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Abstract

We describe a framework for modeling optimization problems for so-
lution on a grid computer. The framework is easy to adapt to multiple
grid engines, and can seamlessly integrate evolving mechanisms from par-
ticular computing platforms. It facilitates the widely used master/worker
model of computing and is shown to be �exible and powerful enough for
a large variety of optimization applications. In particular, we summarize
a number of new features of the GAMS modeling system that provide
a lightweight, portable and powerful framework for optimization on a
grid. We provide downloadable examples of its use for embarrasingly par-
allel �nancial applications, decomposition and iterative algorithms and
for solving very di�cult mixed integer programs to optimality. Computa-
tional results are provided for a number of di�erent grid engines, including
multi-core machines, a pool of machines controlled by the Condor resource
manager and the grid engine from Sun Microsystems.

1 Introduction

There are probably two main sources for parallelism within optimization algo-
rithms. First, and foremost, there is the opportunity to use parallel compu-
tations to aid in the search for global solutions, typically in a nonconvex (or
discrete) setting. Important techniques of this kind either involve multiple trial
points or search processes (including pattern searches, evolutionary algorithms
[2, 35], heuristics [41] or multi-start methods) or computations to e�ciently
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explore a complete enumeration of a large set of trial points (including branch-
and-bound [33], or branch-and-cut methods [50]). Secondly, optimization al-
gorithms have utilized building blocks, most prominently decomposition and
parallel linear algebra techniques, to exploit the computational powers of high
performance machines.

Examples of the success of these techniques in the optimization �eld include
many implementations of parallel heuristics such as genetic algorithms, pattern
search [18] and multi-start methods, the multi-threaded version of CPLEX [9,
38], MOSEK [46], XA [53] and XPRESS [17] (both Mixed Integer Programming
(MIP) and Barrier solvers), and the PICO [20], NINF [51] and TAO [48] tool-
boxes. In discrete optimization, see [32, 36, 37] for lists of references, while the
texts [12, 13] provide a fuller perspective.

However, parallel computation has made far less di�erence within optimiza-
tion than it has to computing or computational science in general. While there
are many multi-threaded applications employing numerous algorithms devel-
oped from a multi-processing perspective, the number of (commercial-strength)
parallel optimization codes is limited. This is in stark contrast to the availability
of machines that can perform parallel computations. Even modern day laptops
and desktop workstations typically come with multiple processing units.

Some of the reasons for the limited success is due to the nature of optimiza-
tion. In most cases, optimization is concerned with a single objective function,
and implicitly involves a synchronization step to determine if progress has been
made. While there is some literature on partially synchronous and asynchronous
methods [5, 22, 23], this step has been a signi�cant limiting factor for the adop-
tion of parallelism within optimization.

Other reasons are more generally applicable to high performance computing
and involve the cost of accessing these machines, the di�culty in porting appli-
cations to these platforms, and the e�ects of Moore's law in making commodity
computers quick to compete. Porting applications has become somewhat easier
in the past decade due to the increased support for environments such as MPI
(message passing interface) and PVM (parallel virtual machine)[31].

Since commodity computational components have become increasingly cheap
and accessible, there has been an increasing interest in the last decade in grid
computing [27, 45], a somewhat poorly de�ned but well known notion. Grid
computing treats a confederation of loosely coupled heterogeneous computing
resources as a single object and attempts to execute algorithms on such a plat-
form. Here, there have been some notable successes, including the solution of
large scale travelling salesman problems [4], the processing of di�cult quadratic
assignment problems [3, 54] and the resolution of optimality of some hard mixed
integer programs [25]. The attraction of such an environment is that it can pro-
vide an enormous amount of computing resources, many of which are simply
commodity computing devices, with the ability to run commercial quality codes,
to a larger community of users. As such, this is sometimes called computing for
the masses, or poor man's parallelism. This is the platform that we intend to
exploit in this paper.

However, we believe that grid computational resources are not enough to
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make parallel optimization mainstream. Setting aside the issue of data collec-
tion, it is imperative that we provide simple and easy to use tools that allow
distributed algorithms to be developed without knowledge of the underlying grid
engine. While it is clear that e�ciency may well depend on what resources are
available, it must be easy to generate large scale, di�cult optimization problems,
and high level implementations of methods to solve them. Stochastic program-
ming is perhaps a key example, where in most of the known solution techniques,
large numbers of scenario subproblems need to be generated and solved [42].

A modeling language [6, 28] provides a natural, convenient way to represent
mathematical programs. These languages typically have e�cient procedures to
handle vast amounts of data and can quickly generate a large number of models.
For this reason, modeling languages are heavily used in practical applications.
This paper outlines some basic grid computing tools within the General Alge-
braic Modeling System (GAMS) that facilitate the parallel and asynchronous
solution of models. A series of examples, from simple to complex will be used
to illustrate the use of grid computing facilities. The examples are grouped
into three sections, tracing of e�ciency frontiers and scenario evaluations, im-
plementing parallel decomposition methods, and developing asynchronous al-
gorithms to solve extremely di�cult mixed integer programming problems to
optimality. As we move from simple to complex examples, the use of those
techniques shifts from the practical to research. The use of a modeling language
is an essential factor in the management and solution of realistic, application
driven, large scale problems and allows us to take advantage of the numerous
options for solvers and model types, and therefore enhance the applicability of
these tools. Large scale nonlinear optimization problems can just as easily be
decomposed using model level knowledge, and the techniques outlined here can
be applied directly in such settings. Although, we will use GAMS, the system
we are intimately familiar with, most what will be said could as well be applied
to other algebra based modeling systems like AIMMS, AMPL, MOSEL, MPL,
OPL and others.

The GAMS grid facility allows multiple optimization problems to be instan-
tiated or generated from a given set of models. Each of these problems is solved
concurrently on a grid computing environment. This grid computing environ-
ment can just be a laptop or desktop computer with one or more CPUs. Today's
operating systems o�er excellent multi processing scheduling facilities and pro-
vide a low cost grid computing environment. Most of the work reported here was
done on a grid facilitated by the Condor system [43], a resource management
scheme developed at the University of Wisconsin. A number of commercial grid
computing resources are now available on an as-you-go basis and optimization
software is beginning to appear. For example, GAMS and its grid facility is now
available on SUN's network.com [52].

The paper is organized as follows. In Section 2, we outline the grid com-
puting environment we are using while Section 3 explains the grid computing
tools that are provided by GAMS. The following sections then outline speci�c
examples of the use of these tools, ranging from applications in �nance, through
iterative approaches for linear and nonlinear systems of equations, and decompo-
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sition approaches for structured problems and di�cult mixed integer programs.
Computational results detailing speci�c application of these tools to the solu-
tion of various optimization problems on a number of grid computing engines
are provided, coupled with the use of advanced features of the modeling system
for generation, collection and analysis of results.

