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The continuous network design problem is formulated as a mathemati-

cal program with complementarity constraints (MPCC) and a Gauss—
Seidel decomposition scheme is presented for the solution of the MPCC
model. The model has an upper level asa nonlinear programming prob-
lem and the lower level as a nonlinear complementarity problem. With
the application of the complementarity slackness condition of the lower-
level problem, the original bilevel formulation can be converted into a
single-level nonlinear programming problem. To solve the single-level
problem, a decomposition scheme that can resolve the possible dimen-
sionality problem (i.e., a large number of defining variables) is devel-

. oped. The decomposition scheme is tested, and promising results are
shown for well-known test problems.

The continuous network design problem (CNDP) aims to determine
the optimal capacity enhancement for a set of selected links in a
given network by minimizing both the total system cost and each
driver’s travel cost (). The CNDP has long been formulated as a
bilevel programming problem with the upper level a nonlinear pro-
gramming (NLP) problem to minimize the system cost and the
lower-level user equilibrium (UE) problem to account for driver’s
route choice behavior. It was first proposed by Morlok (2) and sub-
sequently studied by Tan et al. (3), Marcotte (4), Suwansirikul et al.
(5), Friesz (6), and Yang (7), to name but a few. Most of these works
on the CNDP focused on heuristic approaches for solving the bilevel
model. More-detailed reviews on the CNDP before 2001 may be
found elsewhere (8). ‘

It has been proved over the years that a bilevel formulation has
broad applications not only in the transportation area but also in
other engineering and science fields (9). Particularly in the mathe-
matical programming literature, the bilevel programming problem
is also termed a mathematical program with equilibrium constraints
(MPEC), which has been extensively studied (10). However, solving
such a problem is normally difficult because of the nonconvex and
nonsmooth characteristics of the MPEC. Therefore, how to refor-
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mulate a general bilevel problem rigorously and solve it efficiently

still remains an active research topic in both the transportation field

and the mathematical programiming community.

By exploring the special structure of the CNDP, Meng et al. (11)
converted the bilevel problem to a single-level, yet smooth one by
introducing a particular gap function for the lower-level UE problem.
Though still a nonconvex model, the resulting single-level problem
can be solved with existing NLP solution algorithms. Nevertheless,
the model of Meng et al. was based on the symmetry assumption
of the lower-level problem; that is, there is no interaction among
flows on different links. A general UE problem cannot be formu-
lated as an NLP; instead, a nonlinear complementarity problem (NCP)
or variational inequality (VI) formulation needs to be adopted.
Marcotte and Zhu (12) investigated such a general bilevel model,
that is, an NLP for the upper level and a VI for the lower level. By
defining certain gap functions, they transferred the bilevel problem
to a single-level one and solved it with the penalty method. More
recently, Patriksson and Rockafellar (13) presented a new reformu-
lation technique to convert an MPEC into a constrained and locally
Lipschitz minimization problem, which can be further solved with
a descent algorithm proposed in the same paper. However, neither
Marcotte and Zhu (12) nor Patriksson and Rockafellar (13) further
tested their models by using well-known CNDP examples in the
transportation field.

By formulating the asymmetric UE (AUE) as a Tink-node-based’
NCP, Ban et al. (/4) modeled the CNDP with AUE as a mathemat-
ical program with complementarity constraints MPCC). As a spe-
cial case of MPEC, the MPCC has more plausible properties, which
make it easier to solve. In particular, a variety of methods can be
applied to convert an MPCCto a single-level NLP problem and then
solve it by using existing solution techniques. Therefore, the MPCC
has been extensively studied recently (15-21). In particular, Ferris
et al. (22, 23) implemented as a solver a nonlinear program with
equilibrivm constraints (NLPEC) as a subsystem of general alge-
braic modeling systems (24). The MPCC model proposed by Ban
et al. (J4) was solved by an NLPEC directly. That is, the MPCC
model was first converted to an equivalent single-level NLP prob-
lem by the application of the complementarity slackness condition.
To solve the single-level NLP problem, the strict complementarity
condition is relaxed by a relaxation parameter. Then this parameter
is progressively reduced, with the resulting relaxed NLP problem
solved with existing NLP solvers. Ralph and Wright (25) proposed
certain conditions under which the relaxation scheme can guarantee
to solve the original MPCC successfully. Ban et al. (14) demonstrated
by using well-known CNDP test problems that sucha direct solution
approach can generate promising results compared with existing
solution techniques for the CNDP. -
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Nevertheless, because the lower-level AUE problem has to be
defined on the so-called disaggregated variables (i.e., link flows for
different destinations), the direct conversion (and solution) may
bring about the dimensionality problém (1 ) for large-scale CNDPs.
That is, the resulting single-level NLP might have a large number of
defining variables, especially for multiple-origin and multiple-
destination (many-to-many) problems. In this study, it is observed
that the lower-level AUE problem has a special structure such that
it can be easily separated according to individual destinations. Fur-
thermore, the reformulation method applied here can still maintain

