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ABSTRACT. We are concerned with solving affine variational inequalities defined by a linear
map A and a polyhedral set C. Most of the existing pivotal methods for such inequalities or
mixed linear complementarity problems depend on the existence of extreme points in C or
a certain non-singularity property of 4 with respect to the lineality of C. In this paper, we
prove that if 4 is copositive-plus with respect to the recession cone of C, then the lineality
space can be removed without any further assumptions. The reductions given here extend
the currently known pivotal methods to solve affine variational inequalities or prove that no
solution exists, whenever 4 is copositive-plus withe respect to the recession cone of C.
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1. INTRODUCTION

We are interested in the affine variational inequality problem which can be described as
follows. Let C € IR™ be a polyhedral convex set and A be a linear transformation from R"
to IR®. We wish to find a point z € C such that

(A(z) = a,c— 2) >0, Vee C. (AVI)
The problem can be equivalently formulated as
0 € A(z) — a + 0vc(z), (GE)

where 9¢(+) is the indicator function of the set C. The solutions of such problems arise
for example in the determination of Newton-type methods for variational inequalities and
mixed complementarity problems.

In [1], (AVI) was treated as the piecewise linear equation

Ac(z) =a, (NE)
where Ac is the normal map
Ac(z) = A(me(z)) + z = me(T).
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Here mc(z) denotes the projection (with respect to the Euclidean norm) of z onto the set C.
The equivalence of these formulations arises from the observation [4] that if z solves (NE)
then mc(z) solves (AVI) and if 2 solves (AVI), then z+a— Az solves (NE). A path following
method was used in [1] to find a solution of (NE), based on properties of the normal manifold
[11]. The algorithm is a realization of a more general scheme due to Eaves [5], which can
be thought of as a generalization of the pivotal method due to Lemke [9]. Termination
properties of the algorithm were studied on two matrix classes. One of these was the class
of copositive-plus matrices, defined as follows.

Definition 1.1. Let K be a given cone. A matriz A is said to be copositive with respect to
K if
(z,Az) 2 0, Vze K.
A matriz A is said to be copositive-plus with respect to K if it is copositive with respect to
K and
(z,Az) =0,z € K = (A+AT)z=0.

We point out that the property of being copositive-plus is defined with respect to a cone.
The bigger the cone, the stronger is the assumption of being copositive-plus. For example, a
positive semi-definite matrix is copositive-plus with respect to IR™, on the other hand, any
matrix in IR®*" is copositive-plus with respect to {0}. The analysis of this paper requires
that the matrix A be copositive-plus with respect to the recession cone of C.

Most of the existing pivotal methods for solving (AVI) depend on the existence of extreme
points in C or certain non-singularity property of A with respect to the lineality of C. This
condition usually amounts to W' AW being invertible where W is a basis for linC. For

example, when
a=10 Y c={|*:y20
- -1 0}’ - Y 2y Z )

then a basis for the lineality of C is W = [l} and WTAW = 0, which is not invertible. In
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this paper, we prove that if A is copositive-plus with respect to rec C, then we can remove
the lineality space in the absence of such a non-singularity assumption. For convenience, we
refer to Ac(z) as a copositive-plus normal map when the matrix A is copositive-plus with
respect to rec C. Our reductions are constructive and hence can be used in an algorithm that
will construct a solution of an equation determined by a copositive-plus normal map. In
particular, the algorithm given in [1] will construct a solution or determine that no solution
exists, in this case. The reductions given here could also be used to extend the algorithms for
solving affine variational inequalities using path following methods found in {2, 3, 6. 7, 13, 14].

A word about our notation. For any vectors z and y in R", (z,y) or z 'y denotes the
inner product of z and y, and in this paper, these two notations are freely interchangeable.
Each m x n matrix A represents a linear map from IR" to IR™, the symbol A refers to either
the matrix or the linear map as determined by the context. For any vector or matrix, a
superscript T indicates the transpose. Index sets are represented by lower case Greek letters.
In particular, for the index set a, |a| denotes the cardinality of a. Given any vector v and an
index set a, v, denotes the set of components of v with indices in @. Given any matrix M and
index sets a and 3, M,. denotes the submatrix formed by those rows of M with indices in «,
M. 5 denotes the submatrix formed by those columns of M with indices in 8, and M,z denotes
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the submatrix formed by those elements of M with row indices in o and column indices in £.
If C is non—empty, closed, convex, recC := {d € R": c+ M € C,Vc € C,¥\ > 0} is called
the recession cone of C, and linC :=recCN—recC. f Fisa function from IR" to IR", then
F represents the normal map

Fo(z) = F(ne(z)) + 2 — me(2).
The indicator function of a set C is defined by

0 ifzeC
oo otherwise,

Ye(z) = {

and 87 is the convex subdifferential of the convex function f. Further details of our notation
can be found in [12].