2 Grid Computation Resources

As outlined in the introduction, grid computing attempts to take a confederation
of loosely coupled heterogeneous computing resources and treat them as a single
computing entity with the aim of executing parallel algorithms on it. Such
systems can be rented or distributively owned, and examples include the Grid
Engine from Sun Microsystems, various competing commercial systems from
IBM and Oracle, and the Condor system, a system developed at the University of
Wisconsin. International collaborations like the open source Globus Alliance [34]
promote software research and development in fundamental Grid technologies.
One aim of such systems is to provide e�ective sharing of the CPU power and to
allow massive parallel task execution with a scheduler handling the management
tasks. Clearly, there are issues (that we will not address here) related to licensing
of software for these systems, communication between distributed components,
and a suite of new security issues. As such, this remains an active area of
research in distributed computing. While we do not focus on these issues here,
there is considerable research related to the use of distributed shared data assets,
and virtualization and integration technology.

As a particular example, the results contained here utilize the Condor sys-
tem. Condor [21, 43] is a resource management tool that can provide a user
with enormous computing resources. Originally designed upon the premise that
most workstations are severely under-utilized, Condor notices when machines
are idle and schedules tasks on them. When the owner wants to perform work on
the machine, Condor removes the computation and returns the machine to its
owner. More recently, Condor has also been extensively deployed on dedicated
clusters and multiprocessor architectures running a variety of di�erent operating
systems, signi�cantly increasing the amount of computational resources avail-
able. While the underlying hardware may be extremely varied, scheduling and
control of jobs remains the same, and operates seamlessly across the di�erent
operating systems and distributed �le systems.

The programming paradigm envisioned in this paper is the master/worker
model in which a master program generates a large number of independent
subproblems that can be solved in parallel by the workers. Once the subprob-
lems �nish, the master program performs additional computations and creates
a new set of subproblems. The resources provided by Condor are typically
not specialized high performance machines but large collections of underutilized
workstations and clusters that are connected either via fast switches or pos-
sibly ethernet. As such, a user typically should aim to garner large amounts
of resources for large periods of computation, and thus utilize high throughput
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techniques as opposed to high performance (or real-time) methods.
Condor has been extended to allow parallelism [49], built largely using PVM.

A further extension, the MW [40] API, facilitates speci�c master-worker tasks
to be completed e�ectively. To some extent this abstracts the grid to a higher
level, and allows a user to devise a parallel algorithm without understanding the
underlying implementation on the grid. An important feature of this system
(from a users perspective) is that whenever individual machines are updated,
the power of the overall grid increases seamlessly. Furthermore, the system is
available for download [44].

Since these systems are extremely powerful and becoming pervasive, we be-
lieve it is important to utilize such systems to carry out di�cult optimization
problems. The MIP solver Fatcop [14, 15] utilizes the MW API, as do several
other applications. We aim to take the level of abstraction one level higher, and
allow Condor (or any other grid computing system) to be used directly from
within a modeling language. Our linkage of grid computing to modeling sys-
tems is an attempt to allow grid technology to be exercised by (non grid-expert)
businesses and application modelers. Previous work in this vein can be found
for example in [24].

3 The GAMS Grid Facility

Speci�cally, new language extensions of the GAMS modeling language are in-
stantiated using a grid engine that can be managed either by the operating
system or a speci�c grid resource manager such as Globus or Condor. The
grid and modeling languages form a synergistic combination. Linking them
together gives us expressive power and allows us to easily generate simple par-
allel programs. Successful applications of our mechanism should possess two
key properties; they should generate a large number of independent tasks and
each individual task should take a long time to complete. Applications with the
above two properties cannot be reasonably performed serially. Furthermore, the
model generation time and scheduling overhead are ameliorated by the resources
spent solving each individual task.

The approach is very simple; we separate the solution into several steps which
then can be controlled individually. This separation is not done automatically
and it is completely up to the user of the system to decide which serial operations
can be reworked in an asynchronous mode. We will �rst review what happens
during the synchronous solution step and then introduce the asynchronous or
parallel solution steps.

When GAMS encounters a solve statement during execution it proceeds in
three basic steps:

Generation. The symbolic equations of the model are used to instantiate
the model using the current state of the GAMS database. This instance contains
all information and services needed by a solution method to attempt a solution.
This representation is independent of the solution subsystem and computing
platform.
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Solution. The model instance is handed over to a solution subsystem and
GAMS will wait until the solver subsystem terminates.

Update. The detailed solution and statistics are used to update the GAMS
database.

In most cases, the time taken to generate the model and update the database
with the solution will be much smaller than the actual time spent in a speci�c
solution subsystem. Often the model generation takes just few seconds, whereas
the time to obtain an optimal solution may take a few minutes to several hours.
If sequential model solutions do not depend on each other, we can solve in
parallel and update the database in random order. All we need is a facility to
generate models, submit them for solution and continue. At a convenient point
in our program we will then look for the completed solution and update the
database accordingly. We will term this �rst phase the submission loop and the
subsequent phase the collection loop:

Submission Loop. In this phase we will generate and submit models for
solution that can be solved independently.

Collection Loop. The solutions of the previously submitted models are
collected as soon as a solution is available. It may be necessary to wait for some
solutions to complete by putting the GAMS program to sleep.

We now illustrate the use of the basic grid facility. Assume that we have
a simple transportation model that is parameterized by given supply and de-
mand information. Then the following statements instantiate those parameters
and then solve the model, saving the objective value afterwards into a report
parameter.

demand = 42; cost = 14;

solve mymodel min obj using minlp;

report = obj.l;

Note that a model in the GAMS language is just a collection of symbolic
relationships, the equations. A solve statement then simply takes those relation-
ships and instantiates the model using the current state of the GAMS database
and passes it to some solution engine. Once a solution is obtained, the results
are merged back into the GAMS database. To carry out multiple replications,
a loop construct can be used. The only changes required are to instantiate
di�erent data and to save appropriate values from each solution.

loop(scenario,

demand = sdemand(scenario); cost = scost(scenario);

solve mymodel min obj using minlp;

report(scenario) = obj.l );

However, the solve statement in this loop is blocking. Essentially, the solver
takes the (scalar level) model that was generated, solves it, and returns the
solution back to the modeling systems without releasing the process handle.
The model attribute solvelink controls the behavior of the solve statement and
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the value of 3 tells GAMS to generate and submit the model for solution and
continue without waiting for the completion of the solution step; this is now a
submission loop.

mymodel.solvelink=3;

loop(scenario,

demand = sdemand(scenario); cost = scost(scenario);

solve mymodel min obj using minlp;

h(scenario) = mymodel.handle );

We obviously cannot save any solution values; instead we need to save some
information that will later allow us to identify an instance. The model attribute
handle provides this unique identi�er. We store those handle values, in this
case, in the parameter h, to be used later to collect the solutions. The following
collection loop retrieves the solutions:

loop(scenario$handlecollect(h(scenario)),

report(scenario) = obj.l );

The function handlecollect will interrogate the solution process and will load
the solution and related information if the solution process has been completed
for the given handle. If the solution is not ready, the function will return a value
of zero and will continue with the next element in the set scenario. For readers
not familiar with GAMS syntax; the $ should read like a such that condition.
The above collection loop has one major �aw. If a solution was not ready it
will not be retrieved. We need to call this loop several times until all solutions
have been retrieved or we get tired of it and quit. We will use a repeat-until
construct and the handle parameter h to control the loop to look only for the
solutions that have not been loaded yet, as shown below:

repeat

loop(scenario$handlecollect(h(scenario)),

report(scenario) = obj.l;

h(scenario)=0 );

display$sleep(card(h)*0.1) 'sleep a bit';

until card(h)=0 or timeelapsed > 100;

