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The Grid Richard Dawson Rules! The Grid Richard Dawson Rules!

Come on Let's Play the Feud The Big Board

Q email
€€100 People Surveyed. Top @ Looking up answers to homework
5 answers are on the board. problems
Here’s the question...’’ © YouTube
@ Updating personal information at
myspace

© Looking at pictures of Anna Kournikova

Name one common use of the Internet.
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The Grid Richard Dawson Rules! The Grid Building a Grid

DYL.

JULIANNA MARGULIES

Strike! THE EB [3

TOM-SKERRITT

X

@ People envision a “Computational Grid”" much like the national power
grid
@ Users can seamlessly draw computational power whenever they need it

e Doing
Computations

@ Many resources can be brought together to solve very large problems
@ Gives application experts the ability to solve problems of
unprecedented scope and complexity, or to study problems which they
otherwise would not.
o Large funded initiative in the US.
o NSF Office of Cyberinfrastructure
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The Grid Building a Grid The Grid Building a Grid

Types of Grids Grid Contrasts

(Source: IBM Web Site)

tational grid
e Computational grids Grid Vs. Web

e Focus on computationally-intensive operations. . . . . . .
e This included CPU Scavenging Grids — which is our focus today @ Like the web Grid keeps complexity hidden: multiple users enjoy a
single, unified experience.

e Data grids
o Help control, share, and manage large quantities of (distributed) data @ Unlike the Web which mainly enables communication, grid
computing enables full collaboration toward common business or

e Equipment grids
scientific goals.

e Associated with a piece of expensive equipment (telescope, earthquaje
shake table, advanced photon source)

e Grid software used to access and control equipment remotely Grid Vs. P2P

@ Access grid @ Like peer-to-peer grid computing allows users to share files.
o Used to support group-to-group interactions
o Consists of multimedia large-format displays, presentation and
interactive environments, interfaces to Grid middleware and
visualization environments.

@ Unlike peer-to-peer grid computing allows many-to-many sharing
not only files but other resources as well.

=
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The Grid Building a Grid The Grid Building a Grid

Grid Contrasts

L - X-
This ain't easy o
@ Like clusters and distributed computing, grids bring computing Read: Nothing works as advertised
resources together. @ User access and security
@ Unlike clusters and distributed computing, which need physical o Who should be allowed to tap in?
proximity and operating homogeneity, grids can be geographically @ Interfaces
distributed and heterogeneous. e How should they tap in?
@ Heterogeneity
o Different hardware, operating systems, and software
@ Dynamic

@ Like virtualization technologies, grid computing enables the

i latien of T eemees e Participating Grid resources may come and go

. . . . . . . ) o Fault-Tolerance is very important!
@ Unlike virtualization technologies, which virtualize a single system,

grid computing enables the virtualization of vast and disparate IT
resources.

@ Communicationally challenged
e Machines may be very far apart = slow communication.
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The Grid Building a Grid The Grid Building a Grid

Grid Computing Tools: Globus

@ Globus: Widely-used grid computing toolkit Bu”dmg a Grid @
Globus Services/Libraries @ Even with wonderful tools like Globus providing these services, there
e Security, is still a fundamental obstacle to creating computational grids
available to all scientists

Information infrastructure,

o GREED!

Resource management, ’ . o _
o Most people don't want to contribute “their” machine!

@ How to induce people to contribute their machine to the Grid?

Communication, Screensaver — BOINC, seti@home

Social Welfare — fightaids@home

Offer frequent flyer miles — company went bankrupt
Let the people keep control over their machine
Give donaters a chance to use the Grid

°
°

@ Data management,
°

@ Fault detection,

°

Portability.

It is packaged as a set of components that can be used either
independently or together to develop applications.
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The Grid Condor The Grid Condor

i

Condor C4
; Condor: www.cs.wisc.edu/condor s

( PETER COUVARES

ALAN DESMET @ Manages collections of “distributively owned” workstations

e User need not have an account or access to the machine

PETER KELLER _ o i L
o Workstation owner specifies conditions under which jobs are allowed to
THE UNIVERSITY MIRON LIVNY un

A
WISCONSIN ERIK PAULSEN o All jobs are scheduled and “fairly” allocated among the pool

MARVIN SOLOMON ) .
MADISON S @ How does it do this?