2. Basic REDUCTION TECHNIQUES

In [1] we gave a pivotal algorithm that will solve any affine variational inequality (AVI)
determined by a copositive-plus matrix, provided that linC = @. This algorithm was ex-
tended to find solutions of equations determined by copositive-plus normal maps for which
WT AW was invertible, where W represented a basis for lin C [1, Corollary 4.5]. The purpose
of this paper is to remove the last assumption. We first outline some of the reductions that
were used in [1] since they will be used again here but in a more careful manner.

The first idea is to change bases so that linC = RM. Suppose that C = {z: Bz > b}.
Then lin C = ker B, and it is easy to construct an orthonormal basis for ker B using a QR
factorization (see [1]). Let this basis be extended through (linC)* to an orthonormal basis
of R, say P. It is easy to see that

Ac(z) =a < (PTAP)prc(PTz) = PTa, (1)

and that A is copositive-plus with respect to a cone K if and only if PT AP is copositive-plus
with respect to PTK. Furthermore, PTC = R xC with lin C = {0}. Thus we assume for
the remainder of this paper that the above change of variables has occurred and that

A A s a Z
A= |57 O — % - = |*7| >
[ B A S wl R
with ker B = {0}. The variables in the lineality are represented by z, and we assume that
v#0.

The following elementary results concerning projections onto the lineality of convex sets
are easily verified.

Lemma 2.1. Let C be a nonempty closed convez set and let L be a subspace of linC. Then
foranyz € R"
Tone () = me(mpe(z)) = 7o (me(z))
and
mL(7c(z)) = mo(z).
If Qps is an orthonormal basis of L* then

QLimc(z) = quic(QLx)-
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Our second reduction is a simple extension to that given in {11, Proposition 4.1]. Tt uses
the notion of the Schur complement of a matrix, by which we mean

A, A )
A= [A}Z A}ﬂ  (AfAry) = Ass — Asy At Avs.

Proposition 2.2. Let C be a polyhedral set and let L be a subspace of linC. Let QL be an
orthonormal basis of L, Q1 be an orthonormal basis of L+ and Q = [QL Qr+]. Suppose
that QT AQy is invertible. If z solves (NE) then Qp.z solves

(Q7AQ/QAQL) 57, (v) = Qaa ~ QL. AQuQI4Q) Qe )

If y solves (3) then
o[(GEAau Qe - 40,.9)
Y

solves (NE).
Proof. Using Lemma 2.1, we see that

Ac(z)=a < Ame(z) +z — 7c(z) =a
= Am(z) + Amenpe(z) +2— 7L(z) — menLL(z) =0
e AQL.LQI,L'H'(;(.T) + I - QL.LQI.LWC(IE) =q -+ (I - A)QLQ-LFIE

First premultiply the above equation by Q] . This gives
Qlz = (Q1AQL) QL (a — AQL:Q[s7c(2)).
Substituting for Q] .z in the above, and premultiplying by Q]. gives
(Q1+AQLs - Q1. AQL(QTAQL) QL AQL:) QLmc(3) + QLuz — QLamc(2)
=Ql.a- Q. AQL(QL AQL)'Qla

from which the first statement of the proposition follows using Lemma 2.1.
For the second implication, suppose y solves (3). Define

w = (QLAQL) Q] (a ~ AQrimgr c(¥))-

and note that Q w € L. Hence, from Lemma 2.1,

QLw
c(Q [ﬂ) = [QLJ-"QLI_LC(U)} )

The result now follows from elementary algebra. O

The reduction given in {1] is now immediate from Proposition 2.2 by letting L = linC and
then solving (3) under the assumption that Ay, = Q[ AQ. is invertible. We now exhibit a
more careful reduction that also uses Proposition 2.2. To prove this reduction is valid, we
first state some technical results.
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Lemma 2.3 ([10, Result 1.6]). Let M be a positive semi-definite matriz, and assume

0 u'
w=lo .

Consequently, we have the following corollary.

then u = 0.

Corollary 2.4. Let M € R™" be o positive semi-definite matriz, and let
vc{1,2, -+ ,n}.

Assume M., =0, then M,. =0.

