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ABSTRACT

Motivation: PSORTb v.1.1 is the most precise bacterial localization
prediction tool available. However, the program’s predictive coverage
and recall are low and the method is only applicable to Gram-negative
bacteria. The goals of the present work are as follows: increase
PSORTDb’s coverage while maintaining the existing precision level,
expand it to include Gram-positive bacteria and then carry out a
comparative analysis of localization.

Results: An expanded database of proteins of known localization
and new modules using frequent subsequence-based support vec-
tor machines was introduced into PSORTb v.2.0. The program attains
a precision of 96% for Gram-positive and Gram-negative bacteria and
predictive coverage comparable to other tools for whole proteome ana-
lysis. We show that the proportion of proteins at each localization is
remarkably consistent across species, even in species with varying
proteome size.

Availability: Web-based version: http://www.psort.org/psorth. Stand-
alone version: Available through the website under GNU General
Public License.

Contact: psort-mail@sfu.ca, brinkman@sfu.ca

Supplementary information: http://www.psort.org/psortb/
supplementaryinfo.html

INTRODUCTION

PSORTD uses the multiple classification method approach pioneered
by PSORT | (Nakai and Kanehisa, 1991), in which several sequence
features known to influence localization are analyzed using different
computational techniques. By analyzing features including signal
peptides, transmembrane helices, homology to proteins of known
localization, amino acid composition and motifs, PSORTb v.1.1
attained a classification precision of 97%. However, the method
did not extend to Gram-positive organisms and its predictive cov-
erage when applied to whole proteomes—the number of proteins
for which a prediction could be made—remained low, at 28%. The
goal of the present work was to expand PSORTb’s predictive scope
by introducing additional classification methods applicable to both
Gram-positive and Gram-negative bacteria, while maintaining the
existing standard of high precision. SVM was investigated as a
potential method for increasing coverage.

An SVM (Vapnik, 1995) is akernel learning algorithm, in which all
the data are mapped as vectorg4idimensional feature space. Given
training data from two classes (positive and negative), an SVM learns
the optimal separating hyperplane that separates the two classes and
maximizes their distance from the hyperplane. In the previous works
on the applicability of SVMs to the localization classification prob-
lem, nucleotide or protein sequences have been modeled as vectors
representing amino acid composition (Hua and Sun, 200&t ¥,
2004). We proposed, however, that the precision of an SVM could
be improved by utilizing frequently occurring subsequences rather

Subcellular Iocali;ation pred?ction a”(_)WS researchers to make[han overall amino acid composition. Such common patterns within
|nferences regardl.ng a prqteln’s function, t9 annotgte genomes, group of proteins may indicate the site of a common biochemical
to design proteomics experiments and—particularly in the case ofo hanism or a structural motif. In an earlier work, we examined the
bacterial pathogen proteins—to identify potential diagnostic, drugap licability of this method to the classification of outer membrane
and yacs:me targ.et.s. The Ias? year.has seen the release of SeveIS teins (Sheet al., 2003); here, we show that it can be used for
localization prediction tools, including CELLO (Yet al., 2004) 5 hrecision classification of all prokaryotic localization sites.

and Proteome- Analyst (_Let al., 2_004)’ the °”'¥_”EW tools cap- By the introduction of an SVM-based classifier and expansion of
able of gnalyzmg bacterial proteins. CEITLO utilizes ;&lpeptlde' _the SCL-BLAST and motif-based analyses, we have significantly
composition-based support vector machine (SVM) approach in itgyo0ved PSORT's predictive capacity relative to version 1.1. The
analyse.s, while Proteome Analyst generates predictions using a[ﬂogram is now capable of generating predictions for Gram-positive
annotation keyword-based system. . bacteria, and is able to make predictions for 75% of a Gram-positive
. In 2003. we re_Ieased PSORTb’ an open-source tool for IOCaI'Zaf)roteome and 57% of a Gram-negative proteome, comparable to
tion prediction in Gram-negative bacteria (Gareyal., 2003). the coverage attained by other methods. Five localization sites are
predicted for Gram-negative bacteria (cytoplasm, cytoplasmic mem-
brane, periplasm, outer membrane and extracellular) and four for
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Gram-positive bacteria (cytoplasm, cytoplasmic membrane, cell walflable 1. Composition of the PSORTdb dataset
and extracellular), with the program also able to flag potentially
multiply localized proteins. PSORTb remains the most precise tooll_ocalization Gram-negative Gram-positive
for localization prediction available, with a measured classification

precision of 96% for both Gram-negative and Gram-positive bacteria.

