
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Computers and Chemical Engineering 33 (2009) 1973–1982

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journa l homepage: www.e lsev ier .com/ locate /compchemeng

An extended mathematical programming framework

Michael C. Ferrisa,∗, Steven P. Dirkseb, Jan-H. Jaglac, Alexander Meerausb

a Computer Sciences Department, University of Wisconsin, Madison, WI 53706, United States
b GAMS Corporation, 1217 Potomac Street, Washington, DC 20007, United States
c GAMS Software GmbH, Eupener Str. 135–137, 50933 Cologne, Germany

a r t i c l e i n f o

Article history:
Received 31 October 2008
Received in revised form 4 June 2009
Accepted 6 June 2009
Available online 17 June 2009

Keywords:
Modeling
Complementarity
Nonlinear programming
Variational inequalities

a b s t r a c t

Extended mathematical programs are collections of functions and variables joined together using spe-
cific optimization and complementarity primitives. This paper outlines a mechanism to describe such
an extended mathematical program by means of annotating the existing relationships within a model
to facilitate higher level structure identification. The structures, which often involve constraints on the
solution sets of other models or complementarity relationships, can be exploited by modern large scale
mathematical programming algorithms for efficient solution. A specific implementation of this frame-
work is outlined that communicates structure from the GAMS modeling system to appropriate solvers in
a computationally beneficial manner. Example applications are taken from chemical engineering.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Chemical engineering applications often involve the modeling
and solution of classical mathematical programs. Indeed, chem-
ical engineering has been a user of optimization techniques and
technology for several decades and many chemical engineers have
made significant contributions to the field of optimization, and
in several cases have developed software that has had impact
far beyond the chemical engineering discipline. Packages such as
DICOPT (Viswanathan & Grossmann, 1990), BARON (Tawarmalani
& Sahinidis, 2004), ALPHAECP (Westerlund, Skrifvars, Harjunkoski,
& Pörn, 1998) and IPOPT (Wächter & Biegler, 2006) have influenced
the debate on tractability of hard, practical nonlinear optimiza-
tion problems, often setting the gold standard for the solution of
nonconvex, global optimization problems.

Accessing these solvers, and many of the other algorithms
that have been developed over the past three decades has been
made easier by the advent of modeling languages. A modeling
language (Bisschop & Meeraus, 1982; Fourer, Gay, & Kernighan,
1990) provides a natural, convenient way to represent mathemati-
cal programs and provides an interface between a given model and
multiple different solvers for its solution. The many advantages of
using a modeling language are well known. They typically have effi-
cient automatic procedures to handle vast amounts of data, take
advantage of the numerous options for solvers and model types,
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and can quickly generate a large number of models. For this reason,
and the fact that they eliminate many errors that occur without
automation, modeling languages are heavily used in practical appli-
cations. Although we will use GAMS (Brooke, Kendrick, & Meeraus,
1988), the system we are most familiar with, much of what will
be said could as well be applied to other algebra based modeling
systems like AIMMS (Bisschop & Entriken, 1993), AMPL (Fourer,
Gay, & Kernighan, 1993), MOSEL (Dash Optimization, 2009), MPL
(Maximal Software, 2009) and OPL (Van Hentenryck, 1999).

The extended mathematical programming (EMP) framework
exists to provide these same benefits for applications (e.g. dis-
junctive programming) that fall outside the classical framework.
A high-level description of these models in an algebraic model-
ing language, along with tools to automatically create the different
realizations or extensions possible, pass them on to the appro-
priate solvers, and interpret the results in the context of the
original model, makes it possible to model more easily, to conduct
experiments with formulations otherwise too time-consuming to
consider, and to avoid errors that can make results meaningless or
worse. We believe that further advances in applications of opti-
mization can be achieved via identification of specific problem
structures within a model. The EMP framework provides an exten-
sible way to achieve this.

In some cases, such structures can be automatically extracted
from a model that is formulated in a modeling system, but in gen-
eral it may be difficult to tease out particular structures from a
large complex model. As a concrete example, we cite the domain
of applied general equilibrium modeling within economics, where
a model consists of a collection of interacting agents each of which
maximizes some utility function of some demanded goods, which
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in turn are generated from an optimization of production functions.
Since current solvers require the (economic) modeler to formulate
the problem as a complementarity problem or a system of nonlin-
ear equations, the utility function is maximized (by hand) to derive
demands which are normally rather complex nonlinear functions;
similarly for the supplies that are derived from a cost minimiza-
tion involving the production functions. It is typically difficult to
determine the structure of the underlying model from the result-
ing nonlinear complementarity system. This paper aims to alleviate
this difficulty.