We use the handle parameter to control the extraction loop. Once we have
extracted a solution we will set the handle parameter to zero. Before running
the collection loop again, we may want to wait a while to give the system
time to complete more solution steps. This is done with the conditional display
statement which just executes a sleep command for 0.1 seconds times the number
of solution not yet retrieved. The �nal wrinkle is to terminate after 100 seconds
of elapsed time, even if we did not get all the solutions. This is important,
because if one of the solution steps fail, our program would never terminate. The
parameter h will now contain the handles of the failed solves for later analysis.
As a �nal note, we have made no assumptions about what kind of solvers and
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what kind of computing environment we will operate. The above example is
completely platform and solver independent and it runs on a Windows laptop
or on a massive grid system without any changes to the GAMS source code.

There are three handle functions that allow more control of the program.
For example, we could rewrite the above collection loop:

repeat

loop(scenario

if(handlestatus(h(scenario))=2,

mymodel.handle = h(scenario);

execute_loadhandle mymodel;

display$handledelete(h(scenario)) 'could not remove handle';

h(scenario)=0 ));

display$sleep(card(h)*0.1) 'sleep a bit';

until card(h)=0 or timeelapsed > 100;

The function handlestatus returns the current state of the solution process
for a speci�c handle. If the return value is 2, we have a solution and can
proceed to load all or parts of the solution. This is carried out in two steps; �rst
we have to signal to the model which solution we want to load, and then we
use the procedure execute_loadhandle to merge the solution into the current
database. We also use the function handledelete to remove the instance from
our system.

A few words regarding the implementation of the solver interface. The so-
lution is returned in a GAMS Data Exchange (GDX) container. This container
is a high performance, platform independent data exchange with APIs for most
programming languages. Any data contained in GDX meets all syntactic and se-
mantic rules of GAMS information and is used to communicate between GAMS
systems components and any other external system like databases, spreadsheets
and many other systems. GDX ensures data quality and provides one very im-
portant service; it manages the mapping of di�erent name spaces. The GAMS
data model is a subset of a relational data model which accesses data by de-
scriptors and not location. Programming the mappings from data structures
suitable for algorithms or programming languages to relational data spaces is
error prone and expensive; GDX automates this step.

The actual submission of the model instance to the operating system for fur-
ther processing is done via scripts. Whenever a solve statement is encountered
while executing a GAMS program, control is passed to a script. In general this
script is responsible for running the solver on the problem instance and passing
back the solution to GAMS. In the grid environment, we simply use the �le sys-
tem to give each instance its own environment and its own directory. The script
then schedules the solver execution. The solvers then generate the solution �le
and a �ag to signal completion which the collection loop will understand and
commence retrieval. This submission script centralizes all information required
to tailor the system to a speci�c grid engine. Under Windows this would look
like:
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@echo off

: gams grid submission script

:

: arg1 solver executable

: 2 control file

: 3 scratch directory

:

: gmscr_nx.exe processes the solution and produces 'gmsgrid.gdx'

:

echo @echo off > %3runit.cmd

echo %1 %2 ^& gmscr_nx.exe %2 >> %3runit.cmd

echo echo OK ^> %3finished ^& exit >> %3runit.cmd

start /b /low %3runit.cmd > nul

echo @start /b %3runit.cmd ^> nul > %3gmsrerun.cmd

exit

In this case we use the start command to submit our instance to Windows.
The script for Condor or any other grid system will look very similar. Once
the script submits the job, the scheduler then queues the job, monitors its
execution, and returns any solution back to the submitting machine (possibly
the same machine). Once the solution is returned, a �ag is set and the scheduler
releases the job from the workpool. Note that this implementation conforms to
the master worker paradigm, with the GAMS program being the master, and
the grid resources taking on the role of the worker. GAMS generates tasks and is
responsible for synchronization of the results, while the grid processes individual
tasks and simply reports back results. This simplicity is critical in dealing with
the dynamic nature of our grid system and help to enhance our fault tolerance,
as we now brie�y discuss, using Condor as an example.

A key feature of the Condor system, that we believe is of critical importance,
is the dynamic nature of the provided grid resources. Machines may come and
go, either as the demand for resources by other users increases or decreases, or
due to failures of certain components of the grid, etc. The system is designed to
be fault tolerant, with built in attributes that restart jobs after system crashes
or other failures. However, as the number of resources used increases, so does
the probability of a failure. Therefore, our algorithms must be designed to be
fault-tolerant. In some cases the executable performing the computations can
be linked with special libraries that allow the computation to be checkpointed
and migrated to another machine. In cases where relinking is not possible,
the tasks are migrated to another machine and the computation starts anew.
For example, all of the solvers available in GAMS can be run on this system
without recompilation, provided the user is willing to accept the loss of work
when migration occurs.

GAMS provides another facility to help a modeler build in more fault toler-
ance, namely the handlesubmit function. When the initial task is generated for
Condor submission, a resubmission script is also generated. Whenever a user
determines that an optimization task did not perform as expected, the task can
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be resubmitted using the syntax:

rc = handlesubmit(handle(scenario));

The return code indicates if the resubmission was successful or not. Several
other modeling facilities help with fault tolerance including a persistent directory
in which to store all the output from the grid jobs (GRIDDIR).

In the next sections we will illustrate the use of the grid facility in research
and production environments with three sets of examples. The �rst set shows
how to exploit the ability to do parallel solution when tracing e�ciency frontiers
or evaluate independent scenarios, the second set implements parallel decompo-
sition schemes. The last set of examples shows how one can extend the simple
grid facility to implement sophisticated methods to solve very di�cult mixed
integer models.

Before proceeding with these examples, we would like to give a brief summary
of features introduced in this section. It is important to note that no new
language constructs were required to program and manage the asynchronous
execution of the model solution step, only minor extensions to existing structures
have been added. For convenience we will group those extensions into:

Instance Identi�cation. The identity of a speci�c model instance, the
model handle, is simply encoded into a GAMS scalar parameter value which
can be managed like any other data item.

Solution Strategy. The existing model attribute <model>.solvelink,
that speci�es the implementation of the solution process of a model instance, has
two additional values to specify what type of asynchronous processing should be
used. A new attribute, the <model>.handle, is used to communicate instances
of model instantiation and the collection of solution values.

Solution Management. Only four new functions were needed to manage
the asynchronous model instances: HandleCollect checks to see if the solution
of a model instance has been completed. If a solution to the instance exists,
it will be collected and merged into the existing GAMS database and solution
speci�c model attributes are reset. HandleStatus returns the current status of
the model instance without taking any further action. HandleDelete will at-
tempt to remove the model instance from the system. HandleSubmit resubmits
a model instance for solution. The outcome of the attempt to solve a model
instance is stored in a GDX container, which gives independent access to all
solution process related information, including the solution values if the process
was successful. Instead of using the HandleCollect function to retrieve all so-
lution values, the procedure execute_loadhandle has been added to collect all
or parts of a solution.