TobD TANNENBAUM e Scheduling/Matchmaking

GREG THAIN o Jobs can be checkpointed and migrated
DEREK WRIGHT o Remote system calls provide the originating machines environment

http://www.cs.wisc.edu/condor
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The Grid Condor The Grid Condor

i

: = Checkpointing/Migration
Matchmaking
S 'F\;Irofr’ s Professor Arrives
MyType = Job aenine 5mi
Y . MyType = Machine min
TargetType = Machine :
. TargetType = Job -
Owner = ferris
Name = nova9 8am

Cmd = cplex

Args = seymour.d10.mps HasCplex = TRUE

= Checkpoi

HasCplex — TRUE Arch = x80.64 sover

OpSys = LINUX
Memory > 64 Grad Student 2 rudent

Memory = 256 Grad Student's Arrives L
Rank = KFlops KFlops = 53997 Machine e
Arch = x8664 RebootedDaily — TRUE e
OpSys = LINUX y=

8:10am 12pm 5 min
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The Grid Condor The Grid Condor

)

Condor + Operations Research

e

Other Condor Features Lo
@ GAMS (www.gams.com) has added Grid Computing Language

@ Pecking Order Extensions
o Users are assigned priorities based on the number of CPU cycles they @ This allows regular GAMS optimization models to be submit to job
have recently used. schedulers like Condor!
e If someone with higher priority wants a machine, your job will be
booted off. mymodel . solvelink=3;
e Flocking loop(scenario,

demand=sdemand (scenario); cost=scost(scenario)
o solve mymodel min obj using minlp;
o Glide-in h(scenario)=mymodel.handle);
e Globus provides a “front-end” to many traditional supercomputing
sites.
e Submit a Globus job which creates a temporary Condor pool on the &
; : .0
supercomputer, on which users jobs may run. i \

e Condor jobs can negotiate to run in other Condor pools.

@ Ferris and Busseick use this strategy, in combination with some )
“manual branching”, and CPLEX MIP solver to solve three previ ,f \
unsolved MIPLIB2003 instances “overnight”

@ Stay tuned — next week!
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The Grid Condor The Grid Condor

Condor Daemons A Typical Condor Pool

ew = Process Spawned ( Central Manager N @EEEEIERE IR

— = ClassAd
Communic ation

@ condor_master: Controls all daemons

@ condor_startd: Controls executing jobs Pathway
e condor_starter: Helper for starting jobs d
@ condor_schedd: Controls submit jobs
e condor_shadow: Submit-side helper for running jobs Submit-Only
@ condor_collector: Collects system information; only on Central —\_—/
Manager < Seheda>—
Regular Node

@ condor negotiator: Assigns jobs to machines; only on Central
Manager
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The Grid Condor The Grid Condor

Building a Grid Building a Grid

s

@ Collector from on central manager (shark.ie.lehigh.edu) is o Often on high-performance computing resource

allowed to negotiate with central manager from a different pool @ Resource request made to gate-keeper

(condor.cs.wisc.edu) o Gatekeeper make request to batch-scheduled resource.
@ shark’s condor_config: FLOCK-TO = condor.cs.wisc.edu @ When resource is available, startd reports back to central manager,
@ condor's condor _config: FLOCK FROM = shark.ie.lehigh.edu and machine appears as a resource in the “local” condor pool.

@ Beware firewalls! (schedd on submit machine must be abe to make

direct socket connection to submitting machine) Hobble-in

@ There is a tool GCB (Generic Connection Broker) that can get @ Forget about trying to use Globus, and do the batch submission of
around this limitation Condor startd'’s yourself
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The Grid Condor The Grid Condor
Personal Condor—A Computational Grid Grid-Enabling Algorithms
Jeff’s

Personal Condor

@ Condor and growing number of interconnection mechanisms gives us
the infrastructure from which to build a grid (the spare CPU cycles),

@ We still need a mechanism for controlling algorithms on a
computational grid

@ No guarantee about how long a processor will be available.

@ No guarantee about when new processors will become available

@ To make parallel algorithms dynamically adjustable and fault-tolerant,
we could (should?) use the master-worker paradigm

@ What is the master-worker paradigm, you ask?




The Grid Condor

The Grid

Condor

Master-Worker! Other Important MW Features!

Master assigns tasks to the

workers

Workers perform tasks, and © Data common to all tasks is sent to workers only once

report results back to master @ (Try to) Retain workers until the whole computation is

complete—don’t release them after a single task is done.