Some motivating examples from the fields of chemical and
biological engineering are apparent. For example, the pioneer-
ing work of (Clark & Westerberg, 1990) showed how to model
design problems under thermodynamic equilibrium conditions as
a bilevel optimization problem: in this setting the process design
is optimized (typically for operating cost) subject to constraints
that involve another optimization problem minimizing Gibbs free
energy, along with more typical constraints involving mass and
energy balance. Similar problems arise in the optimization of the
production of chemicals or biochemicals in metabolic engineer-
ing. Of particular note is the work of Maranas and colleagues
(Burgard & Maranas, 2003; Burgard, Pharkya, & Maranas, 2003),
where a bilevel optimization called OptKnock has been developed
to identify the (reaction) deletion strategies that couple the cellu-
lar objective (inner problem) to the bioengineering objective (outer
problem) of maximizing biomass yield or minimizing metabolic
adjustment (MOMA). The problem of parameter estimation (for
example in thermodynamic equilibrium) can also be framed in this
manner (Mitsos, Lemonidis, & Barton, 2008; Raghunathan, Perez-
Correa, Agosin, & Biegler, 2006). Such models contain adjustable
parameters which cannot be measured directly, but for which an
outer problem can minimize errors in predictions from an inner
model that encodes system dynamics and properties. Finally, the
work by Grossmann and colleagues on generalized disjunctive pro-
gramming (Turkay & Grossmann, 1996; Vecchietti & Grossmann,
1999; Vecchietti, Lee, & Grossmann, 2003) involves both nonlin-
ear equations and optimization primitives coupled with pure logic
relations; this has been used extensively in the synthesis and design
of process networks. Application of these ideas for the reduction of
gasoline emissions is given in Furman and Androulakis (2008). Each
of these examples falls naturally within our EMP framework.

The purpose of this work is to extend the classical nonlinear
program from the traditional model:

min
x
f (x)

s.t. g(x) ≤ 0, h(x) = 0,
(1)

where f, g and h are assumed sufficiently smooth, to a more general
format that allows new constraint types and problem features to
be specified precisely. Some extensions of this format have already
been incorporated into modeling systems. There is support for inte-
ger, semiinteger, and semicontinuous variables, and some limited
support for logical constructs including special ordered sets (SOS).
GAMS , AMPL and AIMMS have support for complementarity con-
straints (Ferris & Munson, 2000; Ferris, Fourer, & Gay, 1999), and
there are some extensions that allow the formulation of second-
order cone programs within GAMS. AMPL has specific syntax to
model piecewise linear functions. Much of this development is tai-
lored to particular constructs within a model. We aim to develop
more general annotation schemes to allow extended mathematical
programs to be written clearly and succinctly.

In the following sections we outline a new model type that we
refer to as an extended mathematical program (EMP). This incor-
porates many of the extensions mentioned above but also allows a
variety of other structures to be described at a model level and is
general enough to easily allow further enhancements. We believe

such extensions may have benefits on several levels. First, we think
this will make the modeler’s task easier, in that the model can
be described more naturally and perhaps at a higher conceptual
level. (Of course, there are several examples of this already in
the literature including the use of specialized languages such as
MPSGE (Rutherford, 1999) to facilitate general equilibrium mod-
els, and specialized (graphical) interfaces to allow queueing system
or process system design.) Second, techniques such as automatic
differentiation and problem reformulation (duality constructs, or
specific ways to reformulate certain constraints) can more reliably
help the automatic generation of the model. Third, if an algorithm
is given additional structure, it may be able to exploit that in an
effective computational manner; knowing the problem is a cone
program, or the problem involves the optimality conditions of a
nonlinear program can be treated in a variety of different ways,
some of which may be distinctly superior to others in certain set-
tings. Indeed, the availability of such structure to a solver may well
foster the generation of new features to existing solvers or drive the
development of new classes of algorithms. To ensure these exten-
sions are available to a large class of users, we outline within our
development a specific implementation within the GAMS modeling
system. This prototype is available for general use and will enable
both chemical engineers and operations researchers to experiment
with new solution strategies based on the provision of extra struc-
tural information provided to a solver.

2. Extended mathematical programs

The EMP framework allows annotation to existing functions and
variables within a model. We begin with the example of comple-
mentarity, which in its simplest form, is the relationship between
nonnegative variables with the additional constraint that at least
one must be zero. In process optimization, complementarity can
be used to model (nonsmooth) features such as the disappearance
of phases, distillation, flow reversal, safety valve operation, and
other discrete events (Gopal & Biegler, 1999; Baumrucker, Renfro,
& Biegler, 2008). Following this simple example, we show how the
annotations can be incorporated into optimization problems such
as mathematical programs with complementarity constraints. This
format is used by (Yang, Mahadevan, & Cluett, 2008) in their optimal
(enzymatic) capacity constraint identification (OCCI) method. Such
examples lead to natural extensions including variational inequal-
ity constraints, bilevel programs and mathematical programs with
equilibrium constraints. Further extensions beyond complementar-
ity are given later in the paper.

2.1. Complementarity problems

The necessary and sufficient optimality conditions for the linear
program

min
x
cT x

s.t. Ax ≥ b, x ≥ 0,
(2)

are that x and some � satisfy the complementarity realtionships:

0 ≤ c − AT� ⊥ x ≥ 0,
0 ≤ Ax − b ⊥ � ≥ 0.

(3)

Here, the “⊥” sign signifies (for example) that in addition to the
constraints 0 ≤ Ax − b and � ≥ 0, each of the products (Ax − b)i�i
is constrained to be zero. An equivalent viewpoint is that either
(Ax − b)i = 0 or�i = 0. Within GAMS, these constraints can be mod-
eled simply as

positive variables lambda, x;
model complp / defd. x, defp.lambda /;
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where defp and defd are the equations that define general primal
and dual feasibility constraints (Ax ≥ b, c ≥ AT�) respectively.