Process Management. We may not be able to �nd the desired solution
with just one GAMS process or submission. This could be because the solution
process may have failures, may take days or weeks to complete, or has to interact
with other external systems.This requires fail-safe design and time distributed
processes. The existing SAVE and RESTART facilities, which allow GAMS pro-
cesses to be interrupted and restarted at a later time, possibly on a di�erent
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computing platform, provides e�ective process management. The new GAMS
process parameter GRIDDIR allows us to conveniently name a collection of model
instance related information, usually the name of a node in a �le system. This
facilitates sharing of grid related information between di�erent processes.

System Management. The actual implementation of the grid submission
and management procedure is concentrated in one single script �le, the gmsgrid
script. Each GAMS system comes with a default gmsgrid script, which imple-
ments the grid facility for a given platform using standard operating system
functionality. These scripts can easily be modi�ed to adapt to di�erent system
environments or application needs. A GAMS user does not have to have any
knowledge about the existence or content of those scripts.

4 Processing Independent Scenarios

The most immediate use of parallel solution is for the generation of indepen-
dent scenarios arising in many practical applications. Monte Carlo simulations,
scenario analyses and the tracing of e�ciency frontiers are just a few exam-
ples. The modi�cations to the existing sequential GAMS code are minor and
require no understanding of any platform speci�c features and no additional
constraints are imposed on the application. We will illustrate this by using the
model QMEANVAR from the GAMS Model Library. This model is used to
restructure an investment portfolio using the traditional Markovitz style return
variance tradeo�s under additional trading restrictions which make the model a
mixed integer quadratic programming model, in GAMS classi�ed as an MIQCP.
Practical models of this kind can be very large, the scope for using advanced
starting points is limited and the model instantiation time is very small com-
pared to the solution time. The potential savings in elapsed time are then
closely proportional to the numbers of processing nodes available which makes
it already attractive on multi CPU systems.

Before one starts to convert an application from serial to parallel operation, it
is important to verify that the parallel features are working as advertised. This
can easily be accomplished by taking the existing application by setting the
<model>.solvelink option to the value 4. This will instruct GAMS to execute
all the solve statements in serial mode, as before, but use the asynchronous
solution strategy. This feature is also available via a GAMS process parameter
which does not require any change to the GAMS program and is used extensively
by our QA (Quality Assurance) processes. Once we have veri�ed that our model
and the required solvers can operate in asynchronous mode on the di�erent
target platforms, we are ready to parallelize the code.

As we have shown in the previous section, we need to separate the serial
solution loop into a submission and collection loop. The original serial loop
was:

Loop(p,

ret.fx = rmin + (rmax-rmin)/(card(p)+1)*ord(p);
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Solve minvar min var using miqcp;

xres(i,p) = x.l(i);

report(p,i,'inc') = xi.l(i);

report(p,i,'dec') = xd.l(i) );

We just need to de�ne a place where we store the solution handle and set
the solution strategy for this model to 3, which instructs GAMS to generate an
instance of the model and submit this instance to the grid system for solution.
Instead of saving the solution values, we just save the handle when we retrieve
the solution.

parameter h(p) solution handle; minvar.solvelink=3;

Loop(p,

ret.fx = rmin + (rmax-rmin)/(card(p)+1)*ord(p);

Solve minvar min var using miqcp;

h(p) = minvar.handle; );

In the following collection loop, we will also set a real time limit and mark
the missed points.

Repeat

loop(p$handlecollect(h(p)),

xres(i,p) = x.l(i);

report(p,i,'inc') = xi.l(i);

report(p,i,'dec') = xd.l(i);

h(p) = 0 ) ;

display$sleep(card(h)*0.1) 'sleep some time';

until card(h) = 0 or timeelapsed > maxtime;

xres(i,p)$h(p) = na;

The results of the model are now ready to be processed further by GAMS or
passed on to some other system for further analysis and visualization. No other
parts of the GAMS program had to be changed. The complete grid ready model
is also available via the GAMS Model Library under the name QMEANVARG.
There may remain one more question: Are the solutions from the serial model
the same as from the parallel one? This kind of question arises in many situ-
ations when doing maintenance or enhancements of existing applications. It is
simple to capture a snapshot of the current state of some or all the data items,
model inputs and results, in a GDX container. The easiest way is to add the
GAMS parameter GDX to the job submission for both versions. The two GDX
containers can then be compared with a special di�erence utility, which produces
a new GDX container which contains only the di�erences. Those di�erences can
then be further processed or visualized in the GAMS IDE. It should be noted
that there could be large di�erences in the equations and variables because the
order in which solutions are retrieved is di�erent, but all other items should be
the same. In a shell environment this would look like:

12



gams qmeanvar gdx=qmeanvar

gams qmeanvarg gdx=qmeanvarg

gdxdiff qmeanvar qmeanvarg qmeandiff RelEps=1e-12

It is typical for strategic modeling application to require the generation of
large numbers of scenarios and their solutions need to be retained for further
analysis. Furthermore, we may just want to submit a number of instances
and disconnect from the system, analyze the results and prepare a new set of
scenarios. This working style can be supported by splitting our GAMS code into
several parts. The �rst one will contain the complete model and data de�nition
and possibly the submission loop. Once all problems have been submitted, the
program will terminate. In order to be able to inquire about the status of each
instance and collect solutions, we need to save the GAMS environment for later
restart and provide a known place where we can �nd the solution information.
The GAMS parameters SAVE and GRIDDIR (or short, S and GDIR) need to be
added when submitting the job. When using a Windows command shell it may
look like:

> gams ... save=<sfile> gdir=<gdir>

The GAMS environment and the information in the grid directory are plat-
form independent, for example, you can start submitting the jobs on a Windows
platform and continue your analysis on a SUN Solaris system running on SPARC
hardware. After some time we may want to check on the status of our work.
This can be carried out by the following code:

parameter status(p,*); scalar handle;

acronym BadHandle,Waiting,Ready;

loop(p,

handle := handlestatus(h(p));

if(handle=0,

handle := BadHandle

elseif handle=2,

handle := Ready;

minvar.handle = h(p);

execute_loadhandle minvar;

status(p,'solvestat') = minvar.solvestat;

status(p,'modelstat') = minvar.modelstat;

status(p,'seconds') = minvar.resusd;

else

handle := Waiting );

status(p,'status') = handle );

display status;

To run the above program we will have to restart from the previously saved
environment and provide the location of the grid information. A job submission
then may look like:
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> gams ... restart=<sfile> gdir=<gdir>

The output of this run may then look like:

---- 173 PARAMETER status

solvestat modelstat seconds status

p1 1.000 1.000 0.328 Ready

p2 1.000 1.000 0.171 Ready

p3 Waiting

p4 Waiting

p5 1.000 1.000 0.046 Ready

Once we are satis�ed that a su�cient number of instances completed suc-
cessfully, we are ready to execute the second part of our program using the same
RESTART and GDIR values.

