∪ {g′

i}
16: end if

17: end for

Procedure FindBest(Ci)
1: Input: chain Ci = A1(A2(· · · (Ak) · · · ))
2: Output: best execution plan for Ci in Mi, where Mi is the set

of plans each having at most one IE unit Aj , 1 ≤ j ≤ k, assigned
matcher ST or UD.

3: M′

i ⇐ ∅
4: g ⇐ assign DN to each Aj , 1 ≤ j ≤ k
5: M′

i ⇐ M′

i ∪ {g}
6: for 1 ≤ j ≤ k do

7: g ⇐ assign ST to Aj , RU to Am, 1 ≤ m < j, and DN to An,
j < n ≤ k

8: M′

i ⇐ M′

i ∪ {g}
9: g ⇐ assign UD to Aj , RU to Am, 1 ≤ m < j, and DN to An,

j < n ≤ k
10: M′

i ⇐ M′

i ∪ {g}
11: end for

12: for each g ∈ M′

i, estimate its cost using the cost model
13: return the g with the smallest cost estimate

not add another IE unit to its beginning or end and obtain
another chain satisfying the above properties.

For example, an IE execution tree
extractTopics(extractAbstract(d, abstract)) is itself a chain
because the IE unit extractAbstract extracts abstracts from
a document d, and then feeds them to IE unit extractTopics,
which in turn extracts topic strings from the abstract.

Note that the above definition allows two adjacent IE units
to be connected indirectly by relational operators that do
not belong to any IE units. For example, the chain C1 in
Figure 6.a consists of the sequence of IE units Z, Y , U ,
where Y and U are connected by project-join (and Y ex-
tracts mentions from a text region output by U).

It is relatively straightforward to partition any execution
tree T into a set of IE chains. Figure 6.a shows for example
a partition of such a tree into two chains C1 and C2. Note
that this is also the only possible partition created by Def-
inition 6, given that Y extracts mentions only from a text
region output by U (not from any text region output by
V ). In general, given a tree T , Definition 6 creates a unique
partition of T into IE chains.

We define the concept of IE chain because, within each
chain, it is relatively easy to find a good local plan, as we
will see later. Unfortunately, we cannot just find these lo-
cally optimal plans independently, and then assemble them
together to form a good global plan. The reason is that
chains can reuse results of other chains, and this reuse of-
ten leads to a substantially better plan (than one that does
not exploit reuse across chains), as the following example
illustrates.

Example 7. Suppose we have found a good plan for chain
C1 in Figure 6.a, and this plan applies matcher ST for IE
unit U . That is, for each page p in snapshot Pn+1, U applies
ST to match p with q, the page with the same URL in Pn.
Assuming that the running time of matcher RU is negligible
(which it is in practice), the best local plan for chain C2 is
to apply matcher RU in IE unit V . Since V must also match
p and q, RU will enable V to recycle matching results of U ,
with negligible cost.

Thus, optimality of IE chains is clearly “interdependent.”
To take such interdependency into account and yet keep the
search still manageable, we start with one initial chain, find
a good plan for it in isolation, then extend this plan to cover
a next chain, taking into account cross-chain reuse, and so
on, until we have covered all chains. Our concrete algorithm
is as follows (Algorithm 1 shows the full pseudo code).

1. Sort the IE Chains: Using the cost model (see the
next subsection), we estimate the cost of each IE chain if
extraction were to be performed from the scratch in all IE
units of the chain. We then sort the chains in decreasing
order of this cost. Without loss of generality, let this order
be C1, . . . , Ch.

2. Find a Good Plan g for the First Chain: Since
the first chain is the most expensive, we give it the maxi-
mum amount of freedom in choosing matchers. To do so, we
enumerate the following set of plans for the first chain C1

(based on the heuristics that we explain below):

1. a plan that assigns matcher DN to all IE units of C1;

2. all plans that assign ST to an IE unit U of C1, RU to
all“ancestor”IE units of U , and DN to all“descendant”
IE units of U ;

3. all plans that assign UD to an IE unit U of C1, RU to
all“ancestor”IE units of U , and DN to all“descendant”
IE units of U .