* this special feature. Therefore, by exploring such a special structure
of the MPCC model for the CNDP, the authors propose a decom-
position scheme to resolve the dimensionality problem. Numerical
examples in this paper show that the presented scheme can effi-
ciently solve the CNDP without losing too much of the quality of
the solutions.

MPCC MODEL FOR CNDP
Link—-Node NCP Formulation for AUE Problem

As shown by Ban et al. (14), the AUE problem can be mathemati-
cally formulated as follows:
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Here a given transportation network is denoted G(N, A), where N is '

the set of nodes and A is the set of links. The index i, j is used to
denote nodes in N and (i,j) or ij to denote a link in A. R is denoted
as the origin node set, which is a subset of N and generates origin-—
destination (O-D) trips. Similarly, set S is defined as the destination
set, which is also a subset of N and absorbs O-D trips. Further, 7}
denotes the minimum travel cost from node i to destination s, dj the
travel demand from i to s, vj the (disaggregated) flow for link (i, /)
for destination s, and #; the link travel cost for link (i, /). The sym-
bol .L is the perpendicular operator such thatx L y & x7 y = 0.
Equation 1 can be rewritten in a matrix form:
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where vectors T = (Tiew, i ¥* = (V) peas a0d @° = (d);cn, i are
defined for any given destination node s € S and ¢ = (), jea- Also,
the standard node-link incidence matrix is represented as A, and A,
denotes A with the row corresponding to destination s removed, which
guarantees that A, has full row rank. Equation 2 is the link—node
NCP formulation for the AUE problem, which will be utilized later
for modeling the bilevel CNDP.

It can easily be observed that Equation 2 has a special structure
such that it can be naturally decomposed according to individual
destinations. The only place in which interactions exist for variables
related to different destinations is the link travel cost vector ¢ since
tis defined on the aggregated link flows. This special structure has
important effects on how to design a solution algorithm for both the
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UE problem itself (26) and the CNDP problem constructed on the
basis of Equation 2, as will be discussed in more detail later.

MPCC Formulation for CNDP

First, additional notation is as follows:

v; = total (aggregated) link flow on link (i, /), v;= Yoes Vi
v = vector of v, v e R4l .
y; = capacity enhancement for link (i, ) € A;
y vector of y;, y € R4};
1; (v, yy) = travel cost on link (7, j) € A, defined as a functlon of
‘aggregated link flow v and capacity enhancement of
G, J) e 3
8y} = cost function of capacity enhancement for link (7, /) €
. " A
g = vector of g, g € RM;
0 = relative weight of total capacity enhancement cost and
total travel cost in system design objective function;
Iy, u; = lower bound and upper botnd for capacity enhance-
ment for link (7, /) €A; and
1, u = vector of ; and uy;, respectively, , u € R lal,

With this notation in place, as shown by Ban et al. (14), the CNDP
can be formulated with AUE as the following MPCC model:
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where (v, %), Vs € §, is the solution to the following NCP problem

(AUE):
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Obviously, the MPCC-based CNDP model (Expressions 3a through
3c) is defined on the upper-level decision variable y;, V{i,j) € A, and
the disaggregated link flow (+, %), Vs € §. Expression 3a is the
upper-level objective of the MPCC model, which tries to minimize a
weighted surnmation of the total system travel cost and the enhance-
ment cost; Constraint 3b is the bound constraint for the upper-level
decision variable y;;, V(i, J) € A, and Expression 3¢ is the lower-level
AUE formulation that (%, ™), Vs € S, must satisfy. With matrix
notation, Expressions 3a through 3¢ can be rewritten:

T
OO [f(};vyj] v+0e7g(y) (4o

subject to

Izy<u (4b)
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where e is the vector of all 1’s and {(*, ™), Vs € S} is the solution
to the following NCP model: ‘

0< {—-Af‘m’ + t(Z‘v‘,yn Lv20
se8 Vses (4c)
og[Ay -d]La 20
The MPCC model (Expressions 4a through 4c) can be tackled by

being converted to a single-level equivalence and then solved by using
a decomposition scheme that will be discussed in the next section.

SOLUTION ALGORITHM
Single-Level NLP Formulation for MPCGvModel ‘

" Because the NCP formulation (quiation 4c) can be readily replaced

by its equivalent complementarity slackness condition and addi-
tional nonnegativity constraints, the MPCC model of the CNDP
(Expressions 4a throngh 4¢) can be straightforwardly converted into
a single-level NLP model as follows: ‘

O S ['@"yﬂ v+8e'g(y) (59)
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where the lower-level NCP formulation in Expression 4¢ is replaced
by its equivalent complementarity slackness condition in Con-
straints 5S¢ through 5h. Evidently, under the assumption that both the
Jink travel cost function ¢ and the function g are smooth, the single-
level NLP model (Expressions 5a through 5h) involves only smooth
funictions with respect to (7, v, Vi, ..., ¥,V s, L., @, ST,
Hence, it is a smooth and nonlinear optimization problem. However,
this NLP formulation lacks sound mathematical properties because
of the complementarity slackness constraints (5g and 5h). Actually,
because of these two constraints, the single-level model is nonconvex
and, most important, the Mangasarian-Fromovitz constraint qual-
ification does not hold (10). Therefore, solving the single-level NLP
model directly is usually difficult, and a progressive relaxation
algorithm will normally be adopted instead. :

Ban et al. (J4) solved the single-level NLP problem (Expressions
5a through 5h) directly by applying a relaxation scheme, particu-
larly by the NLPEC solver developed by Ferris et al. (22). Promis-
ing results were reported in their study for well-known test CNDPs
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in the literature. However, the NLP equivalence (Expressions 5a
through 5h) involves the disaggregated variables explicitly and
hence has a large dimension for large-scale problems. Such a dimen-
sionality problem may likely prohibit the application of the direct
solution. Nevertheless, it is clear that Constraints 5¢ through 5h are
defined according to individual destinations, except for the inter-
action of disaggregated link flows on the link travel cost function #.
This feature makes it possible to employ certain decomposition
techniques to solve the single-level NLP model more efficiently.

Decumposition Scheme for Solving Single-Level
NLP Model

For the single-level NLP model (Expressions 5a through 5k), Con-
straint 5b is defined on the upper-level decision variable y only and
those from Constraints 5¢ through 5h are defined according to each
individual destination, except for the interaction of the disaggregated
fink flow variables v¢, Vs & S, and y in the link travel cost function t.
From this observation, it is intuitive to apply certain decomposition
schemes for solving the single-level model. In the literature, decom-
position schemes can be grouped into two categories: the Gauss—
Seidel (GS) (or sequential) decomposition and the Jacobi (or paral-
lel) decomposition (27, 28). Although the Jacobi decomposition
method is amenable to parallel compuiting, the GS approach has been
proved to have better convergence performance since it can incor-
porate the newest available information (29). Here, the discussion
will concentrate on the GS method.