The model solutions retained are stored in GDX containers and can be op-
erated on like any other GDX container. In large scale applications, it may not
be feasible to merge all solution values and we only need to extract certain ones.

5 Decomposition Approaches

While it is clear that many model solution procedures can be enhanced via
the use of embarassingly parallel techniques implemented on a grid computer,
there are an enormous number of problems which take too long to solve in a
serial environment and do not have such easy parallelization. Examples of such
problems arise due to the sheer size of the problems, a requirement of global or
stochastic optimization guarantees, or simply due to a combinatorial explosion
in the search processes related to discrete choices.

In such cases, a modeler can resort to a problem decomposition approach.
The GAMS language is rich enough to allow algorithms such as Benders de-
composition, column generation, Jacobi and Gauss-Seidel iterative schemes for
systems of equations, and even branch-and-bound algorithms to be coded di-
rectly. Many of these approaches generate subproblems that can be solved
concurrently, and the grid extensions of GAMS enable these subproblems to be
solved on the grid in such a manner.

In this section we give two examples of decompositions, namely an imple-
mentation of a Dantzig-Wolfe decomposition procedure for solving a multi-
commodity network �ow problem, and an asynchronous Jacobi method for a
system of equations.

5.1 Asynchronous Jacobi Method

As our �rst example of such a procedure, we outline how to implement various
iterative schemes for the solution of systems of linear equations in a serial and
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grid or parallel fashion. We choose this example for simplicity, but note that
extension of this code to nonlinear equations or mixed complementarity systems
is straightforward.

The following GAMS code snippet is the core of a simple problem which is
solved as a mixed complementarity problem (MCP):

variables x(i); equations e(i); parameter A(i,j), b(i);

e(i).. sum(j, A(i,j)*x(j)) =e= b(i);

model lin /e.x/;

b(i) = 1; A(i,i) = 1; A(i,j)$(not sameas(i,j)) = 0.001;

solve lin using mcp;

When the problem size becomes too large, we can use a partitioning scheme
where the model domain is split into a collection of non-overlapping subdomains.
A simple code to do this is outlined below, where we use the two dimensional
sets active and fixed to denote those variables that are part of partition k,
and those which should be treated as �xed in partition k.

sets k problem partition blocks / block_1*block_%b% /

active(k,i) active vars in partition k

fixed(k,i) fixed vars in partition k;

alias(kp,k);

active(k,i) = ceil(ord(i)*card(k)/card(i)) = ord(k);

fixed(k,i) = not active(k,i);

A popular method for solving such systems is the Gauss-Seidel method,
whereby the problem is split into several blocks, and each block problem is
solved one after the other with the variables that are not in the block being
�xed at their current values. An excellent reference for this method and the
ones we outline below is given in [5].

parameter res(iters) sum of residual

tol convergence tolerance / 1e-3 /

iter iteration counter;

lin.solvelink = 2; ! keep gams memory resident

lin.solprint = 2; ! suppress solution output

lin.holdfixed = 1; ! treat fixed vars as constants

x.l(i) = 0; res(iters) = 0; res('iter0') = smax(i, abs(b(i)));

loop(iters$(res(iters) > tol),
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loop(k,

x.fx(i)$fixed(k,i) = x.l(i);

solve lin using mcp;

x.lo(i)$fixed(k,i) = -inf;

x.up(i)$fixed(k,i) = inf );

res(iters+1) = smax(i, abs(b(i) - sum(j, A(i,j)*x.l(j)))) );

Note several points here. The �rst is that since some variables are �xed,
the hold�xed option of GAMS generates a model simply in the smaller block
dimension space. Secondly, when the solution is read back into GAMS, a merge
is performed and hence only the values of the variables that have been updated
by the solver are changed.

This process, while it reduces the size of the problems being solved, may take
large numbers of iterations to converge and is carried out in a serial fashion. For
parallelization or grid solution, an even simpler technique is commonly used, and
is typically referred to as a Jacobi scheme. In this setting, each block problem
is solved concurrently with the variables that are not in the block being �xed at
their current values. After all block subproblems are completed, the variables
are updated simultaneously with the block solutions before the next iteration
of the process is started.

parameter h(k) handles;

lin.solvelink = 3; ! set grid mode

x.l(i) = 0; res(iters) = 0; res('iter0') = smax(i, abs(b(i)));

loop(iters$(res(iters) > tol),

loop(k, ! submitting loop

x.fx(i)$fixed(k,i) = x.l(i);

solve lin using mcp; h(k) = lin.handle;

x.lo(i)$fixed(k,i) = -inf;

x.up(i)$fixed(k,i) = inf );

repeat ! collection loop

loop(k$handlecollect(h(k)),

display$handledelete(h(k)) 'could not remove handle';

h(k) = 0 ); ! mark problem as solved

until card(h) = 0;

res(iters+1) = smax(i, abs(b(i) - sum(j, A(i,j)*x.l(j)))) );

Notice a couple of points here. The GAMS grid option is used to spawn
all the block subproblems in the �rst loop. The second loop retrieves all the
solutions, utilizing the built-in merge procedure of GAMS to overwrite the ap-
propriate variable values. While such codes are easy to write with the extensions
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described in this paper, it is typically the case that the Jacobi process is slow
to converge (more so than the previous Gauss-Seidel scheme) since it does not
use the most up-to-date information as soon as it is available.

For this reason, an asynchronous scheme is often preferred, and the GAMS
grid option can be used to facilitate such a process very easily.

parameter curres intermediate residual values ;

lin.solvelink = 3; ! set grid mode

x.l(i) = 0; res(iters) = 0; res('iter0') = smax(i, abs(b(i)));

iter = 0;

loop(k, ! initial submission loop

x.fx(i)$fixed(k,i) = x.l(i);

solve lin using mcp;

h(k) = lin.handle;

x.lo(i)$fixed(k,i) = -inf;

x.up(i)$fixed(k,i) = inf );

repeat ! retrieve and submit

loop(k$handlecollect(h(k)),

display$handledelete(h(k)) 'could not remove handle';

h(k) = 0;

iter = iter + 1;

curres = smax(i, abs(b(i) - sum(j, A(i,j)*x.l(j))));

res(iters)$(ord(iters) = iter + 1) = curres;

if(curres > tol,

loop(kp$(h(kp)=0 and

smax(active(kp,i), abs(b(i) - sum(j, A(i,j)*x.l(j)))) > tol),

x.fx(i)$fixed(kp,i) = x.l(i);

solve lin using mcp; ! submit new problem

h(kp) = lin.handle;

x.lo(i)$fixed(kp,i) = -inf;

x.up(i)$fixed(kp,i) = inf ) ) );

until card(h) = 0 or iter ge card(iters);

Note that all the block subproblems are spawned initially. After GAMS
detects that a subproblem is solved, the results are retrieved and the residual
of the system of equations is calculated. If this is not small enough, then each
block subproblem that is not currently running, but for which the residual in
this block is large, is spawned. Note that if a current block already has a small
residual, a new subproblem is not spawned, but may be started at a later time
when a di�erent set of variables is updated. This process typically converges
much faster than the Jacobi scheme, and in a parallel or grid environment
outperforms the (serial) Gauss-Seidel scheme given above.
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5.2 Dantzig Wolfe Decomposition

The second example is an implementation of the Dantzig-Wolfe decomposition
method [16]. This method exploits structure in the linear program

min cT x subject to Ax = b, x ≥ 0

where for example A has the following form:

A =


B0 B1 B2 · · · BK

A1

A2

. . .