We then use the cost model to select the best plan g from
the above set.

Since the cost of RU is negligible in practice (as remarked
earlier), it is easy to prove that the above set of plans domi-
nates the setM of plans where each plan employs matchers
ST and UD at most once, i.e., at most one IE unit in the
plan is assigned a matcher that is either ST or UD. Thus,
the plan we select will be the best plan from M.

We do not examine a larger set of plans because any plan
outside M would contain at least either two ST matchers,
or two UD matchers, or an ST matcher together with a UD

matcher. Since the cost of these matchers are not negligi-
ble, our experiments suggest that plans with two or more
such matchers tend to incur high overhead. In particular,
they usually underperform plans where we apply just one
such expensive matcher relatively early on the chain, and
then apply only RU matcher afterward. For this reason, we
currently consider only the plan spaceM.

3. Extend Plan g to Cover the Second Chain: First,
we repeat the above Step 2 (but replacing C1 with C2), to
find a good plan g′ for the second chain C2.

Next, let U be the bottom IE unit of chain C1. Suppose
the best plan g for C1 assigns either matcher ST or UD to U .
Then we can potentially reuse the results of this matcher for
C2 (if C2 is executed later than C1 in T ). Hence, we consider



a Average number of input tuples in IU per page

b Size of IU on disk (in blocks)

c Size of OU on disk (in blocks)

d Size of all pages on disk (in blocks) in a snapshot

l Average length of a region encoded by an input tuple

m Number of pages in a single snapshot

v Number of buckets in the in-memory hash table of copy regions

(a) Meta data statistics

f Fraction of pages with an earlier version in the previous snapshot

s Number of times a matcher is invoked on a region encoded by an input tuple

g After matching region R, the ratio of resulting extraction regions to R (in length)

h Number of copy regions generated from matching a region

(b) Selectivity statistics 

Figure 7: Cost model parameters.

a reuse-across-chains plan g′′ that assigns matcher RU to all
IE units of C2 (and directing them to reuse from IE unit U

of C1).
We then compare the estimated cost of g′ and g′′, and

select the cheaper one as the best plan found for chain C2.

4. Cover the Remaining Chains Similarly: We then
repeat Step 3 to cover the remaining chains. In general, for
a chain Ci, we could have as many reuse-across-chains plans
as the number of chains in the set {C1, . . . , Ci−1} that assign
matcher ST or UD to their bottom IE units.

Example 8. Figure 6.b depicts a situation where we have
found the best plans for chains C1, C2, and C3. These plans
have assigned matchers UD, DN, and ST to the bottom IE
units U1, U2, and U3, respectively. Then, when considering
chain C4, we will create two reuse-across-chains plans: the
first one reuses the results of matcher UD of U1, and the
second reuses the results of matcher ST of U3 (see the figure).

Once we have covered all the chains, we have found a
reasonable plan for execution tree T . Our experiments in
Section 8 show that such plans prove quite effective on our
real-world data sets.

6.3 Cost Model
We now describe how to estimate the runtime of an execu-

tion plan. Since the difference among all plans is how they
execute the IE units of tree T (Section 6.1), we focus on the
cost incurred by executing IE units, and ignore other costs.
Therefore, we estimate the cost of a plan to be

P

U∈T
tU ,

where tU denotes the elapsed time of executing the IE unit
U .

For an IE unit U , we further model tU as the sum of
the elapsed time of the steps involved in executing U (Sec-
tion 5.3). We model the elapsed time of each step as a
weighted sum of I/O and CPU costs to capture the elapsed
times of highly tuned implementations that overlap I/O with
CPU computation (in which case, the dominated cost com-
ponent will be completely masked and therefore have weight
0) as well as simple implementations that do not exploit par-
allelism.