With the application of GS decomposition, the interaction of v*,
Vs e §, and y in ¢ can be temporarily fixed. Then the (possible)
large-size, single-level NLP model can be converted into multi-
ple, yet smaller-dimensional optimization problems. In the cur-
rent case, these smaller-dimensional problems will be defined on
y and individual (v, 7¥), Vs € §, respectively. That is, the single-
level NLP model can be decomposed into the following Isl+1
smaller-dimensional NLP problems:

v
min[t(ZV’, yﬂ (ZV’)—&-OeTg(y) 6
4 €S se§ ) ]
subjectto ISy<u,

and
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Essenitially, Expression 6 is defined on the upper-level decision vari-
able only wjth v, Vs e §, fixed as ¥, whereas for each destination
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s, after ¥, Vs’ € §, s # s is temporarily fixed as 7 and y as ¥, an
NLP model can be obtained, as shown in Expression 8. It can imme-
diately be observed that the constraints in Expression 7 actually define
an NCP problem for each individual destination; that is,

0< [—A{n’ + t( Y, ¥ +v’,§)] Lv20
s'eS.s'es . VseS (8)

o<[Av-d]Lln 20

Under certain monotonicity conditions (26), Expression 8 has a
unique solution in terms of v*. This fact means that solving the min-
jmization problem (Expression 7) is equivalent to solving the NCP
problem (Expression 8) for each destination s € S. Because of the
smaller dimension of both Expressions 6 and 8 compared with the
original single-level NLP model, they can be solved much more
efficiently. Solving these smaller-dimension problems tackles only
the decomposed version of the original single-level NLP model. The
overall solution method is thus an iterative one with the decomposed

problems solved at each iteration. Under the assumption that the -

obtained solution from the decomposed problems defines a descent
direction to the original single-level problem (although verifying
this is not trivial), the optimal step size for computing the next iterate
can be obtained by a line search as follows:

mgn(t{}:[% +o(¥ - V‘):l,;,-i— o5~ y)}f

{;,[V’ + o7 —V‘)]}-HW —g[7+a(3-7)] ©)

where 7°, 5 denotes current fixed variables, 9% J, the solution
obtained from Expressions 6 and 8; and 0., the step size.

To summarize, the iterative algorithm for solving Expressions 5a
through 5k can be given as follows: '

 Step 1. Initialization. Assign initial values for the defining vari-
ables, v*°, 7, y°, and set iteration count n=0. .
Step 2. GS decomposition scheme. :
Step 2.1. Solve the decomposed problem (Expression 6) by set-
ting 7* = v**, Vs € S. Denote the obtained solution as yn.
Step 2.2. For each destination s € S, solve the decomposed
_ NCP problem (Expression 8) by seting y = y™ and ¥ = v, Vs’
€ S, 5 # 5. Denote the obtained solution as ¥*", Vs € S.
Step 3. Line search. Solve the one-dimensional NLP model
(Expression 9) to obtain the optimal step size, denoted ok,
Step 4. Convergence test. If a certain convergence criterion is
met, stop. Otherwise, set v =y 4 o (P57 — p7), yrrt) =y + oU*
(3 —~y"), n=n+1, and go to Step 2.1. '

In Step 4 of the algorithm, the stopping criterion has to consider both
the upper-level objective value and the lower-level UE condition.
For the upper level, one can check if the objective values remain sta-
ble over the past several iterations, whereas for the lower-level UE
condition, a criterion similar to the relative gap of Boyce et al. (30)
is applied: '

Z 15005 35) * Oy = V3™

_ (ij)eA
relgap = ,
§ , LV ¥g) * vy
(hjyeA

In Equation 10, v denotes the all-or-nothing link flow provided
the link travel time is fixed at link flow v; and capacity enhancement

10y
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y;- Clearly, relgap > 0 and if relGap = 0, the lower-level UE condition
will hold exactly. :

. NUMERICAL EXAMPLES

In this section, the proposed decomposition scheme is tested on a
well-known and relatively large-scale CNDP with both symmetric
and asymmetric user equilibria. In particular, the solutions will be
compared with those obtained with existing CNDP algorithms.
Before the actual network is introduced, however, the link travel time
functions for both symmetric and asyminetric cases are provided.