@ Workers do not communicate

(except through the master)
@ In response to worker results, : -

the master may generate new These features make for much higher parallel efficiency

tasks (dynamically). @ We need to transmit less data between master and workers.

@ We avoid the overhead of putting each task on the condor queue

o Simple! and waiting for it to be allocated to a processor.
o Fault-tolerant
@ Dynamic
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The Grid Condor The Grid Condor

MW M MW Classes
@ Three abstractions in the master-worker paradigm: Master, Worker, e
and Task. °
@ The MW package encapsulates these abstractions ° MWMaster
o C++ abstract classes ° get,usc.ar}nfo() °
o User writes 10 functions (Templates and skeletons supplied in o setup.initial_tasks()
e pack worker_init data()

distribution)
e The MWized code will adapt transparently to the dynamic and
heterogeneous environment

e act_on_completed_task()

o MWTask

e (un)pack_work
o (un)pack result

o MWWorker

e unpack worker_init_data()
e execute_task()

@ The back side of MW interfaces to resource management and
communications packages:

Condor/PVM, Condor/Files

Condor/Unix Sockets

Single processor (useful for debugging)

In principle, could use other platforms.

Linderoth COPTA An Introduction to the Computational Grid
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M
W

Initialization

Put initial tasks in
Master's task list
Pack(unpack) buffer
with data that is sent to
worker one time

Collect results, (maybe)
add new tasks

Pack/unpack work result
portions of task

Does task computatjgfii

responsible for fiIIin ‘-\i

;g:_ W

results portion for t %“,/-z’
task N
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The Grid Condor The Grid Condor

But wait, there's more! MW Applications

o User-defined checkpointing of master. © MWKNAP (Glankwamdee, L) — A simple branch-and-bound knapsack solver

o More compact that Condor checkpoint @ MWFATCOP (Chen, Ferris, L) — A branch and cut code for linear integer
e Must write methods to read/write tasks and master data to file programming

@ (Rudimentary) Task Scheduling @ MWQAP (Anstreicher, Brixius, Goux, L) — A branch-and-bound code for
e MW assigns first task to first idle worker solving the quadratic assignment problem

e Lists of tasks and workers can be arbitrarily ordered and reordered

: - @ MWAND (L, Shen) — A nested decomposition-based solver for multistage
o User can set task rescheduling policies

stochastic linear programming
@ User-defined benchmarking
o A (user-defined) task is sent to each worker upon initialization
e By accumulating normalized task CPU time, MW computes a
performance statistic that is comparable between runs, though the
properties of the pool may differ between runs.

@ MWATR (L, Shapiro, Wright) — A trust-region-enhanced cutting plane code
for two-stage linear stochastic programming and statistical verification of
solution quality.

e MWSYMCOP (L, Margot, Thain) — An LP-based branch-and-bound so
for symmetric integer programs
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Distributed Resources ~ The TeraGRID Distributed Resources ~ Open Science Grid

The Teragrid http://www.teragrid.org  Open Science Grid

o Consortium of traditional high-performance computing centers @ A distributed computing infrastructure for large-scale scientific

@ > $150M of NSF funding behind it! research, built and operated by a consortium of universities and
@ Over 100 TeraFLOPS! total CPU power national laboratories
@ Dozens of Petabytes of online and archival storage “Virtual Organizations”
@ 30Gbps backbone @ Compact Muon Solenoid
Site # Type Computing Resources ® CompBioGrid
N'CliR 1701224 P°WerP§|’ Itanium, Xeon @ 85 participating institutions ® Genome Analysis and
ue Gene Database Update
SDSC 3612 ltanium, Power-4, Blue Gene @ ~ 25,000 computers. 5
NCSA 4381 Itanium, Altix, Xeon @ Grid Laboratory of Wisconsin
UC/ANL || 316 [tanium, Xeon @ 175 TB of storage
CACR 104 Itanium _ @ nanoHUB Network for
PSC 5248 Alpha :
Purdue 5012 Xeon ComPUtatlonaI
TACC 5256 Xeon, Ultra-Sparc Nanotechnology
21,284 -
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Distributed Resources Open Science Grid Distributed Resources Open Science Grid