Other linear programs with specialized constraint structure are
just as easy to specify. For example

min
x
cT x

s.t. Ax = b, x∈ [l, u]

has similarly expressed optimality conditions:

0 ≤ (c − AT�)j if xj = lj
0 = (c − AT�)j if lj < xj < uj
0 ≥ (c − AT�)j if xj = uj
0 = Ax − b ⊥ � free.

(4)

Note that the first three complementarity relationships in (4) can
be written more succinctly as (c − AT�) ⊥ x∈ [l, u]. This is translated
into GAMS syntax as follows:

variables lambda, x;
x.lo(i) = l(i); x.up(i) = u(i);
model complp / defd.x, defp.lambda /;
Such a problem is an instance of a linear mixed complementarity

problem, for which we use the acronym MCP. Note that the bounds
on the variables x determine the nature of the relationship on c −
AT� at the solution. (It is possible to introduce explicit multipliers
on the constraints x ≥ l and x ≤ u, and to rewrite the optimality
conditions in terms of x, �, and these multipliers. The “⊥” notation
enables us to write these relationships much more succinctly.)

Complementarity problems do not have to arise as the optimal-
ity conditions of a linear program; the optimality conditions of the
nonlinear program (1) constitute the following MCP:

0 = ∇f (x) + �T∇g(x) +�T∇h(x) ⊥ x free
0 ≤ −g(x) ⊥ � ≥ 0
0 = −h(x) ⊥ � free.

(5)

Many examples are no longer simply the optimality conditions
of an optimization problem. A specific example arises in chemical
phase equilibrium. In this setting, different conditions are satisfied
at an equilibrium depending on whether we are in vapor, liquid
or two-phase state. Letting ˛ represent the fraction in vapor, the
problem is to find f (˛) ⊥ ˛∈ [0,1] where

f (˛) =
n∑
i=1

(xi − Kixi), xi =
zi

Ki˛+ 1 − ˛, i = 1, . . . , n

for given data Ki and zi. Gopal and Biegler (1997) have an alternate
but equivalent formulation of this model including the multiphase
setting. Ferris and Pang (1997) catalogue a number of other appli-
cations both in engineering and economics that can be written in a
similar format.

It should be noted that robust large scale solvers exist for such
problems; see Ferris and Munson (2000) for example, where a
description is given of the PATH solver.

2.2. Mathematical programs with complementarity constraints

A mathematical program with complementarity constraints
embeds a parametric MCP into the constraint set of a nonlinear
program as indicated in the following problem:

min
x∈ Rn,y∈ Rm

f (x, y) (6)

s.t. g(x, y) ≤ 0 (7)

0 ≤ y ⊥ h(x, y) ≥ 0. (8)

The objective function (6) needs no further description, except to
state that the solution techniques we are intending to apply require

that f (g and h) are at least once differentiable, and for many modern
solvers twice differentiable.

The constraints (7) are intended to represent standard nonlin-
ear programming constraints. Clearly, these could involve equalities
with a slight increase in exposition complexity.

The constraints that are of interest here are the complemen-
tarity constraints (8). Essentially, these are parametric constraints
(parameterized by x) on the variable y, and encode the structure that
y is a solution to the nonlinear complementarity problem defined
by h(x, ·). Within the GAMS modeling system, this can be written
simply and directly as

model mpecmod / deff, defg, defh.y /;
option mpec=nlpec;
solve mpecmod using mpec minimizing obj;
Here it is assumed that the objective (6) is defined in the equa-

tion deff, the general constraints (7) are defined in defg and the
function h is described by defh. The complementarity relationship
is defined by the bounds on y and the orthogonality relationship
shown in the model declaration using “.”. AMPL provides a slightly
different but equivalent syntax for this, see Ferris et al. (1999). The
problem is frequently called a mathematical program with comple-
mentarity constraints (MPCC). Several applications of this format
within chemical engineering were given above.

Some solvers can process complementarity constraints explic-
itly. In many cases, this is achieved by a reformulation of the
constraints (8) into the classical nonlinear programming form given
as (1). GAMS Development Corporation (2008) outline a variety of
ways to carry this out, all of which have been encoded in a solver
package called NLPEC. Similar strategies are outlined in Section 3
of Baumrucker et al. (2008). While there are large numbers of dif-
ferent reformulations possible, the following parametric approach,
coupled with the use of the nonlinear programming solver CONOPT
or SNOPT, has proven effective in a large number of applications:

min
x∈ Rn,y∈ Rm,s∈ Rm

f (x, y)

s.t. g(x, y) ≤ 0
s = h(x, y)
y ≥ 0, s ≥ 0
yisi ≤ �, i = 1, . . . ,m.

Note that a series of approximate problems are produced,
parameterized by� > 0; each of these approximate problems have
stronger theoretical properties than the problem with� = 0 (Ralph
& Wright, 2004). A solution procedure whereby � is successively
reduced can be implemented as a simple option file to NLPEC, and
this has proven remarkably effective. Further details can be found
in the NLPEC documentation (GAMS Development Corporation,
2008). The approach has been used to effectively optimize the rig in
a sailboat design (Wallace, Philpott, O’Sullivan, & Ferris, 2006) and
to solve a variety of distillation optimization problems (Baumrucker
et al., 2008).

