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• Decision processes are predominantly hierarchical. Models to support
such decision processes should also be layered or hierachical.

• Coupling collections of (sub)-models with well defined (information
sharing) interfaces facilitates:

– appropriate detail and consistency of sub-model formulation (each
of which may be very large scale, of different types (mixed integer,
semidefinite, nonlinear, variational, etc) with different properties
(linear, convex, discrete, smooth, etc))

– ability for individual subproblem solution verification and engage-
ment of decision makers

– ability to treat uncertainty by stochastic and robust optimization
at submodel level and with evolving resolution

– ability to solve submodels to global optimality (by exploiting size,
structure and model format specificity)

(A monster model that mixes several modeling formats loses its ability
to exploit the underlying structure and provide guarantees on solution
quality)

• Developing interfaces and exploiting hierarchical structure using com-
putationally tractable algorithms will provide overall solution speed,
understanding of localized effects, and value for the coupling of the
system.
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Figure 1: Representative decision-making timescales in electric power systems

environment presents. As an example of coupling of decisions across time scales, consider decisions
related to the siting of major interstate transmission lines. One of the goals in the expansion of
national-scale transmission infrastructure is that of enhancing grid reliability, to lessen our nation’s
exposure to the major blackouts typified by the eastern U.S. outage of 2003, and Western Area
outages of 1996. Characterizing the sequence of events that determines whether or not a particular
individual equipment failure cascades to a major blackout is an extremely challenging analysis.
Current practice is to use large numbers of simulations of power grid dynamics on millisecond to
minutes time scales, and is influenced by such decisions as settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded. As described below, we
intend to build on our previous work to cast this as a phase transition problem, where optimization
tools can be applied to characterize resilience in a meaningful way.

In addition to this coupling across time scales, one has the challenge of structural differences
amongst classes of decision makers and their goals. At the longest time frame, it is often the
Independent System Operator, in collaboration with Regional Transmission Organizations and
regulatory agencies, that are charged with the transmission design and siting decisions. These
decisions are in the hands of regulated monopolies and their regulator. From the next longest
time frame through the middle time frame, the decisions are dominated by capital investment and
market decisions made by for-profit, competitive generation owners. At the shortest time frames,
key decisions fall back into the hands of the Independent System Operator, the entity typically
charged with balancing markets at the shortest time scale (e.g., day-ahead to 5-minute ahead), and
with making any out-of-market corrections to maintain reliable operation in real time. In short,
there is clearly a need for optimization tools that effectively inform and integrate decisions across
widely separated time scales and who have differing individual objectives.

The purpose of the electric power industry is to generate and transport electric energy to
consumers. At time frames beyond those of electromechanical transients (i.e. beyond perhaps, 10’s
of seconds), the core of almost all power system representations is a set of equilibrium equations
known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages
to the flow of active and reactive power through the network and to power injections into the
network. With specified load (consumer) active and reactive powers, generator (supplier) active
power injections and voltage magnitude, the power flow equations may be solved to determine
network power flows, load bus voltages, and generator reactive powers. A solution may be screened
to identify voltages and power flows that exceed specified limits in the steady state. A power flow
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Figure 1: Representative decision-making timescales in electric power sys-
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1 Problem Hierarchies and Timescales

Technological and economic trends imply significant growth in our nation’s
reliance on the power grid in the coming decades; well-accepted estimates cite
35% growth in electricity demand over the next 20 years [60]. Planning and
operating the Next Generation Electric Grid involves decisions ranging from
time scales of perhaps 15 years, for major grid expansion, to time scales of 5-
minute markets, and must also account for phenomena at time scales down to
fractions of a second. A representation of the decision process over timescales
of interest is shown in Figure 1. What makes this setting particularly inter-
esting is that behaviors at very fast time scales (e.g., requirements for grid
resilience against cascading failures) potentially impose constraints on longer
time scale decisions, such as maintenance scheduling and grid expansion. We
argue here against building a single “monster model” that tries to capture
all these scales, but propose using a collection of coupled or layered models
for both planning and operation, interfacing via information/solution shar-
ing over multiple time scales and layers of decision making. Such approaches
have been successful in other application domains [18].

In addition to the multiple time scales in the decision process, the prob-
lem is confounded by uncertainties in estimates and structural makeup of
the system. For example, plug hybrid electric vehicles are a visible technol-
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ogy that could dramatically alter the patterns, nature, and quantity of U.S.
electricity use, and yet the ultimate market penetration of such technology is
highly uncertain. Similarly, future grid penetration for non-traditional energy
sources such as wind and solar, and for carbon-sequestration-equipped coal
plants, also remains highly uncertain. These structural uncertainties present
profound challenges to decision methodologies, and to the optimization tools
that inform them. While traditional optimization approaches might seek
to build a large-scale model that combines all instances together, such ap-
proaches are impractical as the size and ranges of the spatial and temporal
scales expand, let alone treating the uncertainties that are inherently present
in these decision problem settings.

As one moves between time scales, some of that uncertainty gets resolved,
and some new uncertainties become relevant. The decision problems need to
capture that uncertainty and allow a decision maker the flexibility to struc-
turally change the system to the new environment. All encompassing models
are typically not nimble enough to facilitate adaptation of the decisions as
the real process evolves (both structurally and data-wise). Thus, our the-
sis is not simply about solution speed, but hinges on the added value that
arises from modeling and solution in a structured (and better scaled and
theoretically richer) setting.

