1. Show that for a given set \(C \) and \(x \in C \) that \(N_C(x) \) is closed.

2. Let \(K \) be a nonempty closed convex cone in \(\mathbb{R}^n \) and let \(x \in \mathbb{R}^n \). Show that

 (a) \(\pi(x) \) is the projection of \(x \) on \(K \) if and only if

 \[\pi(x) \in K, \quad \langle (x - \pi(x)), \pi(x) \rangle = 0, \quad x - \pi(x) \in K^\circ. \]

 (b) The following two statements are equivalent:

 i. \(x_K \) and \(x_{K^\circ} \) are the projections of \(x \) onto \(K \) and \(K^\circ \) respectively,

 ii. \(x = x_K + x_{K^\circ} \) with \(x_K \in K \) and \(x_{K^\circ} \in K^\circ \), and \(\langle x_K, x_{K^\circ} \rangle = 0 \).

3. Show that if \(P \) is a polyhedral set in \(\mathbb{R}^n \) containing the origin then cone(\(P \)) is a polyhedral cone. Given an example showing that if \(P \) does not contain the origin then cone(\(P \)) may not be a polyhedral cone.

4. Let \(f: \mathbb{R}^n \to \mathbb{R} \) be a quadratic function of the form

 \[f(x) = \langle x, Qx \rangle + \langle c, x \rangle, \]

 where \(Q \in \mathbb{R}^{n \times n} \) is symmetric and \(c \in \mathbb{R}^n \), and suppose \(C = \{ x: Ax \leq b \} \). Use the Minkowski-Weyl representation of \(C \) to show that the following are equivalent:

 (a) \(f \) attains a minimum over \(C \).

 (b) \(f^* = \inf_{x \in C} f(x) > -\infty \).

 (c) For all \(y \) such that \(Ay \leq 0 \), we have either \(\langle y, Qy \rangle > 0 \), or else \(y \in \ker(Q) \) and \(\langle c, y \rangle \geq 0 \).

5. If \(D, E \) and \(F \) are matrices each having \(n \) columns, then exactly one of the following systems is solvable:

 (a) \(Dx > 0, \quad Ex \geq 0, \quad Fx = 0 \).

 (b) \(DTu + ETv + FTw = 0, \quad u \) and \(v \) nonnegative and \(u \) not zero.
6. Show that if T is a nonempty polyhedral cone in \mathbb{R}^n and $A \in \mathbb{R}^{n \times m}$ then

$$A^{-1}(T) = A^T(T^\circ).$$

7. Let A and D be linear transformations from \mathbb{R}^n to \mathbb{R}^p and \mathbb{R}^q respectively. Let K be a nonempty polyhedral cone in \mathbb{R}^p and L be a nonempty closed convex cone in \mathbb{R}^q. Show that the following are equivalent:

(a) $Ax \in K$ implies $Dx \in L$.
(b) $A^T(K^\circ) \supseteq D^T(L^\circ)$.