The improved coverage attained by PSORTb v.2.0 allowed % 218 194
to compare the proportion of proteins resident at each localizatio 3;3% }\32
site across multiple proteomes. We hypothesized that free-living,,, 3091 N/A
organisms with more diverse environmental niches may contairg. 190 183
more membrane proteins in order to facilitate uptake of a varietycw N/A 61
of materials. We found, however, that the proportion of proteins at ac/cm 16 15
given localization site remains remarkably constant across speciesM/P 51 N/A
regardless of lifestyle, environmental niche or proteome size. P/OM 2 N/A

OM/EC 78 N/A
CM/CW N/A 20
SYSTEM AND METHODS Total 1591 576
Dataset The following abbreviations for localization sites and predictions are used through-

PSORTD v:2.0 was trained and evaluated using an expanded version of ff % P2, % BERRCE 2L0 atom S man oo A R S U

original PSORTdb dataset (Gardy al., 2003). This updated dataset, the locali . o ' ' Py
.. L. . X - localized/predicted protein.

composition of which is shown in Table 1, includes 150 new Gram-negative

proteins and 576 new Gram-positive proteins. Each protein’s localization site

has been experimentally verified and reported in the literature. The dataset ieturned faster. The SCL-BLAST module is able to generate predictions for

freely available at http://www.psort.org/dataset. each of the five Gram-negative and four Gram-positive localization sites.

PSORTDb v.2.0 organization Matifsand profiles
- . . . PSORTb v.1.1, the Motif module scanned a query sequence for the
milar to PSORTb v.1.1, PSORTb v.2.0 consists of a series of analytical” S .
Similar to PSORTb v.1.1, PSO b v-2.0 C(.) §|sts ot a seres of a aytlpa resence of any 1 of 26 PROSITE motifs indicative of specific Gram-negative
modules, each capable of generating predictions for one or more Iocallzz*2 o . h
. . A gcalization sites. In PSORTb v.2.0, the module has been expanded to include
tion sites. However, several significant changes have been made to th4e . . .
modules in the new version. In version 2.0, the SubLocC module has been4 Gram-negative motifs derived from PROSITE v.18 (Heflal., 2004),
replaced with a new SVM-Based methoa ’as described below. The Signa?Iovering all butthe cytoplasmic localization site, and 25 Gram-positive motifs
L e . . - covering all 4 localization sites. The complete list of motifs is available at
peptide identification module has now been trained with Gram-positive dat%ttp'//www psort.org/motifs. Each motif has been checked against PSORTdb

in ition he Gram-n i in version 1.1 (Ni . . . . .
! a.ddItIO o the Gra ggatlve data used in versio ( .|ed$e1h, to ensure thatit produces no false positive results. Two motifs used in PSORTb
http://www.cbs.dtu.dk/ftp/signalp). The SCL-BLAST and Motif modules -

1.1 were removed from v.2.0 due to the occurrence of false positives when

h n n ri low. No chan m % . .
ave peen expanded as desp |'bed .b.e OW 0 changes V\fere adg o te)?amlned against the expanded PSORTdb.
HMMTOP transmembrane helix identification module (Tusnady and Simon, . ) . . N
2001) or the OMPMotif module PSORTb v.2.0 also includes a Profile module, in which localization-
) pecific profiles derived from PROSITE v.18 were selected to generate

Asi ion 1.1, th dules’ predicti ighted and int t . L . R
AS N version € modules predictions are weighted and integrate 00.0% precise predictions against PSORTdb. Each profile is similar to
using a Bayesian network in order to generate the final prediction, which

comes in the form of a score distribution. When a single localization site? motif but with position-specific weighting information included, such

displays a score of 7.5 or greater, that site is returned as a final predictior%hat more degenerate sequences can be retrieved than via the strict pattern