The decision timeline of Figure 1 is intended to highlight the severe chal-
lenges the electric power environment presents. As an example of coupling of
decisions across time scales, consider decisions related to the siting of major
interstate transmission lines. These require economic forecasts, supply and
demand forecasts, and an interplay between political and engineering con-
cerns. Typically, relatively few possible choices are available – not only due
to engineering or even economic constraints – but arising from public and
political concerns that are often hard to justify rationally, but severely limit
the possible layouts. Models that demonstrate the benefits and drawbacks
of a particular siting decision at an aggregate level are of critical importance
for informing discussions and decision makers. The key issue is to facilitate
appropriate aggregations (or summarizations of details irrelevant to the deci-
sion at hand) that enable a quick, even interactive, and thorough exploration
of the actual decision space. It is, and will remain, a significant challenge
to identify and manage the interface between a given model and the other
models that are connected – from a conceptual, modeling and computational
viewpoint.

Note that transmission expansion decisions influence the capital invest-
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ment decisions made by generating companies, again at a 1-10 year time
scale. Much of the same data used for transmission expansion is pertinent
to these models, but the decisions are made by independent agents without
overall system control, so different types of models (game theoretic for exam-
ple) more readily capture the decision process here. Specific decision models
are typically governed by a overriding principle and can be formulated us-
ing the most appropriate modeling tools. The monster model is more likely
to be a conglomeration of multiple principles, and becomes unmanageable,
intractable and hard to understand the driving issues.

New generation capabilities subsequently affect bids into the power mar-
ket which are then balanced using economic and reliability objectives on a
day-ahead or 5-minute time scale. At this level, models are needed for electric
pricing and market control to determine which units are to be deployed and
at what price and quantity, accounting for the uncertainties in new forms
of energy provision such as wind and solar. Such planning, deployment
and commitment of specific resources must be carried out to ensure both
operation reserves are sufficient, and to provide robust solutions for these
choices that ensure security of the overall system (when confronted with the
vast number of uncertainties that can confound the efficient operation of the
electric grid). Note that long term planners will not be able to accurately
forecast all the structural (and potentially disruptive) changes to the system,
and thus wind speed and weather patterns at fine scales are largely irrele-
vant – efficient sampling and (automated) information aggregation are key
to allow informed decision making at widely different time scales.

Finally, power grid dynamics are operating at the millisecond to minutes
time scales and involve decisions for settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded to
guard against cascading failures. At this level, efficient nonlinear optimiza-
tion must be carried out to match the varying demand for electricity with
the ever increasing and uncertain supply of energy, without interruptions or
catastrophic cascading failures of the system. While the underlying question
may well be “Is there a better choice for the transmission line expansion
to reduce the probability of a major blackout?”, it is contended here that
the additional knowledge gained from understanding the effects of one deci-
sion upon another in a structured fashion will facilitate better management
and operation of the system when it is built and provide understanding and
information to the operators as to the consequences of their decisions.

In addition to this coupling across time scales, one has the challenge
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of structural differences amongst classes of decision makers and their goals.
At the longest time frame, it is often the Independent System Operator
(ISO), in collaboration with Regional Transmission Organizations (RTO)
and regulatory agencies, that are charged with the transmission design and
siting decisions. These decisions are in the hands of regulated monopolies
and their regulator. From the next longest time frame through the middle
time frame, the decisions are dominated by capital investment and market
decisions made by for-profit, competitive generation owners. At the shortest
time frames, key decisions fall back into the hands of the Independent System
Operator, the entity typically charged with balancing markets at the shortest
time scale (e.g., day-ahead to 5-minute ahead), and with making any out-of-
market corrections to maintain reliable operation in real time.

Each of these problems involves coordinating a large number of decision
making agents in an uncertain environment. The computational needs for
such solutions are immense and will require both modeling sophistication and
decompostion methodology to exploit problem structure, and a large array
of computing devices – whose power is seamlessly provided and available to
critical decision makers (not just optimization or computational science ex-
perts) – to process resulting subproblems. Subsets of these subproblems may
be solved repeatedly when resulting information in their interfaces changes.
Model updates can then be coupled to evolving information flow. Quite apart
from the efficiency gains achieved, the smaller coupled modelds are more eas-
ily verified by their owners, and otherwise hidden deficiencies of a monster
model formulation are quickly detected and fixed.

Traditional optimization approaches are no longer effective in solving
the practical, large scale, complex problems that require robust answers in
such domains. While the study of linear programming, convex optimiza-
tion, mixed integer and stochastic programming have in themselves led to
significant advances in our abilities to solve large scale instances of these
problems, typical application problems such as those outlined above require
a sophisticated coupling of a number of these approaches with specific do-
main knowledge and expertize to generate solutions in a timely manner that
are robust to uncertainties in an operating environment and in the data that
feeds the model. Rather than attempting to model all these features together,
we propose a methodology that utilizes layering and information sharing in-
terfaces between collections of models, that allows decisions to be made using
appropriately scaled problems, each of which approximates external features
by aggregate variables and constraints. It could be argued that by using a
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collection of coupled models, we are leaving some optimization possibilities
“on the table”. Clearly, poorly defined interfaces will have this issue. The
challenge for modelers and algorithms is to define these interfaces correctly,
manage them automatically, understand the hierarchy of decision makers and
match this to the model, thereby facilitating solution of the overall system
by processing of (modified) problems at each level.

In short, there is clearly a need for optimization tools that effectively in-
form and integrate decisions across widely separated time scales, by different
agents who have differing individual objectives, in the presence of uncertainty.

2 Motivating Problems

The purpose of the electric power industry is to generate and transport elec-
tric energy to consumers [56]. At time frames beyond those of electrome-
chanical transients (i.e. beyond perhaps, 10’s of seconds), the core of almost
all power system representations is a set of equilibrium equations known as
the power flow model. This set of nonlinear equations relates bus (nodal)
voltages to the flow of active and reactive power through the network and
to power injections into the network. With specified load (consumer) active
and reactive powers, generator (supplier) active power injections and voltage
magnitude, the power flow equations may be solved to determine network
power flows, load bus voltages, and generator reactive powers. Current re-
search is still ongoing to reliably solve these equations; approaches involve
Newton based methods and techniques from semidefinite programming.

