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Adaptive Information

Goal: Estimate an unknown object £ € A from scalar samples

Information: samples of the form yi(x),...,yn(x),
the values of certain functionals of x

Non-Adaptive Information: y;,1y2,--- € ) non-adaptively
chosen (deterministically or randomly) independent of x

Adaptive Information: yi,ys, - - € )Y are selected sequentially and y; can
depend on previously gathered information, i.e., y1(x), ..., y;—1(x)

Does adaptivity help?



Feedback from Data Analysis to Data Collection

): possible measurements/experiments

data
collection

X': models/hypotheses

x),ya(x),...: information/data
under consideration y1(x), y2 (@) /



The Scientific Process in a Laboratory
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The Scientific Process at Large
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Robot Scientist

www.aber.ac.uk/compsci/Research/bio/robotsci/

ir ™ ” ' /7,‘ Wired Magazine, April 2009:
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: For the first time, a robotic system has made a novel
- - scientific discovery with virtually no human intellectual
o iInput.

Scientists designed "Adam" to carry out the entire
scientific process on its own: formulating hypotheses,
designing and running experiments, analyzing data, and
deciding which experiments to run next. "It's a major
advance," says David Waltz of the Center for
Computational Learning Systems at Columbia University.
"Science is being done here in a way that incorporates
artificial intelligence. It's automating a part of the
scientific process that hasn’'t been automated in the
past.”

Adam is the first automated system to complete the
cycle from hypothesis, to experiment, to reformulated
hypothesis without human intervention.



Adaptive vs. Non-Adaptive: Three Situations

The “bare minimum” number of measurements depends on intrinsic complexity

of X'. In practice, the minimum number depends on jointly on X and ).

Equal and Bad:
adaptive and non-adaptive
equally (non)-informative and
require many more
measurements then the
bare minimum

Equal and Good:
adaptive and non-adaptive
equally informative and require
about the bare minimum of
measurements

Good and Bad:
adaptive requires bare
minimum number of
measurments, non-adaptive
requires many more



The Bare Minimum

Assume X is equipped with metric d and is compact.

Let X, C X be a finite subset of size N, having the property
that any element of X is within distance € of an element in X

Metric Entropy: Need at least log N, bits of
information to approximately determine any z € X

Ex. suppose X = [0,1]%. we can take a uniform grid of points
spaced € apart as our cover. Then N, = (£)% and log N. = dlog(1/e).



Binary Search X = {subsets [0, +],[0, &],...,[0,1] }

Y = “membership queries”

binary search: sequentially select queries

+1 + +.
-1_ | -—E_A_A_A_A_A_A_A_A_A_A_“1
0 X
1/3 =0101... requires log, N queries
Y+ + + 4+ + + linear search: query points uniformly (possibly random)
T ——————
i ¥ & k% 4 k4 & k4 4
O 1 X

requires O(N) queries



Does Adaptivity Help ?

identify a sparse signal x € R™ from a
® minimal number of measurements

Point measurments: y = (v, 0,) =

O(n) measurements (random or adaptive) are needed to recover x

Compressed Sensing: v = (v, ¢) where ¢ € {—1,1}"

O(log n) measurements (random or adaptive) are needed to recover x

Adaptivity doesn’t help



Does Adaptivity Help ?

identify a threshold signal z € R™ from
9000000 a minimal number of measurements

Point measurments: y = (v, 0,) =
O(n) random measurements are needed to recover x
O(logn) adaptive measurements are needed to recover x (binary search)
Compressed Sensing: vy = (r, ¢) where ¢ € {—1,1}"
O(logn) random measurements are needed to recover x

Adaptivity may help, depending on
nature of signal and measurements



Optimizing Information Collection

Goal: Estimate an unknown object x € X from scalar samples

Information: samples of the form yi(x),...,yn(x),
the values of certain functionals of x

Adaptive Information: y;,y,,--- € )Y are selected sequentially and y;
can depend on previously gathered information, i.e., y1(x),...,y;—1(x)

Dynamic Programming: K > 0 measurement/experiment steps

R min max d(x, f(yh---,yl{))
L,Yl,- YK 33€X

computationally prohibitive in all but very low-dimensional, simple problems



Greedy Strategies

Ex. Binary Information: for each x € X and y € ),
+1 , if x predicts a positive outcome on y
y(x) =

—1 , if x predicts a negative outcome on y

optimal procedure is a search tree; construction is NP-complete (Hyafil & Rivest ’76)

(Splitting Algorithm )

initialize: n =0, Xy = X
while |X,| > 1

1) Select y,, = argmingey | ) ,cx, ¥(2)]

2) Perform vy, to obtain information y,, (x*)

. 3) Set X1 ={x € X, yn(x) =yn(xz™)}, n=n+ 1j

Splitting Algorithm is near-optimal (average depth is within log |X’| factor of optimal)

depth of optimal tree depends on nature of X and )



— T N R TS S N G SIS I T TR
- THE MYSTERY FACE GAME

“Is the person
wearing a hat ?”