It is also possible to generalize the above complementarity con-
dition to a mixed complementarity condition; details can be found
in Ferris, Dirkse, and Meeraus (2005). Underlying the NLPEC “solver
package” is an automatic conversion of the original problem into a
standard nonlinear program which is carried out at a scalar model
level. The technology to perform this conversion forms the core of
the codes that we use to implement the model extensions of the
sequel.

2.3. Variational inequalities

A variational inequality VI (F, X) is to find x∈X:

F(x)T (z − x) ≥ 0, for all z ∈X.
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Here X is a closed (frequently assumed convex) set, defined for
example as

X = {x|x ≥ 0, h(x) ≤ 0}. (9)

Note that the first-order (minimum principle) conditions of a
nonlinear program

min
z ∈X

f (z)

are precisely of this form with F(x) = ∇f (x). For a concrete example,
note that these conditions are necessary and sufficient for the opti-
mality of a linear programming problem: solving the linear program
(2) is equivalent to solving the variational inequality given by

F(x) = c, X = {x|Ax ≥ b, x ≥ 0}. (10)

In this case, F is simply a constant function. While there are a
large number of instances of the problem that arise from optimiza-
tion applications, there are many cases where F is not the gradient
of any function f. For example, asymmetric traffic equilibrium prob-
lems have this format, where the asymmetry arises for example due
to different costs associated with left or right hand turns. A com-
plete treatment of the theory and algorithms in this domain can be
found in Facchinei and Pang (2003).

Variational inequalities are intimately connected with the con-
cept of a normal cone to a set S, for which a number of authors have
provided a rich calculus. Instead of overloading a reader with more
notation, however, we simply refer to the seminal work in this area,
Rockafellar and Wets (1998). While the theoretical development
of this area is very rich, the practical application has been some-
what limited. The notable exception to this is in traffic analysis, see
Harker (1993).

It is well known that such problems can be reformulated as com-
plementarity problems when the set X has the representation (9)
by introducing multipliers � on the constraints h:

0 ≤ F(x) + �T∇h(x) ⊥ x ≥ 0
0 ≤ −h(x) ⊥ � ≥ 0.

If X has a different representation, this construction would be
modified appropriately. In the linear programming example (10),
these conditions are precisely those already given as (3).

When X is the nonnegative orthant, the VI is just an alterna-
tive way to state a complementarity problem. However, when X is a
more general set, it may be possible to treat it differently than sim-
ply introducing multipliers, see Cao and Ferris (1996) for example.
In particular, when X is a polyhedral set, algorithms may wish to
generate iterates via projection onto X.

A simple two-dimensional example may be useful to improve
understanding. Let

F(x) =
[
x1 + 2
x1 + x2 − 3,

]
X = {x ≥ 0|x1 + x2 ≤ 1},

so that F is an affine function, but F is not the gradient of any function
f : R2 → R. For this particular data, VI (F, X) has a unique solution
x = (0,1). Such a variational inequality can be described in GAMS
via the model statement

model vi / F, defh /;
solve vi using emp;

combined with an annotation file that indicates certain equations
are to be treated differently by the EMP tool. In this case, the “emp-
info” file

viFunc
F(’1’) x(’1’)
F(’2’) x(’2’)

identifies that the model equations F define a function F that is to
be part of a variational inequality, while the equations defh define

constraints of X. Details on specific syntax can be found in GAMS
Development Corporation (2009).

2.4. Bilevel programs

Mathematical programs with optimization problems in their
constraints have a long history in operations research including
Bracken and McGill (1973), Fortuny-Amat and McCarl (1981), and
Bard (1998). Hierarchical optimization has recently become impor-
tant in chemical engineering for a number of different applications
as outlined in the introduction. New codes are being developed that
exploit this structure, at least for simple hierarchies, and attempt
to define and implement algorithms for their solution.

The simplest case is that of bilevel programming, where an upper
level problem depends on the solution of a lower level optimization.
For example:

min
x,y

f (x, y)

s.t. g(x, y) ≤ 0,
y solves
min
y

v(x, y)

s.t. h(x, y) ≤ 0.

This problem can be reformulated as an MPCC by replacing the
lower level optimization problem by its optimality conditions:

min
x,y

f (x, y)

s.t. g(x, y) ≤ 0,
0 = ∇yv(x, y) + �T∇yh(x, y) ⊥ x free
0 ≤ −h(x, y) ⊥ � ≥ 0.

This approach then allows such problems to be solved using
the NLPEC code, for example. However, there are several possible
deficiencies that should be noted. Firstly, the optimality conditions
encompassed in the complementarity constraints may not have a
solution, or the solution may only be necessary (and not sufficient)
for optimality. Secondly, the MPCC solver may only find local solu-
tions to the problem. The quest for practical optimality conditions
and robust global solvers remains an active area of research. Impor-
tantly, the EMP tool will provide the underlying structure of the
model to a solver if these advances determine appropriate ways to
exploit this.

We can model this bilevel program in GAMS by
model bilev /deff,defg,defv,defh/;
solve bilev using emp min f;
along with some extra annotations to a subset of the model

defining equations. Specifically, within an “empinfo” file we state
that the lower level problem involves the objective v which is to be
minimized subject to the constraints specified in defv and defh.

bilevel x
min v defv defh
Note that the variables x are declared to be variables of the

upper level problem and that defg will be an upper level constraint.
The specific syntax is described in GAMS Development Corporation
(2009). Having written the problem in this way, the MPCC is gen-
erated automatically, and passed on to a solver. In the case where
that solver is NLPEC, a further reformulation of the model is carried
out to convert the MPCC into an equivalent NLP or a parametric
sequence of NLP’s.

