
An Introduction to the Computational Grid

Jeff Linderoth

Dept. of Industrial and Systems Engineering
Univ. of Wisconsin-Madison
linderot@cs.wisc.edu

COPTA
University of Wisconsin-Madison

October 16, 2007

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 1 / 1

Outline

What is “The Grid?”

Grid Software: Condor, MW

Large-scale Grid resources: Teragrid, Open Science Grid

A motivating algorithm: branch-and-bound

A motivating application: the football pool problem

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 2 / 1

The Grid Richard Dawson Rules!

Come on Let’s Play the Feud

‘‘100 People Surveyed. Top
5 answers are on the board.
Here’s the question...’’

Name one common use of the Internet

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 3 / 1

The Grid Richard Dawson Rules!

The Big Board

1 email

2 Looking up answers to homework
problems

3 YouTube

4 Updating personal information at
myspace

5 Looking at pictures of Anna Kournikova

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 4 / 1

The Grid Richard Dawson Rules!

Strike!

Doing
Computations

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 5 / 1

The Grid Building a Grid

People envision a “Computational Grid” much like the national power
grid

Users can seamlessly draw computational power whenever they need it

Many resources can be brought together to solve very large problems

Gives application experts the ability to solve problems of
unprecedented scope and complexity, or to study problems which they
otherwise would not.

Large funded initiative in the US.

NSF Office of Cyberinfrastructure

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 6 / 1

The Grid Building a Grid

Types of Grids

Computational grids

Focus on computationally-intensive operations.
This included CPU Scavenging Grids – which is our focus today

Data grids

Help control, share, and manage large quantities of (distributed) data

Equipment grids

Associated with a piece of expensive equipment (telescope, earthquaje
shake table, advanced photon source)
Grid software used to access and control equipment remotely

Access grid

Used to support group-to-group interactions
Consists of multimedia large-format displays, presentation and
interactive environments, interfaces to Grid middleware and
visualization environments.

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 7 / 1

The Grid Building a Grid

Grid Contrasts

(Source: IBM Web Site)

Grid Vs. Web

Like the web Grid keeps complexity hidden: multiple users enjoy a
single, unified experience.

Unlike the Web which mainly enables communication, grid
computing enables full collaboration toward common business or
scientific goals.

Grid Vs. P2P

Like peer-to-peer grid computing allows users to share files.

Unlike peer-to-peer grid computing allows many-to-many sharing
not only files but other resources as well.

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 8 / 1

The Grid Building a Grid

Grid Contrasts

Grid Vs. Clusters

Like clusters and distributed computing, grids bring computing
resources together.

Unlike clusters and distributed computing, which need physical
proximity and operating homogeneity, grids can be geographically
distributed and heterogeneous.

Grid Vs. Virtualization

Like virtualization technologies, grid computing enables the
virtualization of IT resources.

Unlike virtualization technologies, which virtualize a single system,
grid computing enables the virtualization of vast and disparate IT
resources.

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 9 / 1

The Grid Building a Grid

This ain’t easy!

Read: Nothing works as advertised

User access and security

Who should be allowed to tap in?

Interfaces

How should they tap in?

Heterogeneity

Different hardware, operating systems, and software

Dynamic

Participating Grid resources may come and go
Fault-Tolerance is very important!

Communicationally challenged

Machines may be very far apart ⇒ slow communication.

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 10 / 1

The Grid Building a Grid

Grid Computing Tools: Globus

Globus: Widely-used grid computing toolkit

Globus Services/Libraries

Security,

Information infrastructure,

Resource management,

Data management,

Communication,

Fault detection,

Portability.

It is packaged as a set of components that can be used either
independently or together to develop applications.

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 11 / 1

The Grid Building a Grid

Building a Grid

Even with wonderful tools like Globus providing these services, there
is still a fundamental obstacle to creating computational grids
available to all scientists

GREED!
Most people don’t want to contribute “their” machine!

How to induce people to contribute their machine to the Grid?