At the next level of sophistication, an Optimal Power Flow (OPF) can
be used to determine least cost generation dispatch, subject to physical grid
constraints such as power flow equations, power line flow limits, generator ac-
tive and reactive power limits, and bus voltage limits. Typically the problem
is solved by the ISO, and is characterized by a number of different methods
that generator firm’s can make bids to supply electricity. For simplicity here,
we assume that bids are characterized by a decision variable α, resulting in
the following optimization problem:

OPF(α): minq energy dispatch cost (q, α)
s.t. conservation of power flow at nodes

Kirchoff’s voltage law, and simple bound constraints
Note that since α are (given) price bids, this problem is a parametric op-
timization for dispatch quantities q. We assume this problem has a unique
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solution for each α for ease of exposition.
Each generator firm i has to determine its bid αi. Assuming no generator

has market power (perhaps an unreasonable assumption), the problem faced
by firm i is

Bid(ᾱ−i): maxαi,q,p firm i’s profit (αi, q, p)
s.t. 0 ≤ αi ≤ α̂i

q solves OPF(αi, ᾱ−i)
where the objective function involves the multiplier p determined from the
OPF problem. This multiplier is not exposed to the decision maker. To
overcome this issue, we can replace the lower level optimization problem by
its first order (KKT) conditions and thus expose the multipliers directly to
the upper level optimization problem:

Bid(ᾱ−i): maxαi,q,p firm i’s profit (αi, q, p)
s.t. 0 ≤ αi ≤ α̂i

q, p solves KKT(OPF(αi, ᾱ−i))
This process takes a bilevel program and converts it to a mathematical pro-
gram with complementarity constraints (MPCC) since the KKT conditions
form what are called complementarity constraints. We outline in the sequel
methods to write down and solve problems of this form, but note that they
are computationally difficult, and theoretically the MPCC is hard due to the
lack of a constraint qualification. It may even be the case that this transfor-
mation is incorrect: the KKT may not be necessary and sufficient for global
optimality of the lower level problem.

This problem is a single firm’s problem. Adventurous modelers require
further conditions, in that the firms collectively should have no incentive to
change their bids in equilibrium: (ᾱ1, ᾱ2, . . . , ᾱm) is an equilibrium if

ᾱi solves Bid(ᾱ−i), ∀i.

This is an example of a (Nonlinear) Nash Equilibrium where each player
solves an MPCC. It is known that such a Nash Equilibrium is PPAD-complete
[17, 19]. While complexity results of this nature lead to an appreciation of the
extreme difficulty of the underlying problem, it is clear that such problems
must be solved (repeatedly) for effective operation of the power system.

Unfortunately, in practice, a Security Constrained Optimal Power Flow
(SCOPF) adds the additional constraint that the solution for powers and
voltages must remain within limits for a user-specified set of contingencies
(scenarios) [57, 70]. To some extent, this is a simplification made to the
problem to gain tractability. Even so, such problems are currently beyond
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the state of the art for solution methodologies. We outline an extended
mathematical programming (EMP) framework that allows such problems to
be written down. We firmly believe that the underlying structure in these
models will be necessary to exploit for any realistic solution method to be
successful.

The constraints in the OPF and SCOPF problems make them more diffi-
cult to solve [80], and some programs use simplified models to quickly “solve”
these equations. A common simple model is the so-called DC power flow,
which is a simple linearized form of the true power flow equations. The in-
dustry uses this form extensively. However, “proxy constraints” are often
added to the formulations to recapture effects that linearization (or approx-
imations) lose. This is fraught with danger and possibilities for exploitation
(of the difference in the approximate model and the nonlinear physics) when
such constraints are used for pricing in markets for reactive power, for exam-
ple. Nonlinear models are necessary and can and should be reliably solved
at appropriate levels of detail.

Another example that motivates our work is the notion of transmission
line switching [31, 41]. In this setting, an optimization problem of the form:

ming,f,θ cTg generation cost
s.t. g − d = Af, f = BAT θ A is node-arc incidence

θ̄L ≤ θ ≤ θ̄U bus angle constraints
ḡL ≤ g ≤ ḡU generator capacities
f̄L ≤ f ≤ f̄U transmission capacities

can be solved to determine the flows and generation with a simplified DC
power flow model. Transmission switching is a design philosophy that allows
a subset of the lines to be opened to improve the dispatch cost. The additional
discrete choice is whether the line i is open or closed and can be modeled
using the following disjunction:

ming,f,θ cTg
s.t. g − d = Af

θ̄L ≤ θ ≤ θ̄U
ḡL ≤ g ≤ ḡU

either fi = (BAT θ)i, f̄L,i ≤ fi ≤ f̄U,i if i closed
or fi = 0 if i open

This disjunction is not a typical constraint for an optimization problem, but
can be directly modeled in EMP. The framework allows automatic prob-
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lem reformulations - in the above case, this can generate mixed integer pro-
gramming problems, or indeed nonlinear mixed integer programs when the
linearized DC model is replaced by the full AC model.

The final example concerns the transmission line expansion outlined in
the introduction [48]. We suggest considering a hierarchical approach to this
problem formulated as follows. If we let x represent the transmission line
expansion decision and assume the RTO can postulate a (discrete) distribu-
tion of future demand scenarios (at the decade level scale), then the RTO
problem is:

min
x∈X

∑
ω

πω
∑
i∈N

dωi p
ω
i (x)

where ω runs over the scenarios, π are the probabilities, and dωi is the re-
sulting demand in such a scenario at a given node in the network. The
constraints x ∈ X reflect budgetary and other constraints on the RTO’s de-
cision, and the function pωi (x) is a response price in the given scenario to the
expansion by x. Clearly, the key to solving this problem is to generate a good
approximation to this response price since this is the interface to the lower
levels of the hierarchy. We believe a lower level equilibrium model involving
both generator firms and OPF problem solution in every scenario is one way
to generate such a response. Optimization techniques based on derivative
free methodology, or noisy function optimization may be a practical way to
solve the RTO problem, requesting evaluations of this response price func-
tion. Alternatively, automatic differentiation could play a role in generating
derivatives for the response price function, but that may require techniques
to deal with its inherent nonsmoothness.