Link Travel Time Function

For the symmetric UE, the link trave] time function is separable; this
implies that the travel time on a particular link is dependent only on
its own traffic flow. In the transportation field, the most popularly
used function form for the symmetric case is the Bureau of Public
Roads (BPR) function: :

4
vy D) = Aij+Bii[viJ/(Ki}+yU)] an
where Ay, B, and Kj; are constants for any link (i N

However, for the asymmetric case, no appropriate function form
has been suggested in the literature. In this study, the following link

- travel time function is adopted:

4
( Z Pi/.ki"kj)

- )
1Y) = A+ By | ey

. 2
(Kli + )’;j) 2

where 0 < p;; < 1 denotes the impact factor of the flow on link (%, /)
to the travel cost of link (i, j). Apparently, pyy=1, V(i, /) € A, and
further if py,;=0,Vjie N, (i, ) € A, (k) € A, i #k, Equation 12
will reduce to the standard BPR function in Equation 11. It should
be pointed out here that Equation 12 is just an intuitive way to
achieve (asymmetric) link interactions among adjacent links to
‘demonistrate the proposed model and algorithm for the CNDP with
AUE. How to design a practically reasonable asymmetric link cost

" function for a given network is beyond the scope.of this paper.

Test Networks

The test network in this study is the Sioux Falls, North Dakota, net-
work, which was first constructed and studied by LeBlanc (31). It
contains 24 nodes and 76 links, as shown in Figure 1. All 24 nodes
can be either origin or destination node, or both. The data of the net-
work can be found elsewhere (7), including the pafameters Ay, Byp,
and K in the link travel time function (Equation 11 or 12). In par-
ticular, only 10 links are selected for capacity enhancement, namely,
Links 16, 17, 19, 20, 25, 26, 29, 39, 48, and 74 in Figure 1. The
upper bound of the enhancement for each link is set to 25, that is,
0 £y;< 25, V(i, j) € A. Furthermore, the cost function for capacity
enhancement for each link is gi(yy) = 0.001y%, V(i, ) € A. In other
words, the upper-level objection function of CNDP is

2= Y, [t,, (}:V‘,y,j) vyt 0.0016,.jy,§] 13)

i.)eA seS

Finally, the impact factors in Equation 12 for the asymmetric case
are given in Table 1. Table 1 shows only the impact factors for Py,
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FIGURE 1 Test Network [Siﬁux Falls].
TABLE 1 Ihbact Factors for Test Network
Link 6.8 78 86 87 109 1016 1324 1610
4(2.6) ' 1 .05
12 (5.6) 05
13 (5.9) ‘ 06
16(6.8) 0.06
17 (7.8) 0.08 o
22 (8.16) , 0.1
24 (9.8) 0.1
25 (9.10) 006 0.8
'25(10.9) . : 0.08
54 (18.7) ' 0.05 ‘
55(18.16) 0.06
66'21.24) 0.07

73 (23.24) . ) 0.05
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TABLE 2 Comparisons of Results for Symmetric Case
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Murtagh and Abdulaal and Suwansirikul ~ Friesz Meng Decomposition Scheme
Variable Saunders 1981 (32) LeBlance (1979)(33) etal. 1987 (5) etal. 1992(6) etal. 2001 (II) Proposed in This Paper
Initial value of y; 2 1 12.5 6.25 12.5 0
ves (Link 16) 4.8 3.8 4.59 5.38 5.5728 5.269770
y75 (Link 17) 1.2 3.6 1.52 2.26 1.6443 1.378772
¥es (Link 19) ] 4.8 3.8 5.45 5.5 5.6228 5.269853
¥s7 (Link 20) 0.8 24 2.33 2.01 1.6443 1.378635
Yoo (Link 25) 2 28 1.27 2.64 3.1437 2.766501
Fios (Link 26) 2.6 14 2.33 247 3.2837 2.766446
Yioas Link 29) 4.8 32 041 4.54 7.6519 4.669070
1324 (Link 39) 44 4 459 445 3.8035 4350875
Y1610 (Link 48) 4.8 4 271 421 7.382 4.668969
Yaazs (Link 74) 44 4 2.71 4.67 3.6935 4.350856
Value of objective function 81.25 81.77 8347 80.87 81.752 81.102
Number of solved UE 58 ) 108 12 3900 2700 36

' Vje N, ))e Ak j)e A, i#kand those for py;=1, V(i )) € A,
are not given explicitly.