AK

 .

Our speci�c implementation is in terms of a multi-commodity network �ow prob-
lem (where each Ak corresponds to a commodity �ow, and the joint constraints
utilizing Bk represent arc capacities).

Using Minkowski's representation theorem [47], the feasible region of the
problem can be expressed as a convex combination of extreme points and ex-
treme rays. In the speci�c example above, we can write the extreme points
and rays as a Cartesian product of extreme points and rays of a collection of
commodity sets {xk|Akxk = bk, xk ≥ 0}. A (restricted) master problem �nds
the best combination of the existing subset of extreme points and rays, and a
collection of subproblems generates new extreme points or rays by solving (in
parallel) a pricing problem in each commodity based on dual information ob-
tained from the master solution. In reality, the pricing subproblems correspond
to evaluating the reduced costs of the full master problem and adding only those
extra columns to the reduced master problem which are necessary.

The pertinent details of an implementation for the GAMS grid environment
now follow:

scalar done loop indicator /0/, iter /0/;

parameter h(k) model handles;

pricing.solvelink=3;

While(not done, iter=iter+1;

done = 1;

pricing.number = 0;

loop(k,

[set up data for kth pricing subproblem]

solve pricing using lp minimizing z;

h(k) = pricing.handle );

repeat

loop(k$h(k),
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if(handlecollect(h(k)),

if ( z.l < -tol or iter eq 1,

[add extreme point/ray from kth subproblem to master]

done = 0;

)

h(k) = 0 ) ) ;

until card(h) = 0;

solve master using lp minimizing z;

);

The process starts by determining a set of columns to include in the master
problem. Subsequently, columns are only added to the master problem if the
reduced costs are negative. The master problem is solved to determine new
multipliers on its constraints which thereby determine new pricing problems.
The iterations of this method continue until no negative reduced cost is found.
Note that for simplicity of exposition we have omitted the details of how the data
for the kth subproblem is generated or how the solution of the kth subproblem
is used to add an extreme point or ray to the (restricted) master problem.

A �nal observation concerns the line pricing.number = 0. This resets the
solution counter and then generates the data of each pricing subproblem in
the same grid directories for each iteration of the Dantzig-Wolfe procedure.
This may reduce generation overhead, and future extensions of the GAMS grid
procedure could exploit this further.

The complete examples from this section are available in the GAMS Model
Library and were successfully run on all three of our grid engines, namely as
background processes on a multiprocessor desktop, using the Sun Grid, or using
the Condor resource manager.

6 Solving Intractable Mixed Integer Problems

MIP has been a proving ground for parallel computation for the last 15 years
[33]. While most modern commercial MIP solvers support symmetric multi-
processing, or SMP, based on shared memory, the early '90s also saw imple-
mentations of the branch-and-bound (B&B) algorithm on distributed memory
including academic codes (e.g. [19]) which lay the groundwork for the PICO
solver [20] as well as commercial codes like parallel OSL on IBM SP2. The tree
search in the B&B algorithm is a clear invitation for massive parallel process-
ing. The master process farms out the relative expensive operation of solving
the linear programs (LP) at the nodes to the workers. Even though commu-
nication standards like PVM or MPI have developed over time, no commercial
MIP solver supports a distributed memory environment today. One reason for
the failure of this simple parallelization scheme is the large volume of data com-
municated between master and worker compared to the relative short solution
times of the LPs at the nodes.

A di�erent kind of parallelization for MIP is based on a-priori decompositions
of the solution space. In 2001, Ferris et. al. [25] applied a few rounds of manual
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strong branching with a breadth-�rst-search node selection strategy to generate
256 subproblems of the Seymour problem. These 256 problems were solved in
parallel with CPLEX 6.6.

There are various ways of decomposing the feasible region of a MIP with
discrete variables LI ≤ xI ≤ UI . Assuming LI = 0 and UI = 1 we can easily
calculate the Hamming Distance from a reference point x′

I :

h :=
∑

i∈I,x′
i=0

xi +
∑

i∈I,x′
i=1

(1 − xi)

Adding this linear constraint to the problem and forcing hj < h ≤ hj + 1
for j = 0, . . . , k with h0 = −1, hj < hj + 1, and hk = |I| decomposes the
original problem into k+1 subproblems. Another simple decomposition scheme
is based on splitting the domain of important variables. Here a small number
of important discrete variables xJ with J ⊂ I is selected and their bound range
gets split into two regions:

LJ ≤ xJ ≤
⌊

UJ − LJ

2

⌋
and

⌈
UJ − LJ

2

⌉
≤ xJ ≤ UJ

The power set of the new regions results in a decomposition of 2|J| subproblems.
The advantages of a-priori decomposition schemes are clear. The ratio be-

tween work and communication at the worker exceeds the one from simple par-
allel B&B algorithms. O�-the-shelf industrial strength MIP solvers can be used
at the workers. Subproblems arising from bound tightening allow for additional
round of MIP preprocessing which in general results in a tighter relaxation and
faster solution times. The problem with a-priori decompositions is that the
computational e�ort required solving the subproblems di�ers signi�cantly. For
example, we used the DICE [10, 30] model from the GAMS Model Library and
partitioned the problem into 64 subproblems using the Important Variable and
Hamming Distance decompositions. The �gure below shows the solution time
factor of the 64 jobs compared to the solution time of the original problem. Most
of the subproblems are easily solved while a few require a solution time that is
almost the original time and even larger for two subproblems in the Hamming
Distance decomposition.

Figure 1: Solution time factors of subproblems

Experiments on a larger scale show similar results where up to 95% of the
subproblems are quite simple to solve while the remaining problems are almost
as di�cult as the original one. It is not obvious to determine the level of dif-
�culty of a subproblem prior to solving it. One way of ranking subproblems
is to look at the value of their LP relaxation (possibly improved by extensive
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MIP preprocessing and cut generation). The design of the branch-and-bound
algorithm suggests that on average the closer the value of the LP relaxation of a
subproblem is to the value of the root relaxation, the longer it takes to solve the
subproblem. This measure has its limitations: For example, a subproblem could
have an LP relaxation value close to one of the root relaxation, but the feasible
region is extremely small so exploring the subproblem will quickly terminate.
Nevertheless, computational experiments show that subproblem generation ac-
cording to this measure produces decompositions with subproblems of similar
but reduced level of di�culty compared to the original problem. Moreover, we
can use a MIP solver to produce such decompositions without deeper knowledge
of the problem itself and the importance of the discrete decision variables.