As outlined above, the transmission line expansion is likely to foster gen-
erator expansion. For each firm f , we denote the generator expansion by yf
and propose that this will be determined by an optimization principle:

min
yf∈Yf

∑
ω

πω
∑
j∈Ff

cj(yj, q
ω
j )

Here Ff denotes the generators in firm f ’s portfolio, and Yf represents bud-
getary and other constraints faced by the generator firm. Each firm thus
expends its budget to minimize the expected cost of supply. Note that qωj is
a parameter to this problem - the actual dispatch is determined by a scenario
dependent OPF problem:

∀ω min
z,θ,q

∑
j∈Ff

cj(yj, qj)
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which is subject to flow balance constraints, line data constraints, line ca-
pacity constraints, generator capacity constraints and regulatory constraints.
The multiplier on the flow balance constraints is pωi (x). This problem may
involve integer variables as well to model switching or commitment features
of the problem, but that could raise issues of the integrity of the multipliers.

Note that the collection of all these optimization models (generator expan-
sion and scenario dependent OPF) forms an equilibrium problem, once each
optimization model is replaced by its KKT conditions. The specific interface
between them is defined by the variables y and q. The equilibrium problem
determines all the variables in all the models at one time, whereas the models
assume price taking behavior or knowledge of generator expansions in param-
eteric form. (In fact, this is an example of an embedded complementarity
system, details of which follow in the sequel.) In this case, the equilibrium
problem may be replaced by a large scale optimization problem. This fact
is useful in formally proving convergence of a decomposition algorithm that
iteratively solves the small optimization problems and updates the linking
variables in a Jacobi sense. All of this then generates the response price pωi (x)
for a given transmission expansion x in a computationally tractable way and
allows extension to power system models at the regional or national scale.
Other models that can be captured by these concepts include the following:
[47, 46, 4, 61].

3 Extended Mathematical Programs

We believe that the design, operation and ennhancement of the Next Gener-
ation Electric Grid will rely critically on tools and algorithms from optimiza-
tion. Accessing these optimization solvers, and many of the other algorithms
that have been developed over the past three decades has been made easier
by the advent of modeling languages. A modeling language [11, 33] provides
a natural, convenient way to represent mathematical programs and provides
an interface between a given model and multiple different solvers for its so-
lution. The many advantages of using a modeling language are well known.
They typically have efficient automatic procedures to handle vast amounts
of data, take advantage of the numerous options for solvers and model types,
and can quickly generate a large number of models. For this reason, and the
fact that they eliminate many errors that occur without automation, mod-
eling languages are heavily used in practical applications. Although we will
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use GAMS [13] in our descriptions here, much of what will be said could as
well be applied to other algebra based modeling systems like AIMMS [10],
AMPL [34], MOSEL, MPL [55] and OPL [75].

While much progress has also been made in developing new modeling
paradigms (such as stochastic and robust programming, mixed integer non-
linear optimization, second order cone programming, and optimization of
noisy functions), the ability for application experts to utilize these advances
from within modeling systems has remained limited. The purpose of this
work is to extend the classical problem from the traditional optimization
model:

min
x
f(x) s.t. g(x) ≤ 0, h(x) = 0, (1)

where f , g and h are assumed sufficiently smooth, to a more general format
that allows new constraint types and problem features to be specified pre-
cisely. The extended mathematical programming (EMP) framework exists to
provide these same benefits for problems that fall outside the classical frame-
work [26]. A high-level description of these models in an algebraic modeling
language, along with tools to automatically create the different realizations
or extensions possible, pass them on to the appropriate solvers, and interpret
the results in the context of the original model, makes it possible to model
more easily, to conduct experiments with formulations otherwise too time-
consuming to consider, and to avoid errors that can make results meaningless
or worse.

We believe that further advancements in the application of optimization
to electricity grid problems can be best achieved via identification of specific
problem structures within planning and operational models, coupled with
automatic reformulation techniques that lead to problems that are theoreti-
cally better defined and more ameable to rigorous computation. The ability
to describe such structures in an application domain context will have ben-
efits on several levels. Firstly, we think this will make the modelers task
easier, in that the model can be described more naturally and (for example)
soft or probabilistic constraints can be expressed explicitly. Secondly, if an
algorithm is given additional structure, it may be able to exploit that in an
effective computational manner; indeed, the availability of such structures
to a solver may well foster the generation of new features to existing solvers
or drive the development of new classes of algorithms. Specific structures
that we believe are relevant to this application domain include mathemati-
cal programs with equilibrium constraints, second order cone programs (that
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facilitate the use of “robust optimization” principles), semidefinite program-
ming, bilevel and hierarchical programs, extended nonlinear programs (with
richer classes of penalty functions) and embedded optimization models. The
EMP framework provides an extensible way to utilize such features.

Some extensions of the traditional format have already been incorporated
into modeling systems. There is support for integer, semiinteger, and semi-
continuous variables, and some limited support for logical constructs includ-
ing special ordered sets (SOS). GAMS , AMPL and AIMMS have support
for complementarity constraints [29, 28], and there are some extensions that
allow the formulation of second-order cone programs within GAMS. AMPL
has specific syntax to model piecewise linear functions. Much of this de-
velopment is tailored to particular constructs within a model. We describe
the development of the more general EMP annotation schemes that allow
extended mathematical programs to be written clearly and succinctly.

3.1 Complementarity Problems

The EMP framework allows annotation to existing functions and variables
within a model. We begin with the example of complementarity, which in
its simplest form, is the relationship between nonnegative variables with the
additional constraint that at least one must be zero. A variety of models in
electricity markets use complementarity at their core, including [43, 44, 45,
54, 58, 69, 81, 84, 83].