Screensaver – BOINC, seti@home
Social Welfare – fightaids@home
Offer frequent flyer miles – company went bankrupt
Let the people keep control over their machine
Give donaters a chance to use the Grid

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 12 / 1

The Grid Condor

Condor



Peter Couvares
Alan DeSmet
Peter Keller
Miron Livny
Erik Paulsen

Marvin Solomon
Todd Tannenbaum

Greg Thain
Derek Wright

http://www.cs.wisc.edu/condor

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 13 / 1

The Grid Condor

Condor: www.cs.wisc.edu/condor

Manages collections of “distributively owned” workstations

User need not have an account or access to the machine
Workstation owner specifies conditions under which jobs are allowed to
run
All jobs are scheduled and “fairly” allocated among the pool

How does it do this?

Scheduling/Matchmaking
Jobs can be checkpointed and migrated
Remote system calls provide the originating machines environment

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 14 / 1

The Grid Condor

Matchmaking

MyType = Job
TargetType = Machine
Owner = ferris
Cmd = cplex
Args = seymour.d10.mps
HasCplex = TRUE
Memory ≥ 64
Rank = KFlops
Arch = x86 64
OpSys = LINUX

MyType = Machine
TargetType = Job
Name = nova9
HasCplex = TRUE
Arch = x86 64
OpSys = LINUX
Memory = 256
KFlops = 53997
RebootedDaily = TRUE

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 15 / 1

The Grid Condor

Checkpointing/Migration

Professor’s
Machine

Grad Student’s
Machine

Checkpoint
Server

Grad Student
Leaves

}

5am 8am

5 min

Professor Arrives

}

12pm 5 min8:10am

Arrives
Grad Student

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 16 / 1

The Grid Condor

Other Condor Features

Pecking Order

Users are assigned priorities based on the number of CPU cycles they
have recently used.
If someone with higher priority wants a machine, your job will be
booted off.

Flocking

Condor jobs can negotiate to run in other Condor pools.

Glide-in

Globus provides a “front-end” to many traditional supercomputing
sites.
Submit a Globus job which creates a temporary Condor pool on the
supercomputer, on which users jobs may run.

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 17 / 1

The Grid Condor

Condor + Operations Research

GAMS (www.gams.com) has added Grid Computing Language
Extensions

This allows regular GAMS optimization models to be submit to job
schedulers like Condor!

mymodel.solvelink=3;
loop(scenario,
demand=sdemand(scenario); cost=scost(scenario)
solve mymodel min obj using minlp;
h(scenario)=mymodel.handle);

Ferris and Busseick use this strategy, in combination with some
“manual branching”, and CPLEX MIP solver to solve three previously
unsolved MIPLIB2003 instances “overnight”

Stay tuned – next week!

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 18 / 1

The Grid Condor

Condor Daemons

condor master: Controls all daemons

condor startd: Controls executing jobs

condor starter: Helper for starting jobs

condor schedd: Controls submit jobs

condor shadow: Submit-side helper for running jobs

condor collector: Collects system information; only on Central
Manager

condor negotiator: Assigns jobs to machines; only on Central
Manager

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 19 / 1

The Grid Condor

A Typical Condor Pool

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 20 / 1

The Grid Condor

Building a Grid

Flocking

Collector from on central manager (shark.ie.lehigh.edu) is
allowed to negotiate with central manager from a different pool
(condor.cs.wisc.edu)

shark’s condor config: FLOCK TO = condor.cs.wisc.edu

condor’s condor config: FLOCK FROM = shark.ie.lehigh.edu

Beware firewalls! (schedd on submit machine must be abe to make
direct socket connection to submitting machine)

There is a tool GCB (Generic Connection Broker) that can get
around this limitation

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 21 / 1

The Grid Condor

Building a Grid

Glide-in

Often on high-performance computing resource

Resource request made to gate-keeper

Gatekeeper make request to batch-scheduled resource.

When resource is available, startd reports back to central manager,
and machine appears as a resource in the “local” condor pool.

Hobble-in

Forget about trying to use Globus, and do the batch submission of
Condor startd’s yourself

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 22 / 1

The Grid Condor

Personal Condor—A Computational Grid

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 23 / 1

The Grid Condor

Grid-Enabling Algorithms

Condor and growing number of interconnection mechanisms gives us
the infrastructure from which to build a grid (the spare CPU cycles),

We still need a mechanism for controlling algorithms on a
computational grid

No guarantee about how long a processor will be available.

No guarantee about when new processors will become available

To make parallel algorithms dynamically adjustable and fault-tolerant,
we could (should?) use the master-worker paradigm

What is the master-worker paradigm, you ask?