: . - o } . ; matching of the Motif module. Six profiles were selected, four of which
New to version 2.0 is the multiple localization flagging—if two sites return . . . . . .
. — : ; o ., ._identify both Gram-negative and Gram-positive cytoplasmic proteins and
high scores, a flag of ‘This protein may have multiple localization sites’ is

appended to the final prediction. This flag is triggered when a site Scoregyto_p_lasmlc membrane proteins, an(_i two of wh|ch.are specific to thg Gram-
sitive cell wall and extracellular sites. The profiles are also available at

between 4.0 and 7.49 for Gram-negative proteins, and between 5.0 and 72? . .
for Gram-positive proteins. If no site scores above 4.0 or 5.0, depending on thré tp:/lwww.psort.org/motifs.
class, a localization site of ‘Unknown’ is returned. PSORTb's emphasis is orFr equent subsequence-based support vector machines
precision, and returning a result of ‘Unknown’ when not enough information

is available to make a prediction avoids potential false positive results. PSORTD v.2.0 contains a new series of modules utilizing SVMs for clas-

sification. Nine SVMs were developed, one for each Gram-negative and
Gram-positive localization site. Training data for each SVM consists of a
SCL-BLAST and SCL-BLASTe positive class comprising all proteins resident at a specific localization site
PSORTb’'s SCL-BLAST module assigns putative localizations based orand a negative class comprising all other proteins of the same Gram category.
homology to a protein of known localization. Version 2.0 improves the recall Each of the nine positive class datasets was first mined for frequent sub-
associated with this module by implementing a BLASTP search (Altschulsequences using an implementation of the generalized suffix tree @\&ng

et al., 1990) against the expanded PSORTdb database. We have also intrb994). A subsequence was defined as frequent if it occurred in atléasf
duced an exact match filter to detect if a user’s query protein is already in theroteins in the positive class of training data, wh&res a parameter called
database—if a query protein displays 100% identity to a protein in PSORTdlminimum support, or MinSup. Multiple values of the MinSup parameter were
with a difference between query and subject length of not more than on¢ested.

character (to account for some users’ removal of the initial ‘f-methionine’ SVMLight (Joachims, 2002, http://svmlight.joachims.org/) was used to
residue), the SCL-BLASTe subroutine returns the localization site associateinplement nine SVMs whose feature spaces consisted of the frequent sub-
with the subject protein. In cases where an exact match is identified, theequences characteristic of a specific localization site. For each localization
query protein is not analyzed by subsequent modules, enabling a result to Isite, different SVMs were tested using different combinations of MinSup
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(range: 0.8—13%) and kernel (linear, polynomial with degtee?, radial ~ Table 2. Performance of the SCL-BLAST module using an expanded
basis function withy = 0.005). The MinSup/kernel combination giving the database of proteins

highest classification precision combined with a reasonable level of recall

(>40%) was selected for inclusion in PSORTb v.2.0. Variations in the mar- L

gin error penalization parametér were not evaluated, as our earlier work Localization Performance

on the subject showed a negligible effect on precision and recall values (She Precision Recall
etal., 2003). The final SVMs implemented in PSORTb v.2.0 utilize LibSVM
(Lin, 2003, http://www.csie.ntu.edu.twkjlin/libsvm/). Negative
C 88.8 39.9
Evaluation CM 97.4 62.0
All evaluations were carried out using 5-fold cross-validation, in each round P 94.4 68.8
of which four randomly generated folds of the data were used for training or 99.4 90.5
construction of the module(s) in question and the fifth fold was reserved for 97.3 77.4
testing. Where possible, we have included confusion matrices with our results Tc_)t_al 96.4 68.6
to aid further evaluation of PSORTb's performance by the researchers usingoSitive
other definitions of accuracy. We have defined precision as TR{HP) 96.6 58.8
and recall as TP/(TR- FN). In cases where a protein has dual localiza- CM 96.8 59.8
tions, we count a prediction of either of the two actual sites as a true 91.9 56.7
positive. EC 95.5 57.7
Total 95.7 58.4
IMPLEMENTATION
Expanded PSORTb database and SCL-BLAST Support vector machine-based classification