6.1 Decompositions by Branch-and-Bound

The branch-and-bound algorithm successively partitions the feasible region by
branching on a discrete variable xi with fractional value f in the LP relaxation.
Two new subproblems are generated with new bounds on variable xi: xi ≤ bfc
and xi ≥ dfe. One of the newly created subproblems or open nodes of the
successively developing tree, which consist of the original problem plus tightened
bounds on the discrete variables LI ≤ L′

I < xI ≤ U ′
I ≤ UI , is selected and the

LP relaxation is solved providing a) a fractional solution which leads potentially
to further partitioning, b) an integer feasible solution, or c) an infeasible LP
relaxation. In the latter two cases, the subproblem does not need to be explored
further.

If during the process of the B&B algorithm an integer solution has been
found, this can be used to stop partitioning of subproblems even if the LP
relaxation contains discrete variables with fractional values (case a). If the
objective value of the LP relaxation is not smaller than the best integer solution
zincb found so far, also known as the incumbent, an integer solution better than
the incumbent cannot be found by this subproblem. Therefore, in the search
for the optimal solution, the exploration of this subproblem can be stopped.

At any time during the B&B algorithm the set of open nodes J = {1, . . . , k}
corresponds to a decomposition of the relevant unexplored feasible region of
a mixed integer program. The minimum of the incumbent and the optimum
objective value of all subproblems de�ned by the open nodes J determines the
optimal solution of the original problem: zopt = min(zincb, z1

opt, z
2
opt, . . . , z

k
opt)

where zj
opt is the optimum objective value of the subproblem corresponding to

the jth open node.
MIP solvers like COIN-OR's CBC, CPLEX, and XPRESS provide strategies

for variable branching (e.g. strong branching) and node selection (e.g. best
bound) that focus on reducing the largest LP relaxation value of all open nodes.
This value is also known as the best bound or best estimate. Decompositions
based on open nodes from B&B trees developed by such strategies tend to
produce subproblems with similar LP relaxation values that are signi�cantly
reduced from the initial root relaxation value. Following the suggested relation
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between the level of di�culty and the deviation of subproblem LP relaxation
values from the root, the scheme will produce subproblems of equal but reduced
level of di�culty. Figure 2 shows for model DICE the relative di�erence of the
LP values at 16 open nodes from the root node LP value with di�erent settings
for CPLEX parameter mipemphasis.

0.4

0.5

0.6

0

0.1

0.2

0.3

Emphasis Feasibility

Emphasis Moving Bestbound

Figure 2: Relative distance of LP at node from root LP

Using the approach described above, we can use any MIP solver for auto-
matic generation of a-priori decompositions which provides tree development
strategies that focus on moving the best bound and that give access to the open
nodes during the B&B algorithm. Depending on the number of available ma-
chines in the grid we can stop the B&B algorithm as soon as the number of
open nodes reaches a speci�ed number n resulting in n subproblems.

6.2 Implementation Details

The following work has been implemented using GAMS/CPLEX but as outlined
in previous sections, a very similar implementation could have been done with
COIN-OR's CBC or XPRESS.

The GAMS/CPLEX interface supports the Branch-and-Cut-and-Heuristic
facility (BCH) [11] allowing GAMS to supply user cuts and incumbents to the
running branch-and-cut algorithm inside CPLEX using CPLEX callback func-
tions. A minor extension to this facility resulted in the GAMS/CPLEX option
dumptree, providing the tightened bounds of discrete variables for each of the
subproblems corresponding to the open nodes as soon as their number reached
the speci�ed value n. If we want to further process the subproblems on the
GAMS language level, the variables and their tightened bound values need to
be provided in the namespace of the original GAMS model and not in the inter-
nal namespace of CPLEX (usually x1, x2, . . .). When GAMS generates a model
to be passed to a solver, a dictionary is created that allows the mapping from
the solver variable and constraint space to the GAMS namespace and vice versa.
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The GAMS/CPLEX option dumptree stores the tightened bounds of the sub-
problems for o�ine processing in separate GDX containers using the dictionary
to determine the original GAMS namespace.

After an initial solve of the original problem using GAMS/CPLEX with op-
tion dumptree n, at most1 n subproblems by the individual GDX bound con-
tainers are available for submission to the grid. The submission and collection is
similar to the �rst example. Here the data for di�erent scenarios/subproblems
does not come from some external data source, but gets loaded from the GDX
containers.

6.3 Need for Communication between Jobs

The n submitted jobs run completely independent without communication be-
fore completion. Unlike the �rst example, we are not necessarily interested in
optimal solutions of all n subproblems. We just need the best solution of all
n subproblems. If we can determine that a subproblem will not provide the
best solution, we can terminate the job before it �nishes regularly. Assume
the minimum of the incumbents of all (running) jobs is zincb = mini=1...n zi

incb.
Following the arguments from the description of the B&B algorithm we can
terminate all subproblems for which the best bound is not smaller than zincb.

The BCH facility can be con�gured so CPLEX calls out to a user GAMS
program whenever a new incumbent is found. In our case, the GAMS program
communicates the new incumbent zi

incb of subproblem i to the master job which
is the process of collecting results from the subproblems. If this new incumbent
is better than the current best incumbent zincb of all subproblems, zincb is
updated and communicated to all other subproblems. The value zincb is used as
a cuto� value instructing the solver to stop processing nodes whose LP relaxation
value is larger than zincb. If the best bound of a subproblem is larger than
zincb, processing of all open nodes will be stopped and the job will terminate
immediately.

The updated cuto� value is communicated through a GAMS/CPLEX option
�le. The running GAMS jobs frequently look for a trigger �le. These trigger �les
are written by the master process whenever a better incumbent has been found
and initiate reading of the GAMS/CPLEX option �le with the updated cuto�
value. After a job has read and updated the internal cuto� value, it deletes its
trigger �le to prevent reading the same cuto� value repeatedly. This type of
�le based communication is straightforward to implement on grid systems with
a shared �le system. While the Condor system supports communication via
a shared �le system, this requirement limits the number of available machines
signi�cantly since Condor runs on heterogeneous networks not sharing a �le
system potentially across the world. Condor can mimic a shared �le system

1Before the subproblem gets dumped to a GDX container, CPLEX will solve the LP
relaxation of the subproblem. In case the node is integer feasible or infeasible which would
give a trivial subproblem, the dumping of the GDX bound container is skipped resulting
potentially in less than n subproblems.
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using Condor Chirp which ensures the distribution of �les between the master
and the workers.

In the introduction, we discussed some speci�cs of the Condor system. Not
all machines in the Condor pool at University of Wisconsin are dedicated ma-
chines, some of them are workstations. The Condor system ensures that the
interactive user of the workstation does not su�er performance loss from back-
ground processes by vacating Condor jobs as soon as a user starts an interactive
session. Condor supports check-pointing of jobs meaning that a job frequently
creates checkpoint �les that allow restarting from the last checkpoint and hence
minimizing wasted CPU time in case of a vacated job. Unfortunately, Condor's
check-pointing require the use of special link libraries which are incompati-
ble with some third party software (CPLEX in our case). Hence, a vacated
GAMS/CPLEX job needs to be started from scratch resulting in a signi�cant
amount of wasted CPU time.