Putting it all together Branch and Bound for MIP

ZMIP def max {CTX = hTy}
The Upshot (xy)es

@ You can put all of these components together to solve BIG S = {(xy) € ZLIJ X ]lel | Ax + Gy < b}

optimization problems R(S) = f{(xy)e RLIL\ " R\fl | Ax + Gy < b}
@ You can use byproducts (software tools) of this research

o W sl eed to use our OR expertie o engincer th

algorithms for the computational platform ) e Upper:

2zip ¥ max {cx+hTy} > zpp
(x,y)ER(S)

(R,0)€S=c"R+h'0 < zmup

A,
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Distributed Resources ~ Open Science Grid Distributed Resources ~ Open Science Grid
Branch-and-Bound for MIP Trees
[ [
R(S,) @ Solve for zip, X
° . .
« o e @ Branch: Exclude % but no CO”CZPt“a”y' tc's recursive
Q( pOintS in S pr(;ce Ul:e Cadnb € acrlrange Into
. a branch-and-bound tree
° ° ° © Lather, Rinse, Repeat!
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Distributed Resources Open Science Grid Football!

Engineering! Are You Ready for Some Football?!

@ The way in which you distribute this algorithm on a computational

. : @ Predict the outcome of v soccer matches
grid can have a huge impact on performance

e x—3

e 0: Team A wins

Performance Tips e 1: Team B wins

@ Unit of Work: Subtree (with time cutoff) o 2: Draw
o Workers: Search Depth First @ You win if you miss at most d =1 games
e Master:

o Dynamically adjust grain size depending #workers vs. #tasks

The Football Pool Problem
@ Master:

What is the minimum number of tickets you must buy to assure yourself
/ a win?

e Dynamically adjust node order, depending on state of memory
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Football! Football!
Partners in Crime — Football Pools How Many Must | Buy?
FrRANCOIS MARGOT Known Optimal Values
{ GOt Football Pool Problem
Carnegie Mellon v | 1 | 2 | 3 | 4 | 5

What is |CZ[?

ICil[1|3]5]9]27

@ Despite significant effort on this problem for > 40 years, it is only

GREG THAIN known that
UW-Madison 65 < Cg<73
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But It's Trivial! CPLEX Can Solve Every IP

Nodes Cuts/
° For eaCh ] E W, Iet X) — -] Iﬂ;- we Word ] is in Code C Node Left Objective IInf Best Integer Best Node ItCnt Gap
0 0 56.0769 729 56.0769 2200

o Let A € {0, /MWWl with a;; = 1 iff word i € W is distance < d = 1 »or 0 0 243.0000 56.0769 2200 76.921
. * 0+ 0 0 110.0000 56.0769 2200 49.02%,
from WOI’d ) - W 56.5164 729 110.0000 Fract: 56 2542  48.62%
* 0+ 0 0 107.0000 56.5164 2542 47.187,
56.5279 729 107.0000 Fract: 6 2673 47.17Y%
* 0+ 0 0 94.0000 56.5279 2673 39.86%
IP Formulat|on * 0+ 0 0 93.0000 56.5279 2673 39.22%

Elapsed time = 90.03 sec. (tree size = 0.00 MB)
* 50+ 50 0 91.0000 56.5285 12242 37.88%

° T Elapsed time = 6841.16 sec. (tree size = 14.12 MB)
mime X 31100 30002 60.1690 544 87.0000 57.1864 5467339 34.27%
31200 30102 77.7888 216 87.0000 57.1864 5499451  34.27)
* 31200+28950 0 86.0000 57.1864 5499451 33.50%
31300 29044 58.9809 611 86.0000 57.1870 5511005 33.50%

S.t. AX > e Elapsed time = 9500.15 sec. (tree size = 18.70 MB)
- 42700 39098 78.3242 197 85.0000 57.2845 7623200 32.61}
X E {O 1}|V\/| * 42740+36552 0 83.0000 57.2845 7626440 30.98%

) o Elapsed time = 117349.90 sec. (tree size = 202.88 MB)

Nodefile size = 74.98 MB (61.52 MB after compression)
465100 434311 66.8425 410 80.0000 58.0439 92473005 27.45Y%
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Football! Football!