PSORTb’'s SCL-BLAST module predicts localization of a query Our previous work on the applicability of frequent subsequence-
sequence based on homology to a protein in the PSORTdb databasdiafsed SVM to outer membrane protein prediction (&ta., 2003)
proteins of experimentally verified localization. Itis therefore expec-led us to examine whether the method was applicable to proteins
ted that a larger and more diverse database will lead to an increaseiiasident at all nine localization sites. We reasoned that frequent
the program’s recall. SCL-BLAST v.2.0 utilizes an updated versionsubsequences found in proteins resident at each site represented
of the original PSORTdb database—Gram-positive queries are ruoonserved functional and structural motifs that would yield higher
against the subset of 576 new proteins of Gram-positive origin, angrecision classification than methods based on overall amino acid
Gram-negative queries are run against the expanded set of Graroemposition alone.
negative proteins. Furthermore, we investigated whether subsets By mining frequent subsequences from each of the nine localiza-
of the Gram-negative and Gram-positive database could be contion sites, again combining the Gram-positive and Gram-negative
bined. For example, the cytoplasmic sites and cytoplasmic membrargytoplasmic sequences and cytoplasmic membrane sequences, we
sites were hypothesized to be functionally equivalent, such that avere able to develop nine SVMs, each capable of classifying a protein
Gram-negative protein could be searched against a BLAST databases likely being resident at a specific localization site or not. Varying
containing both Gram-negative proteins and Gram-positive cytonhumbers of frequent subsequences were tested, as were different
plasmic proteins and cytoplasmic membrane proteins. We examinekkernel functions, and the combination of frequent subsequences and
whether a larger database with such combinations of proteins woulkernel yielding the highest precision as well as a reasonable level
increase recall even further. of recall were selected for use in PSORTb v.2.0. The performance
We tested several combined databases using 5-fold crossnd parameters associated with each of the nine SVMs is shown in
validation and found that higher recall and comparable precisiorTable 3.
was indeed achieved. For Gram-positive results, a database includ- By using a feature space comprising frequent subsequences rather
ing Gram-negative cytoplasmic proteins, cytoplasmic membran¢han amino acid composition, we were able to attain high-precision
proteins and extracellular proteins yielded the best predictionsclassification across all localization sites. Although the precision
For Gram-negative queries, optimal results were achieved whewmalues for the two cytoplasmic classifiers are the lowest of the nine
the queries were searched against a database that included bathlues, the 84% precision achieved by the Gram-negative SVM
Gram-positive cytoplasmic proteins and cytoplasmic membraneepresents a 5% increase relative to the cytoplasmic composition-
proteins—including extracellular proteins in the database resulted ibased SVM SubLocC used in PSORTb v.1.1. We believe that the
several periplasmic proteins being falsely predicted as extracellulareduced precision associated with cytoplasmic proteins may be due
The results of 5-fold cross-validation testing of SCL-BLAST v.2.0 to the extremely diverse nature of proteins found at this site—
for each localization site are shown in Table 2. The Gram-negativ@roteins found at other sites exhibit more functional and structural
version of the module retains the 96% precision exhibited in v.1.1constraints, resulting in more unique and characteristic frequent
and improves the recall by 8%. The new Gram-positive version alssubsequences. This is especially evident when classifying cytoplas-
displays a precision of 96% and a recall of 58%, the lower recall mosimic membrane proteins—the frequent subsequences mined from
probably due to the smaller Gram-positive database. It is importarthis structurally and environmentally constrained group of proteins
to note, however, that such recall values are not to be expected wheasults in high-precision classification.
SCL-BLAST is applied to datasets containing a large number of We observed that as the MinSup value increased for each classifier,
hypothetical proteins, due to their lack of similarity to proteins in thethe number of frequent patterns decreased, as did precision; recall,
SCL-BLAST database. however, remained comparatively stable (Cleeal., unpublished
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Table 3. Parameters and performance of the nine frequent subsequenc@&able4. PSORTb v.2.0 performance as measured by 5-fold cross-validation

based SVM modules using the complete subset of singly localized proteins from PSORTdb
Module SVM Parameters Performance Localization Performance
MinSup  Frequent Kernel Precision Recall TP FP FN Precision Recall
patterns
Negative
Negative C 195 15 83 92.9 70.1
CytoSVM—- 0.5 39219 Linear 83.6 68.4 CM 286 14 23 95.3 92.6
CMSVM- 3 5645 Polynomial 96.9 69.6 P 191 9 85 95.5 69.2
PPSVM- 1 27804 Polynomial 96.3 45.3 oM 371 10 20 97.4 94.9
OMSVM—- 1 46688 Linear 94.6 85.3 EC 150 4 40 97.4 78.9
ECSVM— 2 35380 Polynomial 94.1 56.4 Total 1193 52 251 95.8 82.6
Positive Positive
CytoSVM+ 2 8214 Linear 86.5 79.9 C 168 5 26 97.1 86.6
CMSVM+ 2 250163 Linear 100.0 63.1 CM 94 3 9 96.9 91.3
CWSVM+ 2 11610 Linear 95.7 55.6 CwW 54 3 7 94.7 88.5
ECSVM+ 5 23605 Polynomial 91.7 55.0 EC 124 8 59 93.9 67.8
Total 440 19 101 95.9 81.3

data). We also noted that the best performance is not achieved at tl:f'enibIeS. PSORTb v.2.0 performance as measured by 5-fold cross-validation

smallest 'V”“SUP value—when the number of frequent_subsequenc%ing the complete subset of multiply localized proteins from PSORTdb
exceeds a certain level, the performance of the SVM is degraded.