To model tU , our cost model employs three categories of
parameters. The first category of parameters (listed in Fig-
ure 7.(a)) are the meta data of data pages and intermediate
results. For these parameters, we use subscript n to repre-
sent the value of the parameter on snapshot n. For example,

an denotes the average number of input tuples in In
U (q) for

a page q ∈ Pn.
The second category of parameters (listed in Figure 7.(b))

are selectivity statistics of a matcher. The last category of
parameters are I/O and CPU cost weights w, whose sub-
scripts reflect which step incur the associated costs. For all
parameters, we use hatted variables to represent parameters
are estimated.

We now describe tU as follows. tU consists of 4 cost com-
ponents in executing U . The first cost component is the cost
of identifying regions encoded by input tuples (tid, did, s, e, c)
∈ In+1

U and (tid′, did′, s′, e′, c′) ∈ In
U where c = c′. We model

the cost component as:

ŵ1,IO · bn + ŵ1,find · an · ân+1 ·mn+1 · f̂ (1)

The term ŵ1,IO ·bn models the I/O cost of reading in In
U into

buffer. The term an · ân+1 ·mn+1 · f̂ models the total number
of comparisons between arguments c and c′ for input tuples
in In

U and In+1
U respectively.

The second cost component is the cost of matching the
regions identified in the first step. We model this component
as:

ŵ2,IO · dn · f̂ + ŵ2,mat · ân+1 ·mn+1 · f̂ · ŝ · l̂ (2)

This model accounts for the I/O cost of reading in pages
in Pn and the CPU cost of applying matchers. The term
dn · f̂ estimates the size (in disk blocks) of raw data pages
in Pn that share the same URL, since we only match same
URL pages (see Section 5.1). The term ân+1 ·mn+1 · f · s
estimates the total number of times we apply the matcher
when executing U on Pn+1.

The third cost component is the cost of applying U to all
extraction regions. We model this component as:

ŵ3,ex · (ân+1 ·mn+1 · (1− f̂) · l̂ + ân+1 ·mn+1 · f̂ · l̂ · ĝ)
(3)

We will apply U to those input tuples (in In+1
U ) on pages

in Pn+1 that do not have an earlier version in Pn. The
term ân+1 · mn+1 · (1 − f̂) · l̂ estimates the total length of
regions encoded in those tuples. In addition, we also need
to apply U to the extraction regions on pages Pn+1 that
do have an earlier version in Pn. The term ân+1 · mn+1 ·
f̂ · l̂ · ĝ estimates the length of these extraction regions. In
particular, g measures, on average, the fraction of a region
we still need to apply U after we match it using a matcher.

The last cost component is the cost of reusing output tu-
ples for copy regions. We model this component as:

ŵ4,IO · cn + ŵ4,copy · an ·mn ·
ân+1 ·mn+1 · f̂ · ĥ

v
(4)

The formula models the I/O cost of reading in On
U and the

CPU cost of probing the copy regions to determine whether
to copy each mention. Delex stores the copy regions in a

hash table to facilitate fast lookups. The term
ân+1·mn+1·f̂ ·ĥ

v

estimates the number of hash table entries per bucket.
Notice that we ignore the costs of reading the raw data

pages in Pn+1 and writing out the intermediate results and
the final target relation, since these costs are the same for
all plans.

Given the cost model, we then estimate the parameters
using a small sample S of Pn+1 as well as the past k snap-
shots, for a pre-specified k. Since our parameter estimation
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Figure 8: Data sets and IE programs for our exper-
iments

techniques are similar to those in Cyclex, we do not discuss
the details any further.

7. PUTTING IT ALL TOGETHER
We now describe the end-to-end Delex solution. Given

an IE program P written in xlog, we first employ the tech-
niques described in [28] to translate and optimizes P into an
execution tree T , and then pass T to Delex.

Given a corpus snapshot Pn+1, Delex first employs the op-
timization technique described in Section 6 to assign match-
ers to the IE units of T . Next, Delex executes the so-
augmented tree T on Pn+1, employing the reuse algorithm
described in Section 5 and the reuse files it produced for
snapshot Pn. During execution, it captures and stores in-
termediate IE results (for reuse in the subsequent snapshot
Pn+2), as described in Section 4.