A point that has been glossed over here but which is described
carefully in the user manual is the process whereby multiple lower
level problems are specified. Thus, the EMP model type allows
multiple lower level problems to be specified within the bilevel
format.
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2.5. Mathematical programs with equilibrium constraints

Mathematical programs with equilibrium constraints are a
generalization of the aforementioned MPCC problem class. The
difference is that the lower level problem, instead of being a com-
plementarity problem, is now a variational inequality. To specify
such a model we couple together the approaches of the last two
subsections. Thus, the MPEC

min
x,y

f (x, y)

s.t. g(x, y) ≤ 0,
ysolves VI (F(x, ·), X),

where X = {s|h(x, s) ≤ 0} can be specified by the statements:
model mpecmod /deff,defg,F,defh/;
solve mpecmod using emp min f;
and an “empinfo” file
bilevel x
vi F defh
vifunc
F(’1’) y(’1’)
F(’2’) y(’2’)
...
Thus, the EMP format allows for Stackelberg games to be formu-

lated where there are collections of second level players, and each
of those second level players could be solving a variational inequal-
ity or an optimization problem. The EMP model type results in the
ability to model and solve such problems.

3. Extended nonlinear programs

Optimization models have traditionally been of the form (1).
Specialized codes have allowed certain problem structures to be
exploited algorithmically, for example simple bounds on variables.
However, for the most part, assumptions of smoothness of f, g and h
are required for many solvers to process these problems effectively.

In a series of papers, Rockafellar and colleagues (Rockafellar,
1993, 1999, 1987) have introduced the notion of extended nonlinear
programming, where the (primal) problem has the form:

min
x∈X

f0(x) + �(f1(x), . . . , fm(x)). (11)

In this setting, X is assumed to be a nonempty polyhedral set,
and the functions f0, f1, . . . , fm are smooth. The function � can be
thought of as a generalized penalty function that may well be non-
smooth. However, when � has the following form

�(u) = sup
y∈Y

{yTu− k(y)}, (12)

a computationally exploitable and theoretically powerful frame-
work can be developed based on conjugate duality. A key point
for computation and modeling is that the function � can be fully
described by defining the set Y and the function k. Furthermore, as
we show below, different choices lead to a rich variety of functions
�, many of which are extremely useful for modeling. In the above
setting � can take on the value of ∞ and may well be nonsmooth,
but it is guaranteed to be convex (proper and lower semicontinu-
ous when Y /= ∅ and k is smooth and convex). Furthermore, from a
modeling perspective, an extended nonlinear program can be spec-
ified simply by defining the functions f0, f1, . . . , fm in the manner
already provided by the modeling system, with the additional issue
of simply defining Y and k. Conceptually, this is not much harder
that what is carried out already, but leads to significant enhance-
ments to the types of models that are available. This paper outlines
an approach to do this within the GAMS modeling system for a
number of different choices of Y and k.

The EMP model type works in this setting by providing a library
of functions � that specify a variety of choices for k and Y. Once a
modeler determines which constraints are treated via which choice
of k and Y, the EMP model interface automatically forms an equiv-
alent variational inequality or complementarity problem. As we
show later, there may be alternative formulations that are compu-
tationally more appealing; such reformulations can be generated
using different options to our tool.

3.1. Forms of �

The EMP model type makes the problem format (11) available
to users in GAMS. As special cases, we can model piecewise linear
penalties, least squares and L1 approximation problems, as well as
the notion of soft and hard constraints. We allow modelers to utilize
cone constraints and pass on the underlying geometric structure to
solvers. Particular examples show enormous promise both from a
modeling and solution perspective.

For ease of exposition, we now describe a subset of the types of
functions � that can be generated by particular choices of Y and k.
In many cases, the function � is separable, that is

�(u) =
m∑
i=1

�i(ui).

so we can either specify �i or � itself.
Extended nonlinear programs include the classical nonlinear

programming form (1) as a special case. This follows from the obser-
vation that if K is a closed convex cone, and we let  K denote the
“indicator function” of K defined by:

 K (u) =
{

0 if u∈K
∞ else,

then (1) can be rewritten as

min
x
f (x) + K (g(x), h(x)), K = Rm− × {0}p,

where m and p are the dimensions of g and h respectively and Rm− =
{u∈ Rm|u ≤ 0}. An elementary calculation shows that

 K (u) = sup
v ∈K◦

uTv,

where K◦ = {u|uTv ≤ 0,∀v ∈K} is the polar cone of the given cone K.
Thus, when �(u) =  K (u) we simply take

k ≡ 0 and Y = K◦. (13)

In our example, K◦ = Rm+ × Rp. To some extent, this is just a for-
malism that allows us to claim the classical case as a specialization;
however when we take the cone K to be more general than the
polyhedral cone used above, we can generate conic programs (see
below) for example.

The second example involves a piecewise linear function �
(Fig. 1):

Formally, for u∈ R,

�(u) =
{
�u if u ≥ 0
�u else.

In this case, simple calculations prove that � has the form (12)
for the choices:

k ≡ 0 and Y = [�,�].