PSORTDb v.2.0 performance Localization Performance

. . TP FP FN Precisi R Il
The new SVM modules, as well as the updated motif, profile and recision ecal

signal peptide modules, were incorporated into PSORTb v.2.0. As in ]
version 1.1, a Bayesian network was constructed in order to integrat'éeqz’““’e

the predictions of all modules to generate a final prediction. Multiple clem éi i 157 ?;;’i 2%'.5;
welg_hpng values were test(_ed, and _the values yielding the_ highest p,om 5 2 0 50.0 100.0
precision were used in the final version of PSORTb v.2.0. Five-fold op/EC 76 1 2 98.7 97.4
cross-validation was then used to evaluate the Gram-negative andTotal 123 6 24 95.3 83.7
Gram-positive versions of the complete program. The resulting conpPositive

fusion matrices are available as Supplementary Tables S1a and S1bC/CM 12 6 3 66.7 80.0
From the confusion matrices, we calculated the precision and recall CM/CW 6 0 14 100.0 30.0
values for each localization site for both proteins annotated as having Total 18 6 17 75.0 514

a single localization site (Table 4) and those annotated as having duat

localization sites (Table 5). aFor a protein resident at X and Y localization sites, a true positive (TP) is a prediction

. N . . . . ofeither X, Y or X/Y. A false positive (FP) is all multiply localized proteins not resident
On Smgle localization proteins, PSORTb v.2.0 attained prECISIOQat X orY that are predicted as X, Y or X/Y. A false negative (FN) is all X/Y proteins

values of 96% for both classes of organisms, and recall of 83 angot predicted as neither X, Y nor X/Y.

81% for Gram-negative and Gram-positive proteins, respectively. We

observedthatthe precision values remained relatively constant across

localization sites, while the recall was highest for membrane proAlthough experimental evidence supporting a possible cytoplasmic

teins, most probably due to their conserved structural motifs readiljocalization was found for only one of the six protienBaeillus sub-

identifiable by the frequent subsequence-based SVMs, HMMTORilis ComGG (Chungt al., 1998)—the other five proteins include

and OMPMotif modules. The Gram-negative version of PSORThenzymes and heat-shock proteins, for which cytoplasmic- or peri-

v.2.0 exhibits a 0.7% decrease in precision relative to PSORTb v.1.18heral membrane-associated localizations are not uncommon. It may

however, an 8% increase in recall is observed. be that rather than making mispredictions, PSORTD is detecting a
Performance of the program on proteins annotated as having duilore complex pattern of localization for certain proteins.

localization sites is comparable to the performance for singly loc-

alized proteins with respect to Gram-negative organisms, with & ' Ot€Ome cover age

precision of 95% and a recall of 84%. However, we noted that theThe measured recall of a program when evaluated using 5-fold

overall precision for Gram-positive multiply localized proteins was cross-validation does not give an accurate reflection of the predict-

only 75%. Upon inspection, we realized that this was due to sixive coverage when the program is applied to the analysis of whole

annotated cytoplasmic membrane/cell wall proteins being predictegroteomes. Because the training and testing data consist of a num-

as cytoplasmic proteins. Noting that singly localized cytoplasmicber of well-characterized proteins, a large number of predictions is

membrane and cell wall proteins were infrequently mispredictedoossible. However, hypothetical proteins—which make up a notable

as cytoplasmic proteins, we investigated these six proteins furtheproportion of a proteome—often do not contain enough information

620



PSORTD localization prediction

Table 6. Comparison between PSORTb v.1.0, CELLO v.2.0 and Proteome Analyst v. using a set of 144 Gram-negative proteins not used in training of any
prograni

Localization PSORTb v.2.0 CELLOV.2.0 Proteome Analyst v.1.0
TP FP FN Precision Recall TP FP FN Precision Recall TP FP FN Precision Recall