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 24 / 1

The Grid Condor

Master-Worker!
F
ee

d
M

e!
O
K
!

T
utor

M
e!

O
K
!

Master assigns tasks to the
workers

Workers perform tasks, and
report results back to master

Workers do not communicate
(except through the master)

In response to worker results,
the master may generate new
tasks (dynamically).

Simple!

Fault-tolerant

Dynamic

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 25 / 1

The Grid Condor

Other Important MW Features!

1 Data common to all tasks is sent to workers only once

2 (Try to) Retain workers until the whole computation is
complete—don’t release them after a single task is done.

These features make for much higher parallel efficiency

We need to transmit less data between master and workers.

We avoid the overhead of putting each task on the condor queue
and waiting for it to be allocated to a processor.

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 26 / 1

The Grid Condor

MW

Three abstractions in the master-worker paradigm: Master, Worker,
and Task.

The MW package encapsulates these abstractions

C++ abstract classes
User writes 10 functions (Templates and skeletons supplied in
distribution)
The MWized code will adapt transparently to the dynamic and
heterogeneous environment

The back side of MW interfaces to resource management and
communications packages:

Condor/PVM, Condor/Files
Condor/Unix Sockets
Single processor (useful for debugging)
In principle, could use other platforms.

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 27 / 1

The Grid Condor

MW Classes

MWMaster

get userinfo()
setup initial tasks()
pack worker init data()
act on completed task()

MWTask

(un)pack work
(un)pack result

MWWorker

unpack worker init data()
execute task()

Initialization

Put initial tasks in
Master’s task list

Pack(unpack) buffer
with data that is sent to
worker one time

Collect results, (maybe)
add new tasks

Pack/unpack work result
portions of task

Does task computation –
responsible for filling in
results portion for this
task

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 28 / 1

The Grid Condor

But wait, there’s more!

User-defined checkpointing of master.

More compact that Condor checkpoint
Must write methods to read/write tasks and master data to file

(Rudimentary) Task Scheduling

MW assigns first task to first idle worker
Lists of tasks and workers can be arbitrarily ordered and reordered
User can set task rescheduling policies

User-defined benchmarking

A (user-defined) task is sent to each worker upon initialization
By accumulating normalized task CPU time, MW computes a
performance statistic that is comparable between runs, though the
properties of the pool may differ between runs.

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 29 / 1

The Grid Condor

MW Applications

MWKNAP (Glankwamdee, L) – A simple branch-and-bound knapsack solver

MWFATCOP (Chen, Ferris, L) – A branch and cut code for linear integer
programming

MWQAP (Anstreicher, Brixius, Goux, L) – A branch-and-bound code for
solving the quadratic assignment problem

MWAND (L, Shen) – A nested decomposition-based solver for multistage
stochastic linear programming

MWATR (L, Shapiro, Wright) – A trust-region-enhanced cutting plane code
for two-stage linear stochastic programming and statistical verification of
solution quality.

MWSYMCOP (L, Margot, Thain) – An LP-based branch-and-bound solver
for symmetric integer programs

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 30 / 1

Distributed Resources The TeraGRID

The Teragrid http://www.teragrid.org

Consortium of traditional high-performance computing centers

> $150M of NSF funding behind it!

Over 100 TeraFLOPS! total CPU power

Dozens of Petabytes of online and archival storage

30Gbps backbone

Site # Type
IU 712 PowerPC, Itanium, Xeon

NCAR 1024 Blue Gene
SDSC 3612 Itanium, Power-4, Blue Gene
NCSA 4381 Itanium, Altix, Xeon

UC/ANL 316 Itanium, Xeon
CACR 104 Itanium
PSC 5248 Alpha

Purdue 5012 Xeon
TACC 5256 Xeon, Ultra-Sparc

21,284

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 31 / 1

Distributed Resources Open Science Grid

Open Science Grid

A distributed computing infrastructure for large-scale scientific
research, built and operated by a consortium of universities and
national laboratories

Computing Resources

85 participating institutions

≈ 25,000 computers.