Note that Delex executes essentially the same plan tree T

on all snapshots. The only aspect of the plan that changes
across snapshots is the matchers assigned to the IE units.
Our experiments in Section 8 show that for our real-world
data sets this scheme already performs far better than cur-
rent solutions (e.g., applying IE from scratch, running Cy-

clex, reusing IE results on duplicate pages). Exploring more
complex schemes, such as re-optimizing the IE program P
for each snapshot or re-assigning the matchers for different
pages, is a subject of ongoing work. The following theorem
states the correctness of Delex:

Theorem 1 (Correctness of Delex). Let Mn+1 be
mentions of the target relation R obtained by applying IE
program P from scratch to snapshot Pn+1. Then Delex is
correct in that when applied to Pn+1 it produces exactly Mn+1.

8. EMPIRICAL EVALUATION
We now empirically evaluate the utility of Delex. Figure 8

describes two real-world data sets and six IE programs used
in our experiments. DBLife consists of 15 snapshots from
the DBLife system [13], and Wikipedia consists of 15 snap-
shots from Wikipedia.com (Figure 8.a). The three DBLife

IE programs extract mentions of academic entities and their
relationships, and the three Wikipedia IE programs extract
mentions of entertainment entities and relationships (Fig-
ure 8.b). Figure 9 shows for example the execution plan

exBioSection(d,bioSection)

docs(d)

exActor(bioSection,p,actor)

namePatterns(p)

exAwardItem(awardSection,awardItem)

exAwardSection(d,awardSection)

exAward(awardItem,m,a,movie2,award)

awardPatterns(a) docs(d)

exRole(d,m,movie1,role)

moviePatterns(m) 

(movie1,role,award)

match(movie1,movie2)

moviePatterns(m)

docs(d)

π

σ

Figure 9: The execution plan used in our experi-
ments for the “award” IE task.

used in our experiments for the “award” IE task (with IE
blackboxes shown in bold font). The above IE programs
are rule-based. However, we also experimented with an IE
program consisting of multiple learning-based blackboxes, as
detailed at the end of this section.

We obtained the scope α and context β of each IE black-
box and the entire IE program by analyzing the IE black-
boxes and their relationships. The technical report [7] de-
scribes this analysis in details.

Runtime Comparison: For each of the six IE tasks in
Figure 8.b, Figure 10 shows the runtime of Delex vs. that of
other possible baseline solutions over all consecutive snap-
shots. We consider three baselines: No-reuse, Shortcut, and
Cyclex. No-reuse re-executes the IE program over all pages
in a snapshot; Shortcut detects identical pages, then reuses
IE results on those; and Cyclex treats the whole IE program
as a single IE blackbox.

On DBLife, No-reuse incurred much more time than the
other solutions. Hence, to clearly show the differences in the
runtimes of all solutions, we only plot the runtime curves
of Shortcut, Cyclex, and Delex on DBLife (the left side of
Figure 10). Since in each snapshot both Cyclex and Delex

employ a cost model to select and execute a plan, their run-
time includes statistic collection, optimization, and execu-
tion times.

Figure 10 shows that, in all cases, No-reuse (i.e., rerun-
ning IE from the scratch) incurs large runtimes, while Short-

cut shows mixed performance. On DBLife, where 96-98% of
pages remain identical on consecutive snapshots, it performs
far better than No-reuse. But on Wikipedia, where many
pages tend to change (only 8-20% pages remain identical on
consecutive snapshots), Shortcut is only marginally better
than No-reuse. In all cases, Cyclex performs comparably or
significantly better than Shortcut.

Delex however outperforms all of the above solutions. For
“talk” task, where the IE program contains a single IE black-
box, Delex performs as well as Cyclex. For all the remaining
tasks, where the IE program contains multiple IE black-
boxes, Delex significantly outperforms Cyclex, cutting run-
time by 50-71%. These results suggest that Delex was able to
exploit the compositional nature of multi-blackbox IE pro-
grams to enable more reuse, thereby significantly speeding
up program execution.