C 22 1 8 95.7 73.3 27 9 3 75.0 90.0 22 1 8 95.7 73.3
CM 39 1 3 97.5 92.9 35 4 7 89.7 83.3 40 6 2 87.0 95.2
P 26 0 6 100.0 81.3 16 6 16 72.7 50.0 29 1 3 96.7 90.6
oM 34 1 5 97.1 87.2 24 3 15 88.9 61.5 34 0 5 100.0 87.2
EC 1 0 0 100.0 100.0 1 19 0 5.0 100.0 1 6 0 14.3 100.0
Total 122 3 22 97.6 84.7 103 41 41 71.5 71.5 126 14 18 90.0 87.5

aSee also supplementary table S3.

for a prediction to be generated. We therefore set out to measuia the PSORTDb training data. A comparison of the performance of
PSORTbv.2.0’s performance when applied to whole proteomes, witlthe three programs is given in Table 6, and the associated confusion
the expectation that we would see an increase in the 28% averageatrices are available as Supplementary Table S3. A Gram-positive
coverage of version 1.1. comparison was not carried out, as we were unsure whether Proteome
A total of 106 Gram-negative and 45 Gram-positive proteome filesAnalyst's Gram-positive training data and that used in PSORTb
fromthe NCBI's Microbial Genomes page were analyzed (one organeverlapped.
ism may have multiple proteome files, each representing a different In terms of precision, PSORTb v.2.0 outperforms both Proteome
chromosome), and a complete summary of the results can be found Analyst and CELLO by 7.6 and 26.1%, respectively. The signific-
Supplementary Tables S2. The average coverage when PSORTb v. a6t difference between PSORTb and CELLO is due to the fact that
is applied to Gram-negative proteomes is 56.7%, and a maximuranlike the other two programs, CELLO forces predictions for each
coverage of 78.8%Thermotoga maritima) was achieved. When query protein. While this does lead to a prediction generated for every
applied to Gram-positive proteomes, the average coverage increasgtein in a proteome, the cost in terms of reliability of these pre-
to 74.8%, with a maximum of 83.29Bécillus halodurans). dictions is significant. This decreased precision may not be apparent
The Gram-positive version of the program displays higher predictwhen evaluations are reported using the accuracy measure, in which
ive coverage than the Gram-negative version due to the higher recaiigh recall is able to compensate for lower precision, and illustrates
associated with the Gram-positive cytoplasmic SVM. Cytoplasmicthat reporting confusion matrices leads to, epigrammatically enough,
proteins represent the largest class of proteins within the cell, and athe least confusion when comparing the performance of multiple
improved ability to identify these results in high overall coverage.programs.
The level of coverage for each proteome appears to be irrespect- We also wished to compare the predictive coverage of PSORTb
ive of phylogenetic grouping, with predictions being generated as.2.0 to that of the other programs when applied to the analysis
readily for organisms such as spirochetes or mollicutes as for thef whole proteomes. Because CELLO generates a prediction in

proteobacteria. every case, it was not included in the present analysis. lgtlal.
(2004), the authors of Proteome Analyst report predictive cover-
Comparison to other methods age for two proteomes—one Gram-negative and one Gram-positive.

We next set out to compare PSORTb v.2.0's performance with that of Oteome Analyst displayed a coverage of 75.6% for the Gram-

other comprehensive web-based predictive tools. Proteome Analy§gative bacteriunPseudomonas aeruginosa and 67.2% for the

(Lu et al., 2004) is capable of generating predictions for five Gram-CGram-positive bacterlurB.sgbtllls _Wher_l PSORTb v.2.0 was used

negative localization sites and three Gram-positive sites—it does ndP @nalyze the same organisms, it attained a coverage of 68.1% for

differentiate between cell wall and extracellular proteins. CELLO P-aeruginosa and 76.5% foiB.sublilis. _

(Yu et al., 2004) generates predictions for the five Gram-negative An analysis base_d on_these two proteomes suggests t_hatwhlle'Pro-

localization sites only. SubLoc (Hua and Sun, 2001) was not evalul€0me Analystattains higher coverage on a Gram-negative organism,

ated as it does not predict membrane proteins, and a comparisdroORTP v.2.0 generates more predictions for a Gram-positive pro-

between PSORT | (Nakai and Kanehisa, 1991) and PSORTb appeaﬁ%ome' Because Prote'o_me_AnaIyst re_Iles on SWISS-PROT annota-

in our earlier work (Gardgt al., 2003). tion keywords for classmcatlo.n, we believe that PSORTD'’s sequence
Because both Proteome Analyst and CELLO were trained usin(’[leature-based method_may yu_eld higher coverage for organisms with

the original PSORTb dataset of 1443 Gram-negative proteins, a falfitlé database annotation available.