175 TB of storage

“Virtual Organizations”

Compact Muon Solenoid

CompBioGrid

Genome Analysis and
Database Update

Grid Laboratory of Wisconsin

nanoHUB Network for
Computational
Nanotechnology

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 32 / 1

Distributed Resources Open Science Grid

Putting it all together

The Upshot

You can put all of these components together to solve BIG
optimization problems

You can use byproducts (software tools) of this research

We still need to use our OR expertise to engineer the
algorithms for the computational platform

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 33 / 1

Distributed Resources Open Science Grid

Branch and Bound for MIP

MIP

zMIP
def
= max

(x,y)∈S
{cTx + hTy}

S = {(x, y) ∈ Z|I|
+ × R|C|

+ | Ax + Gy ≤ b}

R(S) = {(x, y) ∈ R|I|
+ × R|C|

+ | Ax + Gy ≤ b}

Bounds

Upper:

zLP
def
= max

(x,y)∈R(S)
{cTx + hTy} ≥ zMIP

Lower:
(x̂, ŷ) ∈ S ⇒ cT x̂ + hT ŷ ≤ zMIP

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 34 / 1

Distributed Resources Open Science Grid

Branch-and-Bound for MIP

x̂
R(S)

x̂

R(S1)

R(S2)
1 Solve for zLP, x̂

2 Branch: Exclude x̂ but no
points in S

3 Lather, Rinse, Repeat!

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 35 / 1

Distributed Resources Open Science Grid

Trees

Conceptually, this recursive
procedure can be arranged into
a branch-and-bound tree

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 36 / 1

Distributed Resources Open Science Grid

Engineering!

The way in which you distribute this algorithm on a computational
grid can have a huge impact on performance

Performance Tips

Unit of Work: Subtree (with time cutoff)

Workers: Search Depth First

Master:

Dynamically adjust grain size depending #workers vs. #tasks

Master:

Dynamically adjust node order, depending on state of memory

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 37 / 1

Football!

Are You Ready for Some Football?!

Predict the outcome of v soccer matches

α = 3

0: Team A wins
1: Team B wins
2: Draw

You win if you miss at most d = 1 games

The Football Pool Problem

What is the minimum number of tickets you must buy to assure yourself
a win?

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 38 / 1

Football!

Partners in Crime – Football Pools

{
François Margot

Carnegie Mellon

{
Greg Thain
UW-Madison

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 39 / 1

Football!

How Many Must I Buy?

Known Optimal Values

v 1 2 3 4 5

|C∗
v| 1 3 5 9 27

The Football Pool Problem

What is |C∗
6|?

Despite significant effort on this problem for > 40 years, it is only
known that

65 ≤ C∗
6 ≤ 73

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 40 / 1

Football!

But It’s Trivial!

For each j ∈ W, let xj = 1 iff we word j is in code C

Let A ∈ {0, 1}|W|×|W| with aij = 1 iff word i ∈ W is distance ≤ d = 1

from word j ∈ W

IP Formulation

min eTx

s.t. Ax ≥ e

x ∈ {0, 1}|W|

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 41 / 1

Football!

CPLEX Can Solve Every IP

Nodes Cuts/

Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 56.0769 729 56.0769 2200

* 0+ 0 0 243.0000 56.0769 2200 76.92%

* 0+ 0 0 110.0000 56.0769 2200 49.02%

56.5164 729 110.0000 Fract: 56 2542 48.62%

* 0+ 0 0 107.0000 56.5164 2542 47.18%

56.5279 729 107.0000 Fract: 6 2673 47.17%

* 0+ 0 0 94.0000 56.5279 2673 39.86%

* 0+ 0 0 93.0000 56.5279 2673 39.22%

Elapsed time = 90.03 sec. (tree size = 0.00 MB)

* 50+ 50 0 91.0000 56.5285 12242 37.88%

Elapsed time = 6841.16 sec. (tree size = 14.12 MB)

31100 30002 60.1690 544 87.0000 57.1864 5467339 34.27%

31200 30102 77.7888 216 87.0000 57.1864 5499451 34.27%

* 31200+28950 0 86.0000 57.1864 5499451 33.50%

31300 29044 58.9809 611 86.0000 57.1870 5511005 33.50%

Elapsed time = 9500.15 sec. (tree size = 18.70 MB)

42700 39098 78.3242 197 85.0000 57.2845 7623200 32.61%

* 42740+36552 0 83.0000 57.2845 7626440 30.98%

Elapsed time = 117349.90 sec. (tree size = 202.88 MB)

Nodefile size = 74.98 MB (61.52 MB after compression)

465100 434311 66.8425 410 80.0000 58.0439 92473005 27.45%

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 42 / 1

Football!