Proof. Apply the previous Lemma to each index of v. O

We now make & change of variables over lin C which transforms the submatrix A, corre-
sponding to the lineality space, into a matrix of the form

2y

Lemma 2.5. Suppose that A, a and C are defined by (2) and that A is copositive with
respect to recC. Then, there ezists an orthonormal matriz Q such that

where D is a positive definite matrix.

D 0 Ag
QT AQ=1 0 0 Ags
Asa Asp Ass

with D positive definite. Furthermore, T solves (NE) if and only if Q" solves
(QTAQ)gmc(y) =Q"a.

Proof. Since A is copositive with respect to rec C it follows that

T I P A—” A 51 1T

Ty AgyTy = {17 0] [Aa-y AZJ] {07] 20,

for all z, € R". That is, A,, is positive semi-definite. Consider a QR factorization of A,
Ay, =Qn AR,

==

Here, Ry is an upper triangular matrix whose row rank equals the rank of A,,. By orthonor-
mality of Q.+,

where

I’yA'Y'YQ’r‘Y =D,
where D" = RQ.,. Furthermore D* is of the form

»-[2]
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with D* positive semi—definite, and
rank D' = rank R = rank Ry.
Thus, D is a matrix in the form of (4) due to Corollary 2.4.

Let

then Q is orthonormal and the result follows from (1). O

3. REDUCTIONS FOR COPOSITIVE-PLUS NORMAL MAPS

In this section we show that any invertibility assumption over the lineality space is unnec-
essary in the case that A is copositive-plus with respect to rec C. The proof of this result
requires two separate reductions. The first, which we gave as Lemma 2.5, allows us to assume

that
D 0 Aa6 Ay Za
A=10 0 Aﬂa , a=l{agi, C=qz= 128 :Bz; > b}, (5)
Asa Asp Ass as 25

with ker B = {0}. It is also clear that if the original matrix was copositive-plus with respect
to the recession cone of the original C, then A is copositive-plus with respect to recC as
defined in (5).

It is a crucial part of our analysis to note that the reduction given in Proposition 2.2
maintains the copositive-plus property. We state this as the following lemma.

Lemma 3.1. Let K be a cone and suppose that L is a linear space contained in K. Let QL
be an orthonormal basis of L, Q1 be an orthonormal basis of L+ and Q = [QL Qi) IfA
is copositive-plus with respect to K, then (QTAQ/Q{AQL) is copositive-plus with respect
to QI K.

Proof. Note that by the remarks after (1), it is sufficient to prove the result for @ = I, with
A being partitioned conformally as
A= [A*' A’"’] :

Asy Ass
For any z € I3 K
z' (A/A-n) z = ZT(A“ - AJ.yA;.:A‘-y&)Z

Ay Ayl [w
- T LT P £
= [u7 <T] [AJ,, A“] Lz]’

where w = —-A:;.}A.,gz. Thus (w,z) € K. Since A is copositive-plus with respect to K, we
have '
T [T 7] |An A w|
z' (AJAp) 2= [w z ] [Aé-y A“} [z_ >0,

so that (A/A,,) is copositive with respect to Is K.
For any z € I;. K such that
z' (AfA) 2 =0,

6




Lineality removal

Gyl | R

we have

= —A-1
where w = — A7 Ay52. Hence

T
Ay Ay |w + Ay Ay w =0 (6)
Asy Ass) |2 A5y Ass| |2 '
due to A being copositive-plus with respect to K. In particular
Alw+ALz = 0
Ag.,'w + Assz + Aj;dw -+ A};z = 0,

where the first equation is due to the definition of w and the second equation follows from
the first and (6). By using the first two equations in the third

(A55 -_ A;.,A:;,:A.,,;)z -+ (A55 - A&,A;.:AA,,;)TZ = 0.

That is
(Af/Ayy) 2+ (Af/Ay)T 2 =0.
Thus (A/A,,) is copositive-plus with respect to I5.. O
In the following proposition, we reduce the problem resulting from Lemma 2.5 by elimi-

nating the variables associated with the positive definite matrix D. The proof relies heavily
on Proposition 2.2 and Lemma 3.1.

Proposition 3.2. Suppose A, a and C are given by (5) and that A is copositive-plus with
respect to recC. If z solves (NE), then (zg,Ts) solves

2y as
As(y) = [aa _ AJQD"laa] ) (7)
where

i=]0 Ags - .

A= [A.m Ass — A,;QD'lAas] ' C = {z=(23,2,): Bzs > b}. (8)

If y = (yp, ys) solves (7), then

[D—l (aa - Aadyts)]
)

solves (NE). Furthermore, A is copositive-plus with respect to rec C.