“Does the person
have blue eyes ?”

splitting algorithm is quite effective if responses are reliable



Laplace

Decided to make new astronomical
measurements when “the discrepancy between
prediction and observation [was] large enough
to give a high probability that there is something
new to be found.” Jaynes (1986)

' observe .
J m) Dis !
/ infer Scovery

selective
sensing



Probabilistic Splitting Algorithm

4 )
Probabilistic Splitting Algorithm

initialize: po(x) = uniform “Information-Gain”

forn=0,1,....k—1 (Shannon ’48 Lmdley ’56)

1) Select y,,+1 to maximiz [ pn(z]y) log Pn é(lg)

2) Perform y,, 11 to obtain mforatlon’yn; '

3) Ynr1(x*) + Bayes rule: p,(z) — pri1(x)

output: arg max, px (k)

po(z) 4 pi(z)4 pr(z)4 n




EX. Noisy Binary Search (Burnashev & Zigangirov '74)
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Update ‘posterior’ density

based on noise bound «
sequentially take samples at

median of posterior density




Sparsity and High-Dimensional Models

Y A r +w
—_— u -+ noise
] N
D
]

y = Az + w, with A € R™*", . € R" (but sparse), w ~ N(0,I)
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Experimental Design

y = Ar + w
experimental design: how to design A 7
Constraints:

e sample budget: Aism xn with m <k <n

e precision budget: ||A]|% < Constant

Sequential Design: how to chose A;,..., A;r to max prob of identifying x?
y1 = A+ w
y2 = Aox + wo

vy = Arz+ wg



Application: Inferring Biological Pathways

microwell array

virus 13,071 single-gene
knock-down cell strains

- — ‘ =
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Challenge: High-Dimensionality and Low SNR

nature Vol 45414 August 2008 |doi:10.1038/nature07151

Drosophila RNAi screen identifies host genes
important for influenza virus replication

Linhui Hao"**, Akira Sakurai’*1, Tokiko Watanabe’, Ericka Sorensen', Chairul A. Nidom>°, Michael A. Newton?,
Paul Ahlquist"? & Yoshihiro Kawaoka™”*”’

How do they confidently determine the ~100 out of 13K genes
hijacked for virus replication from extremely noisy data?
Sequential Experimental Design:

Stage 1: assay all 13K strains, twice; keep all with significant
fluorescence in one or both assays for 2nd stage (13K — 1K)

Stage 2: assay remaining 1K strains, 6-12 times; retain only
those with statistically significant fluorescence (1K — 100)

vastly more efficient that replicating all 13K experiments many times



Feedback from Data Analysis to Data Collection

high-throughput
experiments

experiment

space

Optimized multi-stage designs controlling the false discovery or the family-wise error rate

sets of genes critical to a microarray or
certain function/process assay datasets



Sparse Signal Model

Let © = (x1,...,2Z,) € R™ be an unknown sparse vector;
most (or all) of its components x; are equal to zero.

, where |S| < n
\ deterministic
signal support set  but unknown

- >0, 1€8
i = ) o, idS

Assume sublinear sparsity level: |S| < n

/

number of signal
components



Noisy Observation Model

i = x; + 2z, 1=1,...,n

Suppose we want to locate just one signal component: ¢ = argmax; y;

Even if no signal is present, max; y; ~ +/2logn

It is tmpossible to reliably detect signal components weaker than O(1/logn)



Threshold Tests

Our goal is to estimate the set of non-zero components: § :={i : x; # 0}

X
®
4 O :
Y : :
o i e 4 T i %ei e, o %o | Sif:i e
® . . . . . — .: — 6 ® s >

Definition 1 A threshold test is an estimator of the form:

S.(y) = {ie{l,....n}:y; >7 >0}

Bonferroni Correction: To keep the error level small (e.g., less than 5%)
the threshold must be on the order of /logn.



Is there really a problem ?