Contributions of Components: Figure 11 shows the
runtime decomposition of the above solutions (numbers in
the figure are averaged over five random snapshots per IE
task). “Match” is the total time of applying all matchers in
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Figure 11: Runtime decomposition of No-reuse, Short-

cut, Cyclex and Delex.

the execution tree. “Extraction” is the total time to apply
all IE extractors. “Copy” is the total time to copy men-
tions. “Opt” is the optimization time of Cyclex and Delex.
Finally, “Others” is the remaining time (to apply relational
operators, read file indices, etc.).

The results show that matching and extracting dominate
runtimes. Hence we should focus on optimizing these com-
ponents, as we do in Delex. Furthermore, Delex spends more
time on matching and copying than Cyclex and Shortcut in
complex IE programs (e.g., “play” and “award”). However,
this effort clearly pays off (e.g., reducing the extraction time
by 37-85%). Finally, the results show Delex incurs insignifi-
cant overhead (optimization, copying, etc.) compared to its
overall runtime.

We also found that in certain cases the best plan (one
that incurs the least amount of time) employs RU matchers,
and that the optimizer indeed selected such plans (e.g., for
“chair” and “advise” IE tasks), thereby significantly cutting
runtime (see the left side of Figure 10). This suggests that
reusing across IE units can be highly beneficial in our Delex
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context.

Effectiveness of the Delex Optimizer: To evaluate the
Delex optimizer, we enumerate all possible plans in the plan
space, and then compare the runtimes of the best plan versus
the one selected by the optimizer. To conduct the experi-
ment, we first selected the “play” IE task, whose plan space
contains 256 plans, thereby enabling us to enumerate and
run all plans. We then ranked the plans in increasing order
of their actual runtimes. Figure 12.a shows the positions
in this ranking for the plan selected by the optimizer, over
five snapshots. The results show that the optimizer consis-
tently selected a good plan (ranked number five or three).
Figure 12.b shows the runtime of the actual best plan, the
selected plan, and the worst plan, again over the same five
snapshots. The results show that the selected plan performs
quite comparably to the best plan, and that optimization
is important, given the significantly varying runtimes of the
plans.

Sensitivity Analysis: Next, we examined the sensitivity
of Delex with respect to the main input parameters: number
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of snapshots, size of sample used in statistics estimation, and
the scope and context values.

Figure 13.a plots the runtime of the plans selected by the
optimizers of Delex and Cyclex as a function of sample size,
only for “play” (results for other IE tasks show similar phe-
nomenons). Figure 13.b plots the runtime of the plans se-
lected by the optimizer of Delex and Cyclex as a function of
the number of snapshots.

The results show that in both cases Delex only needs a few
recent snapshots (3) and a small sample size (30 pages) to
do well. Furthermore, even when using statistics over only
the last 2 snapshots, and a sample size of 10 pages, Delex can
already reduce the runtime of Cyclex by 25%. This suggests
that while collecting statistics is crucial for optimization, we
can do so with a relatively small number of samples over
very recent snapshots.

We also conducted experiments to examine the sensitivity
of Delex with respect to the α and β of IE “blackboxes” (fig-
ure omitted for space reasons). We found that the runtime of
Delex grows gracefully when α and β of IE “blackboxes” in-
crease. Consider for example a scenario in our experiments:
randomly selecting an IE blackbox in the “play” task and in-
creasing its α and β to examine the change in Delex’s time.
When we increased α from 52 to 150, the averaged runtime
of Delex over five randomly selected snapshots only increases
by 15% (from 216 seconds to 248 seconds). When we further
increased α to 250 (five times of the original α), the averaged
runtime of Delex over the same five snapshots increases by
only 38% (from 216 seconds to 298 seconds). We observe a
similar phenomenon for β. The results suggest that a rough
estimation of the α and β of the IE blackboxes does increase
the runtime of Delex, but in a graceful fashion.

