1. The following tasks provide some ways to get acquainted with basic facts about convex sets and their tangent cones, including connections with feasible directions.

(a) Show that for a convex set \(C \) and a point \(\bar{x} \in C \), the vectors giving feasible directions into \(C \) at \(\bar{x} \) are the vectors \(w \) that can be expressed in the form \(w = \lambda(x - \bar{x}) \) for some \(x \in C \) other than \(\bar{x} \) and some \(\lambda > 0 \). (Note that this is a two-way assertion.)

(b) Verify that the set \(C = \{(x_1, x_2, x_3): x_2 \geq 0, |x_3| \leq 1 - x_1^2 - x_2^2\} \) is convex in \(\mathbb{R}^3 \). (Simplify your task by making use of various rules for deriving convex sets from other convex sets or convex functions.) What does this set \(C \) look like? (A picture isn’t required, but one could help you in understanding parts (c) and (d) that follow.)

(c) For the set \(C \) in (b) and the point \(\bar{x} = (1, 0, 0) \), show that if a vector \((w_1, w_2, w_3) \neq (0, 0, 0)\) gives a feasible direction into \(C \) at \(\bar{x} \), then it satisfies \(w_2 \geq 0 \) and \(|w_3| \leq -2w_1\). On the other hand, show that if a vector \((w_1, w_2, w_3) \neq (0, 0, 0)\) satisfies \(w_2 \geq 0 \) and \(|w_3| < -2w_1\), then it gives a feasible direction into \(C \) at \(\bar{x} \). (In each case rely on the definition of “feasible directions” and the constraints specifying \(C \) in (b).) Note: The first argument develops a necessary condition for a feasible direction in this special setting, whereas the second argument develops a sufficient condition.

(d) Derive from the necessary and sufficient conditions on feasible directions in (c) the fact that, for the set \(C \) and point \(\bar{x} \) in question, the tangent cone is given by

\[
T_C(\bar{x}) = \{(w_1, w_2, w_3): w_2 \geq 0, |w_3| \leq -2w_1\}
\]

and is a convex set, moreover polyhedral.
2. This exercise explores the role of Lagrange multipliers in optimality. It concerns the set $C \subset \mathbb{R}^2$ consisting of all $x = (x_1, x_2) \in X = \mathbb{R}^2_+$ that satisfy

\[
0 \geq f_1(x_1, x_2) = x_1 + x_2 - 5, \\
0 \geq f_2(x_1, x_2) = x_1 - x_2 - 1, \\
0 \geq f_3(x_1, x_2) = 2x_1 - x_2 - 4.
\]

(a) Draw a picture of C, indicating the tangent and normal cones to C at representative points \bar{x} and giving an algebraic expression in terms of Lagrange multipliers for the vectors $v = (v_1, v_2)$ that belong to the normal cone $N_C(\bar{x})$ in each case. (Hint: Use Theorem 10. There’s no need to be concerned about the standard constraint qualification (CQ) there, because this is a system of linear constraints only; cf. Theorem 12(a).) The description of $N_C(\bar{x})$ yields equations for v_1 and v_2 in terms of y_1, y_2, y_3, z_1, and z_2 as parameters (these being the coordinates of the vectors y and z there). Having written down these equations in general, specialize them at each \bar{x} by suppressing any parameters that have to equal 0 and indicating the sign restrictions, if any, on the remaining parameters.

(b) For the problem of minimizing $f_0(x_1, x_2) = (x_1 - 1)^2 - x_2$ over C, add to your picture in (a) some indication of representative level sets $f_0(x_1, x_2) = \alpha$. Determine all locally and globally optimal solutions \bar{x} “by hand” through Theorem 9. (Note: this amounts to checking where the Kuhn-Tucker conditions are satisfied; justifiable shortcuts based on the problem’s structure are encouraged.) For each such \bar{x} give the specific parameter values y_1, y_2, y_3, z_1, and z_2 in part (a) for the normal vector representation of $-\nabla f_0(\bar{x})$.

(c) Solve the minimization problem in (b) in GAMS using a solver for quadratic programs. Note that the Lagrange multipliers are returned as consname.m. Do the latter correspond to the parameter values you calculated in (b)? What about the values of z?
3. Consider an optimization problem \((P)\) in standard format in which the functions \(f_i\) are all of class \(C^1\) and \(X = \mathbb{R}^n\). Let \(\bar{x}\) denote any feasible solution.

(a) Show that the standard constraint qualification (CQ) is satisfied at \(\bar{x}\) if the following conditions, comprising the Mangasarian-Fromovitz constraint qualification, hold:

1. the vectors \(\nabla f_i(\bar{x})\) for \(i \in [s + 1, m]\) are linearly independent, and
2. there exists a vector \(w\) such that \(\langle \nabla f_i(\bar{x}), w \rangle\) \(\begin{cases} < 0 & \text{for } i \in [1, s] \text{ active at } \bar{x}, \\ = 0 & \text{for } i \in [s + 1, m]. \end{cases}\)

(Remark: The converse is true as well; these two constraint qualifications are equivalent – for problems with \(X = \mathbb{R}^n\). But you’re not being asked to prove it.)

(b) Let \(s = m\), so that the constraints in \((P)\) are \(f_i(x) \leq 0\) for \(i = 1, \ldots, m\). Suppose the following condition, called the Slater constraint qualification, is satisfied: all the constraint functions \(f_i\) are convex and there is a point \(\tilde{x}\) with \(f_i(\tilde{x}) < 0\) for \(i = 1, \ldots, m\). Show that then the Mangasarian-Fromovitz constraint qualification (in which now only the inequality part counts) is satisfied at \(\bar{x}\) (no matter how \(\bar{x}\) is located relative to \(\tilde{x}\)).

(c) Go back to the set \(C\) and point \(\bar{x}\) in Question 1 (b)-(d) above, viewing this set as given in the manner above by three constraints \(f_i(x) \leq 0\). (The condition involving \(|x_3|\) converts into two of these). Determine the normal cone \(N_C(\bar{x})\), taking care to check somehow that the assumptions behind the formula you are using are fulfilled.