A first simple example are the necessary and sufficient optimality condi-
tions for the linear program

min
x

cTx

s.t. Ax ≥ b, x ≥ 0
(2)

which state that x and some λ satisfy the complementarity relationships:

0 ≤ c− ATλ ⊥ x ≥ 0

0 ≤ Ax− b ⊥ λ ≥ 0.
(3)

Here, the “⊥” sign signifies (for example) that in addition to the constraints
0 ≤ Ax − b and λ ≥ 0, each of the products (Ax − b)iλi is constrained to
be zero. An equivalent viewpoint is that either (Ax − b)i = 0 or λi = 0, a
disjunction. Within GAMS, these constraints can be modeled simply as
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positive variables lambda, x;

model complp / defd.x, defp.lambda /;

where defp and defd are the equations that define general primal and dual
feasibility constraints (Ax ≥ b, c ≥ ATλ) respectively.

Complementarity problems do not have to arise as the optimality condi-
tions of a linear program; the optimality conditions of the nonlinear program
(1) constitute the following MCP:

0 = ∇f(x) + λT∇g(x) + µT∇h(x) ⊥ x free

0 ≤ −g(x) ⊥ λ ≥ 0

0 = −h(x) ⊥ µ free.

(4)

Many examples are no longer simply the optimality conditions of an opti-
mization problem. The paper [30] catalogues a number of other applications
both in engineering and economics that can be written in a similar format.

It should be noted that robust large scale solvers exist for such problems;
see [29] for example, where a description is given of the PATH solver.

3.2 Disjunctive Constraints

A simple example to highlight disjunctions is the notion of an ordering of
tasks, namely that either job i comes before job j or the converse. Such a
disjunction can be specified using an annotation:

disjuncton * seq(i,j) else seq(j,i)

In such an example, one can implement a Big-M method, employ indicator
variables or constraints, or utilize a convex hull reformulation.

In fact, there is a growing literature on reformulations of mixed integer
nonlinear programs that describe new convex hull descriptions of structured
constraint sets. This work includes disjunctive cutting planes [71], Gomory
cuts [16] and perpective cuts and reformulations [35, 39].

More complicated (nonlinear) examples make the utility of this approach
clearer. The design of a multiproduct batch plan with intermediate storage
described in [77] and a synthesis problem involving 8 processes from [74] are
included in the EMP model library. As a final example, the gasoline emission
model outlined in [36] is precisely in the form that could exploit the features
of EMP related to (nonlinear) disjunctive programming. Finally, the work by
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Grossmann and colleagues on generalized disjunctive programming [74, 77,
78] involves both nonlinear equations and optimization primitives coupled
with pure logic relations; this has been used extensively in the synthesis and
design of process networks.

3.3 Mathematical Programs with Complementarity Con-
straints

A mathematical program with complementarity constraints embeds a para-
metric MCP into the constraint set of a nonlinear program as indicated in
the following problem:

min
x∈Rn,y∈Rm

f(x, y) (5)

s.t. g(x, y) ≤ 0 (6)

0 ≤ y ⊥ h(x, y) ≥ 0. (7)

The objective function (5) needs no further description, except to state that
the solution techniques we are intending to apply require that f (g and h) are
at least once differentiable, and for many modern solvers twice differentiable.

The constraints that are of interest here are the complementarity con-
straints (7). Essentially, these are parametric constraints (parameterized by
x) on the variable y, and encode the structure that y is a solution to the
nonlinear complementarity problem defined by h(x, ·). Within the GAMS
modeling system, this can be written simply and directly as:

model mpecmod / deff, defg, defh.y /;

option mpec=nlpec;

solve mpecmod using mpec minimizing obj;

Here it is assumed that the objective (5) is defined in the equation deff, the
general constraints (6) are defined in defg and the function h is described by
defh. The complementarity relationship is defined by the bounds on y and the
orthogonality relationship shown in the model declaration using “.”. AMPL
provides a slightly different but equivalent syntax for this, see [28]. The
problem is frequently called a mathematical program with complementarity
constraints (MPCC). Section 2 provided a specific example.

Some solvers can process complementarity constraints explicitly. In many
cases, this is achieved by a reformulation of the constraints (7) into the
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classical nonlinear programming form given as (1). The paper [37] outlines
a variety of ways to carry this out, all of which have been encoded in a
solver package called NLPEC. Similar strategies are outlined in section 3
of [6]. While there are large numbers of different reformulations possible,
the following parametric approach, coupled with the use of the nonlinear
programming solver CONOPT or SNOPT, has proven effective in a large
number of applications:

min
x∈Rn,y∈Rm,s∈Rm

f(x, y)

s.t. g(x, y) ≤ 0

s = h(x, y)

y ≥ 0, s ≥ 0

yisi ≤ µ, i = 1, . . . ,m.

Note that a series of approximate problems are produced, parameterized
by µ > 0; each of these approximate problems have stronger theoretical
properties than the problem with µ = 0 [62]. A solution procedure whereby µ
is successively reduced can be implemented as a simple option file to NLPEC,
and this has proven very effective. Further details can be found in the NLPEC
documentation [37]. The approach has been used to effectively optimize the
rig in a sailboat design [79] and to solve a variety of distillation optimization
problems [6]. A key point is that other solution methodology may work
better with different reformulations – this is the domain of the algorithmic
developer and should remain decoupled from the model description. NLPEC
is one way to facilitate this.

It is also possible to generalize the above complementarity condition to
a mixed complementarity condition; details can be found in [27]. Underly-
ing the NLPEC “solver package” is an automatic conversion of the original
problem into a standard nonlinear program which is carried out at a scalar
model level. The technology to perform this conversion forms the core of the
codes that we use to implement the model extensions herein.