method of assessment was to use proteins not included in these

programs’ training data. A total of 144 singly localized new Gram- ) .

negative proteins in the version of PSORTdb described here wersOmparative proteome analysis

submitted to the Proteome Analyst and CELLO web servers for anabJsing the data generated during our analysis of whole proteome

lysis. For a comparable evaluation of PSORTb v.2.0, the predictionpredictive coverage (Supplementary Tables S2a and S2b), we invest-

generated for these proteins during the earlier 5-fold cross-validatioigated our hypothesis that free-living organisms might exhibit a

procedure were used, such that the new proteins were not includddgher than normal proportion of membrane proteins. The proportion
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Table7. Analysis of the proportion of predicted proteins at each localization S\/Ms such as SubLoc and CELLO, our method allows for the clas-
site for 106 Gram-negative and 45 Gram-positive proteome files sification of proteins based on characteristic patterns that might not
have been detected through conventional methods, such as multiple
sequence alignment. The SVMs have allowed us to address concerns

Localization  Statistical analysis

Average SD  Average SD Correlation  raised with the first release of PSORTb, namely how to identify a
percentage of percentage of coefficient larger number of cytoplasmic proteins, as well as cytoplasmic mem-
predictions proteome brane proteins with three or fewer predicted helices. Cytoplasmic
proteins in particular are a large and diverse group of proteins and
Negative represent the majority of proteins encoded for by a genome. The abil-
C 59.3 54 333 55 097 ity to identify these proteins is the key to attaining a high predictive
CM 30.2 35 16.9 24 097 coverage rate, and we are interested in pursuing ways of increasing
P 2.9 17 17 11 084 our SVM’s ability to detect these proteins, particularly in the case of
oM 4.5 31 24 16 072 Gram-negative organisms.
EF:, 0.7 05 04 03 077 Comparison with other available predictive tools shows that
Positive PSORTb remains the most precise predictive method available. We
C 68.5 3.9 507 35 0.99 . . .
cM 26.5 31 197 56 095 believe this is the result of two aspects of the program. First, a
cw 192 06 09 05 044 recent review has highlighted the importance of utilizing multiple

EC 38 21 28 15 081 methods for localization prediction (Schneider and Fechner, 2004),
and PSORTb s one of the few localization prediction methods to take
aCalculated between the number of proteins at localization X and the total number 0BUCh @n approach. Second, PSORTDb does not force predictions—if
proteins in the proteome. we are unable to generate a confident prediction, the program will
return a result of ‘Unknown’. Instead of optimizing precision and
of proteins at each localization site was determined, both as a fracr?ca”’ we have always ch(_)sen o er_nphqsize precision i_n the develop-
tion of the total predictions and as a fraction of total proteome size.menf of PiORTb, rﬁasc;]nl_ng thfat b'.OIOQIStS are s?archlngJorkcorre?t
Table 7 shows the average and standard deviation for both types oF=u ts and, given the choice of an incorrect result or an “Unknown

. . L result, prefer ‘Unknown’.
calculation, as well as the correlation coefficient between the number . . - . .
Comparative analysis also highlights the importance of publish-

of proteins predicted at a given site and overall proteome size. . . - . . o .
. . . : ing confusion matrices—different tools use different metrics in their
Cytoplasmic proteins and cytoplasmic membrane proteins repres- . L : ; .
. -Teporting, and often the definition of a particular metric varies
ent the largest fractions of the proteome, and the large sample size . - :

. ) . e o etween groups. Without access to actual predictions, it can be
yields a high correlation coefficient. This indicates that proteome. . T . A .