The special case where � = −� results in

�(u) = �|u|. (14)
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Fig. 1. A piecewise linear example of �.

This allows us to model nonsmooth L1 approximation problems.
Another special case results from the choice of � = 0, whereby

�(u) = �max{u,0}.

This formulation corresponds to a soft penalization on an
inequality constraint, namely if �(f1(x)) is used then nothing is
added to the objective function if f1(x) ≤ 0, but �f1(x) is added if
the constraint f1(x) ≤ 0 is violated. Contrast this to the classical
setting above, where ∞ is added to the objective if the inequality
constraint is violated. It is interesting to see that truncating the set
Y, which amounts to bounding the multipliers, results in replacing
the classical constraint by a linearized penalty.

The third example involves a more interesting choice of k. If we
wish to replace the “absolute value” penalization given above by a
quadratic penalization (as in classical least squares analysis), that
is

�(u) = �u2 (15)

then a simple calculation shows that we should take

k(y) = 1
4�
y2 and Y = R.

By simply specifying this different choice of k and Y we can gen-
erate such models easily and quickly within the modeling system:
note however that the reformulation we would use in (14) and
(15) are very different as we shall explain in the simple example
below. Furthermore, in many applications it has become popular
to penalize violations using a quadratic penalty only within a cer-
tain interval, afterwards switching to a linear penalty (chosen to
make the penalty function� continuously differentiable—see Huber
(1981) (Fig. 2).

i.e. �(u) =

⎧⎪⎪⎨
⎪⎪⎩
�u− 1

2
�2 if u ≥ �

1
2
u2 if u∈ [−�, �]

−�u− 1
2
�2 else.

Such functions arise from quadratic k and simple bound sets Y.
In particular, the somewhat more general function

�(u) =
{
�ˇ2 + �(u− ˇ) if u ≥ ˇ
�u2 if u∈ [˛,ˇ]
�˛2 + �(u− ˛) else

Fig. 2. An example of � due to Huber (1981).

arises from the choice of

k(y) = 1
4�
y2 and Y = [�,�],

with ˛ = �
2� and ˇ = �

2� .
The final example that we give is that of L∞ penalization. This

example is different to the examples given above in that � is not sep-
arable. However, straightforward calculation can be used to show

�(u) = maxi=1,...,mui

results from the choice of

k ≡ 0 and Y =
{
y∈ Rm|y ≥ 0,

m∑
i=1

yi = 1

}
,

that is, Y is the unit simplex.

3.2. Underlying theory

The underlying structure of � leads to a set of extended optimal-
ity conditions and an elegant duality theory. This is based on an
extended form of the Lagrangian:

L(x, y) = f0(x) +
m∑
i=1

yifi(x) − k(y), x∈X, y∈Y

Note that the Lagrangian L is smooth—all the nonsmoothness is
captured in the � function. The theory is an elegant combination of
calculus arguments related to fi and its derivatives, and variational
analysis for features related to �.

It is shown in Rockafellar (1993) that under a standard constraint
qualification, the first-order conditions of (11) are precisely in the
form of the following variational inequality:

VI

([
∇xL(x, y)
−∇yL(x, y)

]
, X × Y

)
. (16)

When X and Y are simple bound sets, this is simply a comple-
mentarity problem.

Note that EMP exploits this result. In particular, if an extended
nonlinear program of the form (11) is given to EMP, then the
optimality conditions (16) are formed as a variational inequality
problem and can be processed as outlined above. For a specific
example, we cite the fact that if we use the (classical) choice of
k and Y given in (13), then the optimality conditions of (11) are pre-
cisely the standard complementarity problem given as (5). While
this is of interest, we believe that other choices of k and Y may
be more useful and lead to models that have more practical signi-
ficance.

Under appropriate convexity assumptions on this Lagrangian, it
can be shown that a solution of the VI (16) is a saddle point for
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the Lagrangian on X × Y . Furthermore, in this setting, the saddle
point generates solutions to the primal problem (11) and its dual
problem:

maxy∈Y g(y), where g(y) = inf
x∈X

L(x, y),

with no duality gap.

3.3. A simple example

As an example, consider the problem

min
x1,x2,x3

exp(x1) + 5|| log(x1) − 1||2 + 2 max(x2
2 − 2,0)

s.t. x1/x2 = log(x3),
3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0.

In this problem, we would take

X = {x∈ R3|3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0}.

The function � essentially treats 3 separable pieces:

f1(x) = log(x1) − 1,
f2(x) = x2

2 − 2,
f3(x) = x1/x2 − log(x3).

A classical problem would force f1(x) = 0, f2(x) ≤ 0 and f3(x) = 0,
while minimizing f0(x) = exp(x1). In our problem, we still force
f3(x) = 0, but apply a (soft) least squares penalty on f1(x) and a
smaller one-sided penalization on f2(x). The above formulation is
nonsmooth due to the max term in the objective function; in prac-
tice we could replace this by:

min
x1,x2,x3,w

exp(x1) + 5|| log(x1) − 1||2 + 2w

s.t. x1/x2 = log(x3),
3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0
w ≥ x2

2 − 2, w ≥ 0

and recover a standard form NLP. If the penalty on f1(x) would be
replaced by a one-norm penalization (instead of least squares), we
would have to play a similar game, moving the function f1(x) into
the constraints and adding additional variable(s). To some extent,
this seems unnatural - a modeler should be able to interchange
the penalization without having to reformulate the problem from
scratch.