3.4 Variational Inequalities

A variational inequality VI(F,X) is to find x ∈ X:

F (x)T (z − x) ≥ 0, for all z ∈ X.
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Here X is a closed (frequently assumed convex) set, defined for example as

X = {x | x ≥ 0, h(x) ≤ 0} . (8)

Note that the first-order (minimum principle) conditions of a nonlinear pro-
gram

min
z∈X

f(z)

are precisely of this form with F (x) = ∇f(x). For a concrete example, note
that these conditions are necessary and sufficient for the optimality of a linear
programming problem: solving the linear program (2) is equivalent to solving
the variational inequality given by

F (x) = c, X = {x | Ax ≥ b, x ≥ 0} . (9)

In this case, F is simply a constant function. While there are a large num-
ber of instances of the problem that arise from optimization applications,
there are many cases where F is not the gradient of any function f . For
example, asymmetric traffic equilibrium problems have this format, where
the asymmetry arises for example due to different costs associated with left
or right hand turns. A complete treatment of the theory and algorithms in
this domain can be found in [25].

Variational inequalities are intimately connected with the concept of a
normal cone to a set S, for which a number of authors have provided a rich
calculus. Instead of overloading a reader with more notation, however, we
simply refer to the seminal work in this area, [67]. While the theoretical
development of this area is very rich, the practical application has been
somewhat limited. The notable exception to this is in traffic analysis, see for
example [40].

It is well known that such problems can be reformulated as complemen-
tarity problems when the set X has the representation (8) by introducing
multipliers λ on the constraints h:

0 ≤ F (x) + λT∇h(x) ⊥ x ≥ 0

0 ≤ −h(x) ⊥ λ ≥ 0.

If X has a different representation, this construction would be modified ap-
propriately. In the linear programming example (9), these conditions are
precisely those already given as (3).
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When X is the nonnegative orthant, the VI is just an alternative way to
state a complementarity problem. However, when X is a more general set,
it may be possible to treat it differently than simply introducing multipliers,
see [15] for example. In particular, when X is a polyhedral set, algorithms
may wish to generate iterates via projection onto X.

Bimatrix games can also be formulated as a variational inequality. In this
setting, two players have I and J pure strategies, and p and q (the strategy
probabilities) belong to unit simplex4I and4J respectively. Payoff matrices
A ∈ RJ×I and B ∈ RI×J are defined, where Aj,i is the profit received by the
first player if strategy i is selected by the first player and j by the second.
The expected profit for the first and the second players are then qTAp and
pTBq respectively. A Nash equilibrium is reached by the pair of strategies
(p∗, q∗) if and only if

p∗ ∈ arg min
p∈4I

〈Aq∗, p〉 and q∗ ∈ arg min
q∈4J

〈BTp∗, q〉

Letting x be the combined probability vector (p, q), the (coupled) optimal-
ity conditions for the above problems constitute the variational inequality:

F

([
p
q

])
=

[
0 A
BT 0

] [
p
q

]
, X = 4I ×4J .

Algorithms to solve this problem can exploit the fact that X is a compact
set. The thesis [50] contains Newton based algorithms to solve these problems
effectively.

3.5 Bilevel Programs

Mathematical programs with optimization problems in their constraints have
a long history in operations research including [12, 32, 5]. Hierarchical opti-
mization has recently become important in a number of different applications
and new codes are being developed that exploit this structure, at least for
simple hierarchies, and attempt to define and implement algorithms for their
solution.

The simplest case is that of bilevel programming, where an upper level
problem depends on the solution of a lower level optimization. For example:

17



min
x,y

f(x, y)

s.t. g(x, y) ≤ 0,

y solves min
y

v(x, y) s.t. h(x, y) ≤ 0.

This problem can be reformulated as an MPCC by replacing the lower
level optimization problem by its optimality conditions:

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0,

0 = ∇yv(x, y) + λT∇yh(x, y) ⊥ x free

0 ≤ −h(x, y) ⊥ λ ≥ 0.

This approach then allows such problems to be solved using the NLPEC
code, for example. However, there are several possible deficiencies that should
be noted. Firstly, the optimality conditions encompassed in the complemen-
tarity constraints may not have a solution, or the solution may only be nec-
essary (and not sufficient) for optimality. Secondly, the MPCC solver may
only find local solutions to the problem. The quest for practical optimality
conditions and robust global solvers remains an active area of research. Im-
portantly, the EMP tool will provide the underlying structure of the model
to a solver if these advances determine appropriate ways to exploit this.

We can model this bilevel program in GAMS by

model bilev /deff,defg,defv,defh/;

solve bilev using emp min f;

along with some extra annotations to a subset of the model defining equa-
tions. Specifically, within an “empinfo” file we state that the lower level
problem involves the objective v which is to be minimized subject to the
constraints specified in defv and defh.

bilevel x

min v defv defh

Note that the variables x are declared to be variables of the upper level
problem and that defg will be an upper level constraint. The specific syntax
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is described in [38]. Having written the problem in this way, the MPCC
is generated automatically, and passed on to a solver. In the case where
that solver is NLPEC, a further reformulation of the model is carried out
to convert the MPCC into an equivalent NLP or a parametric sequence of
NLP’s. A key extension to the bilevel format allows multiple lower level
problems to be specified within the bilevel format.

3.6 Embedded Complementarity Systems

A different type of embedded optimization model that arises frequently in
applications is:

min
x

f(x, y)

s.t. g(x, y) ≤ 0 (⊥ λ ≤ 0)

H(x, y, λ) = 0 (⊥ y free)

Note the difference here: the optimization problem is over the variable x,
and is parameterized by the variable y. The choice of y is fixed by the
(auxiliary) complementarity relationships depicted here by H. Note that the
“H” equations are not part of the optimization problem, but are essentially
auxiliary constraints to tie down remaining variables in the model.