NOT!

o Roughly 108 universe lifetimes in order to establish that [C%| > 72 Plan of Attack
95 Apply A Hodgepodge of Tricks
90 . © Isomorphism Pruning: Trick for efficiently ordering search so that
o | | nodes that lead to symmetric solutions are not evaluated
CPLEX Upper Bound @ Subcode Enumeration: Enumerate portions of potential codes of
801 | cardinality M.
s Best Known Upper Bound | © Subcodes and Integer Programming: Demonstrate (via integer
S ol i programming) that none of the portions of potential codes leads to
a code of size M.
65 - 1
Best Known Lower Bound @ Subcode Sequencing and Variable Aggregation: The partial
60 - i solutions can be aggregated and regrouped a bit to lessen the
o CPLEX Lower Bound
55 ! ! ! ! | workload
0 100000 200000 300000 400000 500000 600000 .. ) ) _ -
Number of Tree Nodes © Give it massive computing power: The Grid!

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 43 /1 Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 44 /1



Football!

It Doesn’t Sound Like a Good ldea

Football!

Resources Used in Computation

Computational Grid

Site Access Method Arch/0OS Machines

Wisconsin - CS Flocking x86-32/Linux 975

Wisconsin - CS Flocking Windows 126

@ After all that hard that hard theoretical and enumerative work, we Wisconsin - CAE Remote submit x86-32/Linux 89
. Wisconsin - CAE Remote submit Windows 936

transformed 1 |P into 1000. Lehigh - CORGL Lab _ Flocking x86_32,/Linux 57
Lehigh - Campus Remote Submit Windows 803

Lehigh - Beowulf ssh + Remote Submit  x86_32 184

M # Potential Codes Lehigh - Beowulf ssh + Remote Submit x86_64 120

. . TG - NCSA Flocking x86_32/Linux 494

66 7 e For a given value of M, solving TG - NCSA Flocking x86_64,/Linux 406
67 13 the related instances establishes TG - NCSA Hobble-in ia64-linux 1732
68 45 TG - ANL/UC Hobble-in ia-32/Linux 192
69 102 that no code C of that TG - ANL/UC Hobble-in ia-64 /Linux 128
cardinality exists TG - TACC Hobble-in x86_64 /Linux 5100

70 176 TG - SDSC Hobble-in ia-64 /Linux 524
71 264 @ We solve each of the 1000 IPs TG - Purdue Remote Submit x86.32,/Linux 1099
72 303 on the grid TG - Purdue Remote Submit x86_64 /Linux 1529
1000 TG - Purdue Remote Submit Windows 1460
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An Introduction to the Computational Grid
Football!
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Computational Grid Computational Grid

OSG Resources Used in Computation
Working Hard!

Site Access Method Arch/OS Machines . . —
OSG - Wisconsin ~ Schedd-on-side  x86_32/Linux 1000
OSG - Nebraska  Schedd-on-side  x86_32/Linux 200 M =69 M =70
OSG - Caltech Schedd-on-side  x86_32/Linux 500 Avg. Workers 555.8 562.4
OSG - Arkansas  Schedd-on-side  x86_32/Linux 8 Max Workers 2038 1775
OSG - BNL Schedd-on-side  x86_32/Linux 250 Worker Time (years) 110.1 30.3
OSG - MIT Schedd-on-side  x86_32/Linux 200 Wall Time (days) 72.3 19.7
OSG - Purdue Schedd-on-side  x86_32/Linux 500 Worker Util. 90% 82%
OSG - Florida Schedd-on-side  x86_32/Linux 100 Nodes 2.85 x 107 | 1.89 x 108
0SG: 2758 LP Pivots 2.65 x 10'% | 1.82 x 10"
Total: 19,012 ‘

Working on M =71

@ Brings the total to > 200 CPU Years!
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Football! Number of Processors

M = 71, Number of Processors (Slice)

4508 T T T T T T

4088

3588

3008

2588

2088

Hunber of Horkers

1588

1888

il

1 L 1 1 1 1 L 1

¢ a 188 2649 388 488 588 6aa Ll 888 988
Tine (ninutes}

An Introduction to the Computational Grid

Football!
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Number of Processors

Conclusions

The Grid Is Powerful

If you compute in a flexible manner

The Grid is Scalable

If you engineer your algorithm for the platform

We Want Youl!

@ Wwww.cs.wisc.edu/condor

@ Www.cs.wisc.edu/condor/mw

To use Condor, MW and “The Grid”
for Optimization
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Haster Task List Size

5000 T

Football! Number of Processors

M =70, Stack Size (Slice)

45608 -

4088

35608

3600

256008

2000

1588

1688

°] L
a Hossaa
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