The proposed extended NLP would not be reformulated at all
by the modeler, but allows all these “generalized constraints” to be
treated in a similar manner within the modeling system. The actual
formulation would take:

�(u) = �1(u1) + �2(u2) + �3(u3),

where

�1(u1) = 5u2
1,

�2(u2) = 2 max(u2,0),
�3(u3) =  {0}(u3).

The discussion above allows us to see that

Y = R × [0,2] × R,

k(y) = 1
20
y2

1 + 0 + 0.

The corresponding Lagrangian is the smooth function:

L(x, y) = f0(x) +
3∑
i=1

yifi(x) − k(y).

The corresponding VI (16) can almost be formulated in GAMS
(except that the linear constraint in X cannot be handled currently
except by introducing a �4(x)). Thus

f4(x) = 3x1 + x2 − 5, �4(u) =  R−

resulting in the following choices for Y and k:

Y = R × [0,2] × R × R+,

k(y) = 1
20
y2

1 + 0 + 0 + 0.

Since X and Y are now simple bound sets, (16) is now a com-
plementarity problem and can be solved for example using PATH.
A simple “empinfo” file details the choices of Y and k from the
implemented library:

Adjusteqn
e1 sqr 5
e2 MaxZ 2
The full model and option files are available in GAMS

Development Corporation (2009).

3.4. Reformulation as a classical NLP

Suppose

�(u) = sup
y∈Y

{uTy− 1
2
yTQy},

for a polyhedral set Y ∈ Rm and a symmetric positive semidefinite
Q ∈ Rm×m (possibly Q = 0). Suppose further that

X = {x|Rx ≤ r}, Y = {y|STy ≤ s},
Q = DJ−1DT, F(x) = (f1(x), . . . , fm(x)),

where J is symmetric and positive definite (for instance J = I).
Then, as outlined by Rockafellar (1999), the optimal solutions x̄

of (11) are the x̄ components of the optimal solutions (x̄, z̄, w̄) to

min f0(x) + sT z + 1
2
wT Jw

s.t. Rx ≤ r, z ≥ 0, F(x) − Sz − Dw = 0.

The multiplier on the equality constraint in the usual sense is
the multiplier associated with x̄ in the extended Lagrangian for (11).
(Note that a Cholesky factorization may be needed to determineD.)

It may be better to solve this reformulated NLP than to solve
(16). However, it is important that we can convey all types of non-
smooth optimization problems to a solver as smooth optimization
problems, and hence it is important to communicate the appropri-
ate structure to the solver interface. We believe that specifying Y
and k is a theoretically sound way to do this.

Another example showing formulation of an extended nonlinear
program as a complementarity problem within GAMS can be found
in Dirkse and Ferris (1995).

4. More allowable model constructs

4.1. Disjunctive programs

There are many ways that the EMP model type can be used for
further extensions to the modeling capabilities of a given system.
In particular, the procedures outlined in Vecchietti et al. (2003) for
disjunctive programming extensions are also implemented within
the EMP model type.

One simple example to highlight this feature is the notion of an
ordering of tasks, namely that either job i comes before job j or the
converse. Such a disjunction can be specified using an empinfo file
containing lines:

disjuncton * seq(i,j) else seq(j,i)
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In such an example, one can implement a Big-M method, employ
indicator constraints, or utilize a convex hull reformulation. The
convex hull reformulation is the default strategy; to utilize the Big-
M formulation, the additional option

default bigm 1000
would add binary variables and constraints to impose the dis-

junction using a Big-M value of 1000. Alternatively, for the CPLEX
solver, the option setting (for EMP):

default indic
writes out a model and a CPLEX option file that implements a

reformulation using indicator constraints. The EMP model library
that is part of the standard GAMS distribution contains a sequencing
model that implements all of these options.

More complicated (nonlinear) examples make the utility of this
approach clearer. The design of a multiproduct batch plan with
intermediate storage described in Vecchietti and Grossmann (1999)
and a synthesis problem involving 8 processes from Turkay and
Grossmann (1996) are also included in the EMP model library. As a
final example, the gasoline emission model outlined in Furman and
Androulakis (2008) is precisely in the form that could exploit the
features of EMP related to (nonlinear) disjunctive programming.

4.2. Conic programming

A problem of significant recent interest (due to its applications
in robust optimization and optimal control) involves conic con-
straints (Alizadeh & Goldfarb, 2003; Ben-Tal & Nemirovskii, 2001;
Lobo, Vandenberghe, Boyd, & Lebret, 1998):

min
x∈X

pTx

s.t. Ax − b ≤ 0, x∈C,

where C is a convex cone. Using the notation outlined above, this
can be expressed as an EMP:

min
x∈X

pTx + Rm− (Ax − b) + C (x)

For specific cones such as the Lorentz (ice-cream) cone where

C = x∈ Rn|x1 ≥
√∑n

i=2x
2
i
, or the rotated quadratic cone, there are

efficient implementations of interior point algorithms for their
solution (Andersen, Roos, & Terlaky, 2003). It is also possible to
reformulate the problem in the form (1) for example by adding the
constraint

x1 ≥

√√√√ n∑
i=2

x2
i
. (17)

Annotating the variables that must lie in a particular cone using
a “empinfo” file allows solvers like MOSEK (Andersen & Andersen,
2000) to receive the problem as a cone program, while standard
NLP solvers would see a reformulation of the problem as a nonlin-
ear program. It is also easy to see that (17) can be replaced by the
following equivalent constraints

x2
1 ≥

n∑
i=2

x2
i , x1 ≥ 0.