NOT!

Roughly 108 universe lifetimes in order to establish that |C∗
6| > 72

Best Known Lower Bound

Best Known Upper Bound

CPLEX Upper Bound

CPLEX Lower Bound

Number of Tree Nodes

V
al

u
e

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0 100000 200000 300000 400000 500000 600000

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 43 / 1

Football!

Plan of Attack

Apply A Hodgepodge of Tricks

1 Isomorphism Pruning: Trick for efficiently ordering search so that
nodes that lead to symmetric solutions are not evaluated

2 Subcode Enumeration: Enumerate portions of potential codes of
cardinality M.

3 Subcodes and Integer Programming: Demonstrate (via integer
programming) that none of the portions of potential codes leads to
a code of size M.

4 Subcode Sequencing and Variable Aggregation: The partial
solutions can be aggregated and regrouped a bit to lessen the
workload

5 Give it massive computing power: The Grid!

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 44 / 1

Football!

It Doesn’t Sound Like a Good Idea

After all that hard that hard theoretical and enumerative work, we
transformed 1 IP into 1000.

M # Potential Codes
66 7
67 13
68 45
69 102
70 176
71 264
72 393

1000

For a given value of M, solving
the related instances establishes
that no code C of that
cardinality exists

We solve each of the 1000 IPs
on the grid

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 45 / 1

Football! Computational Grid

Resources Used in Computation

Site Access Method Arch/OS Machines
Wisconsin - CS Flocking x86 32/Linux 975
Wisconsin - CS Flocking Windows 126
Wisconsin - CAE Remote submit x86 32/Linux 89
Wisconsin - CAE Remote submit Windows 936
Lehigh - COR@L Lab Flocking x86 32/Linux 57
Lehigh - Campus Remote Submit Windows 803
Lehigh - Beowulf ssh + Remote Submit x86 32 184
Lehigh - Beowulf ssh + Remote Submit x86 64 120
TG - NCSA Flocking x86 32/Linux 494
TG - NCSA Flocking x86 64/Linux 406
TG - NCSA Hobble-in ia64-linux 1732
TG - ANL/UC Hobble-in ia-32/Linux 192
TG - ANL/UC Hobble-in ia-64/Linux 128
TG - TACC Hobble-in x86 64/Linux 5100
TG - SDSC Hobble-in ia-64/Linux 524
TG - Purdue Remote Submit x86 32/Linux 1099
TG - Purdue Remote Submit x86 64/Linux 1529
TG - Purdue Remote Submit Windows 1460

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 46 / 1

Football! Computational Grid

OSG Resources Used in Computation

Site Access Method Arch/OS Machines
OSG - Wisconsin Schedd-on-side x86 32/Linux 1000
OSG - Nebraska Schedd-on-side x86 32/Linux 200
OSG - Caltech Schedd-on-side x86 32/Linux 500
OSG - Arkansas Schedd-on-side x86 32/Linux 8
OSG - BNL Schedd-on-side x86 32/Linux 250
OSG - MIT Schedd-on-side x86 32/Linux 200
OSG - Purdue Schedd-on-side x86 32/Linux 500
OSG - Florida Schedd-on-side x86 32/Linux 100

OSG: 2758
Total: 19,012

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 47 / 1

Football! Computational Grid

Working Hard!

Partial Computational Statistics

M = 69 M = 70

Avg. Workers 555.8 562.4
Max Workers 2038 1775
Worker Time (years) 110.1 30.3
Wall Time (days) 72.3 19.7
Worker Util. 90% 82%

Nodes 2.85× 109 1.89× 108

LP Pivots 2.65× 1012 1.82× 1011

Working on M = 71

Brings the total to > 200 CPU Years!

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 48 / 1

Football! Number of Processors

M = 71, Number of Processors (Slice)

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 49 / 1

Football! Number of Processors

M = 70, Stack Size (Slice)

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 50 / 1

Football! Number of Processors

Conclusions

The Grid Is Powerful

If you compute in a flexible manner

The Grid is Scalable

If you engineer your algorithm for the platform

We Want You!

To use Condor, MW and “The Grid”
for Optimization

www.cs.wisc.edu/condor

www.cs.wisc.edu/condor/mw

Linderoth (UW-Madison) An Introduction to the Computational Grid COPTA 51 / 1