6.4 MIP Strategy and Repartitioning

The branch-and-bound algorithm works towards closing the gap between the
incumbent and the best bound. Di�erent variable and node selections (among
other strategies like cut generation, use of primal heuristics, etc) emphasize the
improvement of the incumbent or improvement of the best bound. While a
sequential MIP solver needs to balance its computational emphasis for moving
the incumbent and the best bound, this is much easier in a parallel setting.
In addition to solving the n subproblems for which the MIP solver focuses on
moving the best bound, we have one additional job solving the original problem
with heavy emphasis on �nding good incumbents. GAMS/CPLEX can be easily
instructed to place emphasis on improving the incumbent or the best bound by
using the CPLEX meta-option mipemphasis 1 (feasibility) or mipemphasis 3

(best bound).
In some harder cases, the partitioning strategy may become ine�cient on

the grid machine in that most of the partitioned jobs have completed their
execution, but a very small number of jobs continue to have a nonzero gap. In
this case, the job is repartitioned using the dumptree option again, and the new
jobs are added to the list of outstanding tasks. These new tasks either augment
the pool of work that needs to be processed, or they replace the job that was
running. In some cases, the repartitioning can signi�cantly reduce the overall
computational time. An outstanding issue is to determine when a repartition
should be carried out. One trigger for this could simply be time (where a �xed
time limit is set for each job), and another could be the number of remaining
jobs compared to the size of the available grid. In the latter case, we could
prioritize the jobs for repartitioning based on the current value of the gap. An
implementation in GAMS would require similar features to those we use to write
out an incumbent solution. An example of the use of this process is given in
[26].
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6.5 Numerical Results

All the techniques described in the previous sections have been implemented for
the DICE model in a new model called DICEGRID available from the GAMS
Model Library. While the DICEGRID model is of educational and reference
value, this approach has also been used on a set of very di�cult MIP problems.
A source of such MIP problems which are publically available is MIPLIB [7, 8].
The computational experiments were carried out in 2006 on the Condor pool at
University of Wisconsin, on four problems from the latest version of MIPLIB
2003 [1] that were unsolved at the time: A1C1S1, ROLL30000, SWATH, and
TIMTAB2. The following table contains relevant �gures:

A1C1S1 ROLL30000 SWATH TIMTAB2

Optimal Solution 11503.4 12890 ∗467.407 1096557

Number of subproblems 1089 986 1001 3320
Maximum CPU time of
individual job (h)

15.92 1.2 - 153.2

Wall clock time (h) 13.52 29.7 424.0 71.5

Total CPU Time (h) 3700.3 50.9 8135.1 2744.7

Fraction of wasted CPU time 6.7% 0.6% 42.8% 13.1%

CPLEX B&B Nodes 1921736 400034 22458649 17092215
∗ Not solved to optimality

While the problems A1C1S1 and ROLL30000 solved with no modi�cation
of our described approach, the TIMTAB2 problem required some additional
help. For TIMTAB2 we generated 3320 subproblems and solved these jobs
over a period of three days using (at times) over 500 processing units. These
units included both Linux and Windows machines, some of which had a shared
�le system and some of which did not. Not only was this problem solved to
optimality, but a new solution (of value 1096557) was generated. The solution
required not only the large computational resources from Condor, but also a
collection of problem speci�c cuts generated by colleagues in Berlin[39] for these
types of problems. It is important to notice that problem speci�c expertise,
coupled with large amounts of computing resources facilitated this solution.

The standard scheme failed to solve the SWATH problem. After almost
a year of cumulated CPU time, there were still 538 of the 1001 problems un-
�nished. Even after repartitioning and adding user de�ned cuts, the problem
remained unsolved after over 17 years of CPU time of which 2/3 was wasted,
exploring over 1.2 billion nodes in about 4 months of wall clock time. However,
by understanding the problem structure (SWATH is a 20 node generalized trav-
eling salesman problem with super-nodes involving additional constraints; see
the GAMS Model Library for the original and improved formulation) and gen-
erating 4 rounds of subtour elimination constraints (resulting in 22 additional

2The wall clock and maximum CPU time reported for A1C1S1 are inconsistent. Unfor-
tunately, the jobs are performed on machines that are not centrally maintained and are on
di�erent clocks. Therefore slight (timing) inconsistencies can occur in such a diverse comput-
ing environment.
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cuts) the problem was solved to optimality within seconds. Such experience cau-
tions the applicability of pure brute-force methods consuming large amounts of
computational resources, and ensures that further work indentifying particular
structures and problem speci�c enhancements is imperative.

6.6 Portability of Models

In August 2007, GAMS Development Corporation and Sun Microsystems teamed
to provide GAMS users access to the commercial grid computing facility at Sun's
Network.com. We repeated the experiments with the simplest of the four prob-
lems ROLL3000 in this environment without the need for changing a single line
of GAMS code. We decomposed the MIPs into 256 subproblems (rather than
1000 as for the Condor pool). ROLL3000 �nished in less than an hour wall
clock time consuming less than 8 hours CPU time. The unchanged model for
ROLL3000 was also solved on a four core Sun Sparc Solaris workstation. The
scheduling of the 256 jobs was entirely left to the operating system. ROLL3000
was solved in about two hours wall clock time utilizing about 6 CPU hours on
the 4 processors. The large di�erence in computational e�ort for ROLL3000
between the experiments on the Condor pool and the Sun Grid and workstation
can be mainly attributed to two facts. In 2006 on the Condor pool we used
CPLEX 9 while the more recent experiments on the Sun Grid and the worksta-
tion used CPLEX 10. Secondly, the individual machines in the Sun Grid (and
the same holds for the four core workstation3) are uniformly equipped with
high powered CPUs and su�cient memory4. The quality of the machines in the
Condor pool is diverse and on average signi�cantly worse compared to the other
two computing environments.

7 Conclusions

In this paper we have shown a number of ways to harness the power of a com-
putational grid for the solution of optimization problems that are formulated in
a modeling language. The paper describes GAMS grid, a lightweight, portable,
powerful set of extensions of GAMS speci�cally for managing optimization so-
lution strategies on a grid.

The paper includes a number of expository examples decribing the use of
these features to implement both parallel algorithms and distributed solution
approaches within a number of important application areas. These examples
(QMEANVARG, JOBOBI, DANWOLFE, DICEGRID, SWATH) are all avail-
able in the GAMS Model Library for download [29]. We believe the simplicity
and generality of the framework lends itself well to a large number of business
and research problems. The design facilitates the use of all solvers and model
types currently available within GAMS on a grid engine.

3Sun Fire X2200 M2 Server with two 2218 Processor (Dual-Core) with 16 GB of RAM.
4The Sun Grid consists of Sun Fire dual processor Opteron-based solvers with 4 GB of

RAM per CPU.
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The framework uses a master/worker computational model that we believe
is su�ciently scalable and �exible for many optimization algorithms and appli-
cations. It is already available in current releases of GAMS, and demonstrably
useful for hard optimization problems. As particular instantiations of these
features, we have described the use of GAMS grid and the CPLEX solver in
conjunction with grid facilities provided by the Condor resource manager or the
Sun Grid Engine to solve MIP problems that have evaded solution by other
means.
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