Such constraints can be added to a nonlinear programming for-
mulation or a quadratically constrained (QCP) formulation in GAMS.
This automatic reformulation allows the CPLEX solver to process
these problems since its barrier solver will process constraints of
the form

y2 ≥ xTQx, y ≥ 0, Q PSD.

Details on the options that implement these approaches can be
found in the EMP manual.

Furthermore, it is straightforward to facilitate the use of
stochastic constraints that have become very popular in finan-
cial applications. Specifically, we mention the work of Rockafellar
and Uryasev (2000) on conditional value at risk, and the recent
papers by Dentcheva and Ruszczyński (2003) and Luedtke (2008)
on stochastic dominance constraints. All of these formulations are
easily cast as constraints on decision variables annotated by addi-
tional (in this case distributional) information.

4.3. Embedded complementarity systems

A different type of embedded optimization model that arises
frequently in applications is:

min
x

f (x, y)

s.t. g(x, y) ≤ 0 (⊥ � ≥ 0)
H(x, y, �) = 0 (⊥ y free)

Note the difference here: the optimization problem is over the
variable x, and is parameterized by the variable y. The choice of y
is fixed by the (auxiliary) complementarity relationships depicted
here by H. Note that the “H” equations are not part of the optimiza-
tion problem, but are essentially auxiliary constraints to tie down
remaining variables in the model.

Within GAMS, this is modeled as
model ecp /deff,defg,defH/;
solve ecp using emp;
Again, so this model can be processed correctly as an EMP, the

modeler provides additional annotations to the model defining
equations in an “empinfo” file, namely that the function H that is
defined in defH is complementary to the variable y (and hence the
variable y is a parameter to the optimization problem), and further-
more that the dual variable associated with the equation defg in the
optimization problem is one and the same as the variable � used to
define H:

dualequ H y
dualvar lambda g
Armed with this additional information, the EMP tool automat-

ically creates the following MCP:

0 = ∇xL(x, y, �) ⊥ x free
0 ≤ −∇�L(x, y, �) ⊥ � ≥ 0
0 = H(x, y, �) ⊥ y free,

where the Lagrangian is defined as

L(x, y, �) = f (x, y) + �Tg(x, y).

Perhaps the most popular use of this formulation is where com-
petition is allowed between agents. A standard method to deal with
such cases is via the concept of Nash Games. In this setting x∗ is a
Nash Equilibrium if

x∗
i ∈ argmin

xi ∈Xi
�i(xi, x

∗
−i, q), ∀I ∈ I,

where x−i are other players decisions and the quantities q are given
exogenously, or via complementarity:

0 ≤ H(x, q) ⊥ q ≥ 0.

This mechanism is extremely popular in economics, and Nash
famously won the Nobel Prize for his contributions to this literature.

This format is again an EMP, more general than the exam-
ple given above in two respects. Firstly, there is more than one
optimization problem specified in the embedded complementar-
ity system. Secondly, the parameters in each optimization problem
consist of two types. Firstly, there are the variables q that are tied
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down by the auxiliary complementarity condition and hence are
treated as parameters by the i th Nash player. Also there are the
variables x−i that are treated as parameters by the i th Nash player,
but are treated as variables by a different player j. While we do
not specify the syntax here for these issues, GAMS Development
Corporation (2009) provides examples that outline how to carry
out this matching within GAMS. Finally, two points of note: first
it is clear that the resulting model is a complementarity problem
and can be solved using PATH, for example. Secondly, performing
the conversion from an embedded complementarity system or a
Nash Game automatically is a critical step in making such models
practically useful.

We note that there is a large literature on discrete-time finite-
state stochastic games: this has become a central tool in analysis of
strategic interactions among forward-looking players in dynamic
environments. The Ericson and Pakes (1995) model of dynamic
competition in an oligopolistic industry is exactly in the format
described above, and has been used extensively in applications such
as advertising, collusion, mergers, technology adoption, interna-
tional trade and finance. Ongoing work aims to use the EMP format
to model these problems.

5. Conclusions

A number of new modeling formats involving complementarity
and variational inequalities have been described and a framework,
EMP, that allows such problems to be specified has been outlined.
We believe this will make a modeler’s task easier by allowing model
structure to be described succinctly. Furthermore, model genera-
tion can be done more reliably and automatically, and algorithms
can exploit model structure to improve solution speed and robust-
ness.

We believe that EMP will be useful in systems optimization
where collections of interacting (optimization and complementar-
ity) models need to be processed. The automatic reformulations of
these problems will save time, improve accuracy, and expand the
range of problems that can be practicably solved. While the imple-
mentation described in this paper was developed for the GAMS
modeling system, we believe that most of the features are applica-
ble to any modeling system. Specifically, equation annotations can
be provided in AMPL via user-defined constructs while the object
oriented design of MATLAB could easily be extended to this setting.
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