Results Analysis

To ensure the convergence, the stopping criterion was set as relGap
< 1.0e — 6 and the fluctuation of the objective values for the last five
iterations was less than 1.0e — 5. First, the solution for the symmet-
ric case is shown in Table 2, which also gives the solutions obtained
by existing solution techniques. In particular, the simulated anneal-
ing (SA) method (6) obtained the best solution found so far. From
Table 2, it is obvious that the proposed decomposition scheme can
generate a solution whose objective value is close to that obtained
with SA. Furthermore, only 36 UE solves were performed in the
current scheme, which is significantly less than with most other
algorithms. This finding demonstrates that the proposed method can
be much more time-efficient than other approaches. With the appli-
cation of the direct solution method of Ban et al. (/4), the symmet-
ric problem can also be solved with an even lower objective value
(80.5157); however, the direct solution method tends to be more
time-consuming and cannot be applied to large-scale CNDPs because
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of the so-called dimensionality problem. So the direct solution
method is not given or compared here.

Figure 2 further illustrates the convergence of the objective value.
For each iteration of the algorithm, one run of the UE is mainly
solved. It can be seen from Figure 2 that the objective value con-
verges quickly. However, because of the nonconvexity of the prob-
lem, the objective value may not decrease monotonically. Normally,
the objective value decreases dramatically at the first several itera-
tions. It then starts to fluctuate in a relatively small range. Finally, it
becomes stable rapidly. These findings are more evident in Figure 3
for the asymmetric case. Meanwhile, the convergence of the lower-
level UE is shown in Figure 4. Apparently, the UE condition also
converges quickly. If Figures 2 and 4 are combined, it can be con-
cluded that if only an approximate solution is required, the proposed
decomposition scheme can solve the CNDP efficiently by only a
few iterations. Figure 4 also shows that the relative gap is always
nonnegative, as discussed previously.

For the asymmetric case, since there is no solution reported in the
literature (except the direct solution method, which produces an
objective value of 83.9095), Table 3 only shows the one obtained
with the proposed decomposition scheme. Table 3 also demon-
strates that solving the asymmetric case requires more iterations and
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FIGURE 2 Convergence of objective value for symmetric case: (b shows enlarged view of Area A in (a).
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FIGURE 3 Convergence of objective value for asymmetric case (b) shows enlarged view of Area B in (a).

1.00E+00 T

1.00E-01 1%

1.00E-02 -

1.00E-04

1.00E-05

1.00E-06

1.00E-07 T '
o 4 8 12 16 20 24 28 32 3
lteration #

FISURE 4 Convergence of lower-level UE for symmetric case. .

that the objective value is larger than that of the symmetric case. Fig-
ures 3 and 5 further illustrate the convergence of the objective value
and the lower-level UE, respectively. It can easily be observed from
Figure 3 that the objective vilue becomes stable after only the first
several iterations. This case is identical to the symmetric case in
Figure 2, implying that an approximate solution can be also effi-
ciently obtained for the asyrmmetric case. :

CONCLUSIONS
A decomposition scheine is proposed for solving the MPCC model

for the CNDP with AUE. Instead of directly solving the equivalent
single-level NLP problem of the MPCC muodet, the GS decomposi-

TABLE 3 Solution for the Asymmetric Case
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FIGURE5 Convergence of lower-level UE for asymmetric case.

tion scheme was applied to this single-level problem by exploring
its special structure. Then the possible large-size single-level NLP
problem can be converted into muitiple yet smaller-dimensional
problems, which can be tackled more easily. The numerical exam-

~ ples discussed showed that the presented decomposition scheme can

generate promising results, especially the efficient solution of a
well-known CNDP test problem with the objective value close to the
best-known one in the literature.

For future studies, conditions under which the proposed decom-
position scheme can guarantee to generate an optimal solution for
the CNDP will be investigated. Further, the decomposition scheme
was tested only on the Sioux Falls network in this study. Extensive
testing of the proposed model and algorithm for solving larger-scale
CNDPs will be conducted in future research.. :

Initial ¥ oY .y Y. y y Y y y y Obj. . #
y Vik16, Link17  Link19  Link20  Link25 k26 Link20  Link39  Link48  Link74 Value  UE
125 496983 163806 527757 143692 312381 287238 525048 470207 492401 412252 84475 56
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