Within GAMS, this is modeled as:

model ecp /deff,defg,defH/;

solve ecp using emp;

Again, so this model can be processed correctly as an EMP, the modeler pro-
vides additional annotations to the model defining equations in an “empinfo”
file, namely that the function H that is defined in defH is complementary to
the variable y (and hence the variable y is a parameter to the optimization
problem), and furthermore that the dual variable associated with the equa-
tion defg in the optimization problem is one and the same as the variable λ
used to define H:

min f x deff defg

vifunc defH y

dualvar lambda defg
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Armed with this additional information, the EMP tool automatically creates
the following MCP:

0 = ∇xL(x, y, λ) ⊥ x free

0 ≥ −∇λL(x, y, λ) ⊥ λ ≤ 0

0 = H(x, y, λ) ⊥ y free,

where the Lagrangian is defined as

L(x, y, λ) = f(x, y)− λTg(x, y).

Perhaps the most popular use of this formulation is where competition is
allowed between agents. A standard method to deal with such cases is via
the concept of Nash Games. In this setting x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i(xi, x
∗
−i, q),∀i ∈ I,

where x−i are other players decisions and the quantities q are given exoge-
nously, or via complementarity:

0 ≤ H(x, q) ⊥ q ≥ 0.

This mechanism is extremely popular in economics, and Nash famously won
the Nobel Prize for his contributions to this literature.

This format is again an EMP, more general than the example given above
in two respects. Firstly, there is more than one optimization problem speci-
fied in the embedded complementarity system. Secondly, the parameters in
each optimization problem consist of two types. Firstly, there are the vari-
ables q that are tied down by the auxiliary complementarity condition and
hence are treated as parameters by the ith Nash player. Also there are the
variables x−i that are treated as parameters by the ith Nash player, but are
treated as variables by a different player j. While we do not specify the syn-
tax here for these issues, [38] provides examples that outline how to carry out
this matching within GAMS. Finally, two points of note: first it is clear that
the resulting model is a complementarity problem and can be solved using
PATH, for example. Secondly, performing the conversion from an embedded
complementarity system or a Nash Game automatically is a critical step in
making such models practically useful.
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Many of the energy market pricing models are based in the economic
theory of general equilibria. In this context, there are a number of con-
sumers each maximizing some utility function Uk, income is determined by
the market price of the endowment and production shares, production is
a technology constrained optimization of profit, and the market clears by
choosing appropriate prices:

(C) : max
xk∈Xk

Uk(xk) s.t. pTxk ≤ ik(y, p)

(I) :ik(y, p) = pTωk +
∑
j

αkjp
Tgj(yj)

(P ) : max
yj∈Yj

pTgj(yj)

(M) : max
p≥0

pT

(∑
k

xk −
∑
k

ωk −
∑
j

gj(yj)

)
s.t.

∑
l

pl = 1

Note that this model is an example of a Nash Game, with four different types
of agents. Note that in each problem, some of the variables are under the
control of the agent, and some are given as parameters. One way to solve this
problem is to form the KKT conditions of each agent problem, and combine
them to make a large scale complementarity problem.

Alternatively, the problem can be reformulated as embedded complemen-
tarity system (see [24]) of the form:

max
x∈X,y∈Y

∑
k

tk
βk

logUk(xk)

s.t.
∑
k

xk ≤
∑
k

ωk +
∑
j

gj(yj)

tk = ik(y, p) where p is multiplier on NLP constraint

Note that the consumers and producers have been aggregated together into
a large nonlinear program parameterized by tk, a variable that is updated
using the external condition. In practice, such problems can then be solved
using the sequential joint maximization algorithm [68].

We note that there is a large literature on discrete-time finite-state stochas-
tic games: this has become a central tool in analysis of strategic interactions
among forward-looking players in dynamic environments. The Ericson-Pakes
model of dynamic competition [23] in an oligopolistic industry is exactly in
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the format described above, and has been used extensively in applications
such as advertising, collusion, mergers, technology adoption, international
trade and finance.

For stylized models of this type, where a game is played over a grid
of dimension S, the results of applying the PATH solver to the resulting
complementarity problems are as follows:

S Size non-zero dense(%) Steps Time (m:s)
20 2568 31536 0.48 5 0 : 03
50 15408 195816 0.08 5 0 : 19
100 60808 781616 0.02 5 1 : 16
200 241608 3123216 0.01 5 5 : 12

Note the number of Newton steps is constant, but the model size is increasing
rapidly. For the largest grid size, the residual at each iteration is 1.56 ∗
104, 1.06 ∗ 101, 1.34, 2.04 ∗ 10−2, 1.74 ∗ 10−5, and 2.97 ∗ 10−11 respectively,
demonstrating quadratic convergence. It is clear that it is much easier to
generate correctly reformulated models quickly using the automation of the
EMP tool.

3.7 Semidefinite Programs

Semidefinite programming is a relatively new optimization format that has
found application in many areas of control and signal processing, and is now
being more widely utilized due to its inherent modeling power. Excellent
survey articles of the background to this area and its applications can be
found in [76, 82].

In the context of OPF problems, Lavaei and Low [49] convexify the prob-
lem and apply an SDP approach to the Dual OPF. Instead of solving the
OPF problem directly, this approach solves the Lagrangian dual problem,
and recovers a primal solution from a dual optimal solution. It is proved
in the paper that the dual problem is a convex semidenite program and
therefore can be solved efficiently using interior point solvers such as those
described in [8, 73, 72]. In the general case, the optimal objective value of
the dual problem is only a lower bound on the optimal value of the original
OPF problem and the lower bound may not be tight (nonzero duality gap).
If the primal solution computed from an optimal dual solution indeed satis-
fies all the constraints of the OPF problem and the resulting objective value

22



equals the optimal dual objective value (zero duality gap), then strong dual-
ity holds and the primal solution is indeed (globally) optimal for the original
OPF problem. The paper provides a sufficient condition that guarantees zero
duality gap and global optimality of the resulting OPF solution.