Wired Science
News for Your Neurons

Previous post
Next post

Scanning Dead Salmon in fMRI Machine
Highlights Risk of Red Herrings

By Alexis Madrigal B4 September 18,2009 | 5:37 pm | Categories: Brains and Behavior

f-value




An Alternative: Sequential Experimental Design

Instead of the usual non-adaptive observation model
Yi = T; + 2, iZl,...,n

suppose we are able to sequentially collect several independent
measurements of each component of x, according to

where
7 indexes the measurement steps
k denotes the total number of steps
iid

i,5 ™ (07 1)

7vi.;= 0 controls the precision of each measurement

Total precision budget is constrained, but the choice
of v, ; can depend on past observations {y; ¢}¢<;.



Experimental (Precision) Budget

sequential measurement model

vij = @ + v g, i=1,,m, j=1,...,k

The precision parameters {; ;} are required to satisfy

k n
S:Sj%,j < n

j=1i=1

For example, the usual non-adaptive, single measurement model corresponds
to taking k =1, and ;1 = 1,2 =1,...,n. This baseline can be compared with
adaptive procedures by allowing £ > 1 and variable {; ; } satisfying budget.

Precision parameters control the SNR per component.

SNR is increased /decreased by

— more/fewer repeated samples or

— longer /shorter observation times



Fruit Fly Example

fruit fly

How to find genes involved in virus replication !

Sequential Design ldea

Budget: k assays, n tests/assay

Assay |:measure fluorescence of all n genes; discard n/2 genes with
weakest fluorescence.

Assay 2: measure fluorescence for remaining n/2 genes, each tested
twice (double SNR); discard n/4 genes with weakest fluorescence.

Assay 3: measure fluorescence for remaining n/4 genes, each tested
four times (quadruple SNR); discard n/8 genes with weakest fluorescence.

continue “distilling”....



ldealized Example

® ®
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Take k = 3 steps and split precision
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Distilled Sensing

Stmple Distilled Sensing

total precision budget: E {ZZ j %‘,g}

initialize: Sg = {1,....n}, v 1 =24¢ >0 R
. 0 { } ’y’b,j — ZE|S_1|
for j=1,...,k 2+ ¢ = j
j:
1) measure: y; j ~ N (z;,24+¢€) , i €S, y
T L s
2) threshold: §; ={i:y; ; > 0} = 91 2—21 oj—1 + S|
e 20— IS)
n —
output: S = {7 : y;x > 0} < 21 ¢ + kS| < n
(for n large)
probability of error: P(Sp #8) = P{S°NSy AZ0u{SnNS; #0})

P(S°NSe #0) + P(SNSE #0)



False Positives

P(Sp£S) < P(S°NS,#0) + P(SNSE D)

P(S‘NS,#0) = P (U () vij >o)
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False Negatives

PSS, #S) < P(S°NS#0) + P(SNS; #0)

k
IP’(SHS,‘;#@) = P(U in,j<0)
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Probability of Error Bound

P(Sk # S)

VAN

P(S°NS, #0) + P(SNS; #0)

n—s k]8|e e
Flol axn [ —
ok o “PL\T221 ¢

n—s 1 (_ (1? —2(2 + ¢) 1og(k\51))>

ok T g &P 202+ ¢)

VAN

Consider high-dimensional limit as n — oo and take k = log, n'™¢

-s 1 (4 — 2(2 + €) log(|S|(1 + ¢) logy 1))
P&k 7 5) = % g e (‘ 22+ o) )
0

Second term tends to zero if

1> 1/2(2 + €)log(|S|(1 + €) log, n)



Gains of Sequential Design

non-adaptive threshold:

1 > \/2logn

DS threshold:

i > /224 €)log(|S|(1 + €)log, n)
V4log S|

Q

We get a gain whenever |S| < n'/?

Punchline: In ultra-sparse setting, say |S| = C'logn, DS drives error to zero
if 4 > /(8 + ¢€) loglogn, compared to the non-adaptive requirement u > /2logn.




FDR/NDR

n =21 |z|p = v/n = 128

1 [ [ [ [
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06 ': non-discovery rate of |
' ; non-adaptive sensing
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Conclusions

Sequential Experimental Designs for High-Dimensional Models

thresholds for recovery in high-dimensional limit:

non-adaptive designs SNR ~ logn

sequential designs SNR ~ arbitrarily slowly growing function of n

Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation
J. Haupt, R. Castro,and RN, arXiv:1001.5311v2

Geometry of Sequential Inference

number of membership queries required to learn a set to € accuracy:

non-adaptive # queries ~ 1/e¢

adaptive # queries ~ log(1/e)

The Geometry of Generalized Binary Search, RN, arXiv:0910.4397