. . . . . difficult to objectively assess multiple predictive tools. Still, we
size and not lifestyle or other factors is the primary determinant for o :
the number of proteins at a given site. This correlation is evident forShOW here that of the other localization tools currently available,

P 9 Proteome Analyst offers an excellent complement to PSORTh—

most other localization sites as well, with only the cell wall showing : . - .
; . - despite a slightly lower precision, Proteome Analyst's recall of
variable values. Because the cell wall represents a comparatively tin . L .
ram-negative proteins is especially good.

fraction of the proteome, however, this variability may be attributed PSORTb's significant increase in predictive coverage allowed us

to a small sample size. . o . S )
P to examine the distribution of proteins across localization sites on a

When the data are visualized as a scatter plot (Supplementar . . .
. ) . roteome-wide scale. We found that with very few exceptions the
Figure S1), these constant proportions are more easily observable, . . L . .
groportlons of proteins found at each localization site remained not-

Several points of interest also become obvious. Two Gram-negativ ) : . .
. - . . . ably consistent across species, regardless of lifestyle, physiology or
organisms,T.maritima and Aquifex aeolicus—organisms that are

roteome size. This may reflect the nature of biological networks.

found near the base of the tree of life—appear to have unusuall L : . : ;
. . . . hen a new gene is introduced into an organism, its product will
high proportions of cytoplasmic proteins. The mycoplasmas, note . - -
carry out certain new functions. In order for these new functions to

for their smaller genomes and membrane protein variability, exhibitbe of anv benefit to th . h d
higher than normal proportions of outer membrane proteins. ybene Itto the organism, OWEVET, more New genes and gene
products might be necessary—the proteins that will form a complete
new functional pathway capable of interacting with other pathways in
DISCUSSION the cell. The new proteins that constitute the pathway will likely span
We have developed PSORTb v.2.0, an updated version of thdifferent cellular compartments. For example, an organism taking up
PSORTDb tool for the prediction of bacterial protein subcellular local-residence in a new environment may develop a series of membrane
ization. Version 2.0 improves significantly upon the original releasetransporters to take up nutrients from and sense its surroundings;
of the program, with its predictive capability extended to include however, it must also develop the cytoplasmic components necessary
Gram-positive organisms and its predictive coverage increased. for processing the incoming nutrients and signals.
flag indicating potentially multiply localized proteins has also been PSORTDb version 2.0 is available on the Web at http://www.psort.
added. PSORTDb’s existing standard of high precision is maintainedyrg/psortb. Users can submit one or multiple query sequences over
and with a measured precision of 96%, the program continues to bhe Web for analysis, selecting one of three possible output formats,
the most precise tool for bacterial localization prediction available. or can download a standalone version of the program under the GNU
We attribute the 2-fold increase in predictive coverage primarilyGeneral Public License. All of the completed microbial genomes lis-
to the incorporation of nine frequent subsequence-based SVM moded on the NCBI have precomputed results available for download
ules. With a higher precision than the amino acid composition-basedt http://www.psort.org/genomes/, and this Genomes page will be
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updated as new genomes are released. The PSORTdb dataset usedy,J.L., Spencer,C., Wang,K., Ester,M., Tusnady,G.E., Simon,|., Hua,S., deFays,K.,

in the deve]opment of the program is also available on the website, Lambert,C., Nakai,K. anq Brrinkman,F.S.L. (2093) PSORTbD: imprqving protein sub-

along with other resources for subcellular localization prediction, ;’Z'ga;g’l%a"zat“’” prediction for Gram-negative bacteNacleic Acids Res, 31,

'nCIUd'ng links to other tools and datasets of interest. We be"?V%a,s. and Sun,Z. (2001) Support vector machine approach for protein subcellular

that PSORTb v.2.0 and psort.org are valuable resources to the micro- ocalization predictionioinformatics, 17, 721-728.

biology and localization prediction communities. We offer an openHulo,N,, Sigrist,C.J.A., Le Saux,V., Langendijk-Genevaux,P.S., Bordoli,.L., Gattiker,A.,

source, flexible and high coverage predictive t00|, which is presently De Castro,E., Bucher,P. and Bairoch,A. (2004) Recentimprovements to the PROSITE
. . o . s databaseNucleic Acids Res., 32, D134-D137.

the most precise Iocallza_tlon prediction meth_od available. UtlllzngoachimsvT' (2002) SVMLight.

the program for comparative proteome analysis has already generatef c. (2003) Libsvm.

interesting results regarding the proportion of proteins in differentLu,z., Szafron,D., Greiner,R., Lu,P., Wishart,D.S., Poulin,B., Anvik,J., Macdonell,C.

cellular compartments, and we are presently investigating this area and Eisner,R. (2004) Predicting subcellular localization of proteins using machine-
learned classifierdioinformatics, 20, 547-556.

further.
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