Proof. Let L = R'® and apply Proposition 2.2. The final statement of the proposition
follows from Lemma 3.1. O
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Thus after this reduction, we may assume that the problem has the form

A
Az[zﬁﬁ A’Z:]’ “"'[Zﬂ’ C={z= (e 2): Bz 2 0}, ©

with ker B = {0} and A copositive-plus with respect to rec C. However, it follows from the
copositive-plus property that Ass = —-A;‘, as the following lemma shows.

Lemma 3.3. Suppose

_|0 As
A= [Aaﬁ Aa&]

is copositive-plus with respect to R/8' x K where K is any cone containing the origin. Then
AJB + A;‘s - O-

Proof. Take 2g € R¥ z; = 0 and apply the definition of copositive—plus to conclude that
(Asp + Ag‘;)zls = (.
However, zz is arbitrary. [

The following result shows that given an equation defined by a normal map of the form
(9), we are able to reduce it to one whose feasible set has zero lineality.

Theorem 3.4. Suppose A, a and C are given by

_| 0 As _ |8 = :
A= ["A;J A&J] , a= [ad], C= {Z = (Zﬂ,25). Bz; > b}

Suppose A is copositive-plus with respect to rec C, and define
A = A, C := {z5: Bzs 2 b, Apszs = ag} -
If £ solves (NE), then s solves
Ae(y) = as. (10)

If 24 solves (10), then there exists Zg such that (Zg,Zs) solves (NE). Moreover, A is copositive-
plus with respect to recC.

Proof. The first implication is easy. For the second implication, notice that Is satisfies
“Ae(y) = as if and only if Z = m(Zs) satisfies

—Ag5Z + a5 € e (Z).

Let C = {z5: Bz; > b} and note that C' = Cn{z: Agsz = ag}. By reference to [12, Corollary
23.8.1] we have

—AgsZ + a5 € OYa(Z) + im Ags,

or

— AssZ +ag + AZJQ € 31,1)@(2), (11)
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for some §. Hence Z, together with g, satisfies

z € {z5: Bz; 2 b}
AgsZ —ag=0
- AssZ + as + A;ﬂj € 61,/)5-(2),

that is (7, %) € C and

Lty e

or -
] (]
-A M +a € 0vYc( ;2 )-
Therefore
z:= [12]+a-—A y (12)
Z Z

solves Ac(z) = a. ) ) ~ ) )
It is obvious that A is copositive-plus with respect to C, and C C C. Hence, Ais
copositive-plus with respect to C. [

Theorem 3.4 is actually a variant of the results regarding augmented LCP discussed by
Eaves in [4] and by Gowda and Pang in [8].

Notice that 6 can be determined easily from a single QR factorization (see (2)) so that
A and C can be easily formed. Furthermore, the path following algorithm of [1] can be
used to solve the reduced problem. The fact that A is copositive-plus with respect to recC
guarantees that this algorithm will process the reduced problem. Given the projection z of
a solution of Ax(y) = as, a solution of (NE) can be constructed from (11) by solving a linear
program, since (11) is equivalent to

—AssZ + a5+ A;,,gj =BTy, u<0,
u; =0 if B;.Z > b;.

Thus, 7 can be constructed from Z by solving a linear program to obtain g and using (12).
Thus we have the following result.

Theorem 3.5. Let A € R™™ and C be a nonempty polyhedral set, such that A is copositive-
plus with respect to recC. The algorithm given in [1], applied to (10), solves (NE) or
determines that no solution erists.

Proof. Let C = {z: Bz > b}. First find § and v by performing a QR factorization to
determine a basis of ker B. Reduce the original problem to form (2). Construct a QR
factorization of the resulting A, and reduce the problem again so that it has form (5).
Factor out the contribution from D and reduce the problem to the form given as (8). By
noting Lemma 3.3, reduce (8) to the form of (10). (10) is solvable (or demonstrably not
solvable) by the algorithm of [1]. O
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4. CONCLUSIONS

We have shown in the proof of Theorem 3.5 how to reduce any equation determined by a
copositive-plus normal map to one with zero lineality. The resulting equation can be solved
or proven infeasible using the variant Lemke’s algorithm given in [1]. A corresponding solu-
tion of (AVI) can be reconstructed from the solution of the reduced problem. An outstanding

research question is whether the analysis given in this paper can be extended to the case of
normal maps determined L-matrices (with respect to rec C).
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