Impact of Capturing IE Results: We also evaluated the
impact of capturing IE results on Delex. To do so, we varied
the number of mentions extracted by the IE blackboxes and
then examined the runtimes of Delex and the baseline solu-
tions. For example, given the IE program“play,”we changed
the code of each IE blackbox in “play” so that a mention ex-
tracted by the IE blackbox is output multiple times. Then
we applied Delex and the baseline solutions to this revised IE
program of “play.” Figure 14 plots these runtimes on “play”
as a function of the total number of mentions extracted by
all IE blackboxes.

The results show Delex continues to outperform the base-
line solutions by large margins as the total number of men-
tions grows. This suggests that Delex scales well with re-
spect to the number of extracted mentions (and thus the
size of captured IE results). Furthermore, we found that
as the number of mentions grows by 400% (from 22K to
110K), the time Delex spends on capturing and reusing the
IE results only grows by 88% (from 17 seconds to 32 sec-
onds). Additionally, the overhead of capturing and reusing
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Figure 15: Runtime comparison on a learning based
IE program.

IE results incurred by Delex remains to occupy an insignifi-
cant portion (3% - 8%) of its overall runtime. This suggests
that the overhead of capturing IE results does increase as
the number of extracted mentions increases, but only in a
graceful manner.

Learning-based IE Programs: Finally, we wanted to
know how well Delex works on IE programs that contain
learning-based IE blackboxes. To this end, we experimented
with an IE program proposed by a recent work [30] to auto-
matically construct infoboxes (tabular summaries of an ob-
ject’s key attributes) in Wikipedia pages. This IE program
extracts name, birth name, birth date, and notable roles for
each actor. To do this, it employs a maximal entropy (ME)
classifier to segment a raw data page into sentences, then
employs four conditional random field (CRF) models – one
for each attribute – to extract the appropriate values from
each of the sentences.

To apply Delex, we first converted the above IE program
into an xlog program that consists of five IE blackboxes.
These blackboxes capture the ME classifier and the four
CRF models, respectively. Then we derived α and β for each
of the blackboxes. For example, given a delimit character in
a raw data page, the ME classifier examines its context (i.e.,
surrounding characters) to determine if the delimit charac-
ter is indeed the end of a sentence. Given this, we can set
αME to be the maximal number of characters in a sentence,
and βME to be the maximal number of characters in the
contexts examined by the ME classifier (321 and 16 in our
experiment, respectively). It is more difficult to derive tight
values of αCRF and βCRF for the four CRF models, as these
models are quite complex. However, we can always set them
to the length of the CRF model’s longest input string, i.e.,
the longest sentence, and this is what we did in the current
experiment.

Figure 15 shows the runtime of Delex and the three base-
line solutions on the above xlog program running on Wikipedia.
The results show that both Shortcut and Cyclex only perform
marginally better than No-reuse, due to significant change of
pages across snapshots and large α (17824 characters) of the
entire IE program. However, Delex significantly outperforms
all three solutions. In particular, Delex reduces the runtime
of Cyclex by 42-53%. This suggests that Delex can benefit
from exploiting the compositional nature of multi-blackbox
learning-based IE programs, even though we are not able to
derive tight α and β for some learning-based IE blackboxes
(e.g. the complex CRF models) in the programs.

9. CONCLUSIONS AND FUTURE WORK
A growing number of real-world applications involve IE

over dynamic text corpora. Recent work on Cyclex has
shown that executing such IE in a straightforward manner



is very expensive, and that recycling past IE results can lead
to significant performance improvements. Cyclex, however,
is limited in that it handles only IE programs that contain a
single IE blackbox. Real-world IE programs, in contrast, of-
ten contain multiple IE blackboxes connected in a workflow.

To address the above problem, we have developed Delex,
a solution for effectively executing multi-blackbox IE pro-
grams over evolving text data. As far as we know, Delex

is the first in-depth solution for this important problem. It
opens up several interesting directions that we are planning
to pursue. These include (a) how to efficiently match a page
with all past pages, so that we can expand the scope of
reuse, (b) how to handle extractors that extract mentions
across multiple pages, and (c) how to handle IE programs
that contain recursion and negation.
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