However, applying the SDP approach outlined above shows that much
more development in solution methodology is needed for this to be compet-
itive for practical modeling. For larger OPF models described via [85] with
solutions implemented via YALMIP [51] as a modeling tool and SeDuMi [72]
as the solver, reported solutions were not feasible for the original nonlinear
program and took significantly longer than alternative nonlinear program-
ming approaches (CONOPT, IPOPT or SNOPT). Research is active in this
area, however, and it is likely that methods exploiting underlying structure
in the SDP will become practical in the near future. Indeed, the first or-
der methods for specially structured SDPs described in [42, 59] have already
proven effective in eigenvalue optimization problems.

3.8 Extended Nonlinear Programs

Optimization models have traditionally been of the form (1). Specialized
codes have allowed certain problem structures to be exploited algorithmi-
cally, for example simple bounds on variables. However, for the most part,
assumptions of smoothness of f , g and h are required for many solvers to
process these problems effectively.

In a series of papers, Rockafellar and colleagues [64, 65, 63] have intro-
duced the notion of extended nonlinear programming, where the (primal)
problem has the form:

min
x∈X

f0(x) + θ(f1(x), . . . , fm(x)). (10)

In this setting, X is assumed to be a nonempty polyhedral set, and the
functions f0, f1, . . . , fm are smooth. The function θ can be thought of as a
generalized penalty function that may well be nonsmooth. However, when θ
has the following form

θ(u) = sup
y∈Y
{yTu− k(y)}, (11)

a computationally exploitable and theoretically powerful framework can be
developed based on conjugate duality. A key point for computation and
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modeling is that the function θ can be fully described by defining the set
Y and the function k. Furthermore, as is detailed in [26], different choices
lead to a rich variety of functions θ, many of which are extremely useful for
modeling.

The EMP model type works in this setting by providing a library of
functions θ that specify a variety of choices for k and Y . Once a modeler
determines which constraints are treated via which choice of k and Y , the
EMP model interface automatically forms an equivalent variational inequal-
ity or complementarity problem. There may be alternative formulations that
are computationally more appealing; such reformulations can be generated
using different options to EMP.

Note that the Lagrangian L is smooth - all the nonsmoothness is captured
in the θ function. The theory is an elegant combination of calculus arguments
related to fi and its derivatives, and variational analysis for features related to
θ. Exploitable structure is thus communicated directly to the computational
engine that can solve the model.

It is shown in [64] that under a standard constraint qualification, the first-
order conditions of (10) are precisely in the form of the following variational
inequality:

VI

([
∇xL(x, y)
−∇yL(x, y)

]
, X × Y

)
, (12)

where the Lagrangian L is defined by

L(x, y) = f0(x) +
m∑
i=1

yifi(x)− k(y)

x ∈ X, y ∈ Y

When X and Y are simple bound sets, this is simply a complementarity
problem.

Note that EMP exploits this result. In particular, if an extended nonlinear
program of the form (10) is given to EMP, then the optimality conditions
(12) are formed as a variational inequality problem and can be processed
as outlined above. Under appropriate convexity assumptions on this La-
grangian, it can be shown that a solution of the VI (12) is a saddle point
for the Lagrangian on X × Y . Furthermore, in this setting, the saddle point
generates solutions to the primal problem (10) and its dual problem:

max
y∈Y

g(y), where g(y) = inf
x∈X
L(x, y),
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with no duality gap.
In [26], an alternative solution method is proposed, based on a reformula-

tion as an NLP to solve (12). By communicating the appropriate underlying
structure to the solver interface, it is possible to reformulate the nonsmooth
problem as smooth optimization problems in a variety of ways. We believe
that specifying Y and k is a theoretically sound way to do this. Another
example showing formulation of an extended nonlinear program as a com-
plementarity problem within GAMS can be found in [22].

4 Stochastic and Robust Optimization

In order to effectively model many of the problems resulting from electricty
grid design, EMP will require new syntax to allow specification of problems
such as stochastic recourse programs.

Consider, for example, the two stage stochastic recourse problem:

min c′x+
∑
i

piQi(x) s.t. x ∈ X,

where Qi(x) = miny d
′
iy s.t. Tix + Wiy ≥ hi, y ∈ Y . Standard modeling

notation allows the specification of both X and Y , and the equations that
define the feasible set of the recourse (Qi) problems. The empinfo file would
describe:

• the probability distribution pi

• what stage is each variable in

• what stage is each constraint in

• what parameters in the original model are random (ie Ti, hi, etc)

• how to sample these random parameters (using a library of sampling
functions)

• what problem to generate and solve (ie the equivalent deterministic
linear program, or a format necessary for decomposition approaches).

Within the modeling system, there is no need for the underlying problems
to be linear. The automatic system would need to check that no random
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parameters appear in first stage equations, and that no second stage variables
appear in first stage equations (and recursively for multi-stage problems).

An extension to chance constraints is also possible, where the problem is
now:

min c′x s.t. x ∈ X,
∑
i

piI(Tix+Wiyi ≥ hi) ≥ 1− ε,

where I(·) is the indicator function (1 or 0) for its argument. Clearly, not only
should the information needed above be generated, but also the annotation
must specify the fraction of the constraints that can be violated (ε).

By employing variable annotations, it would also be possible to extend
EMP to model risk measures such as CVaR. An additional variable (which
represents a convex function of the decision variables x) would be used in
the appropriate constraint or in the objective to be minimized. Extensions of
solvers to perform subgradient optimization would be needed, or alternative
decomposition approaches could be implemented “behind the scenes”.

4.1 Optimization of noisy functions

Over the past few decades, computer simulation has become a powerful tool
for developing predictive outcome of real systems. For example, simulations
consisting of dynamic econometric models of travel behavior are used for
nationwide demographic and travel demand forecasting. The choice of opti-
mal simulation parameters can lead to improved operation, but configuring
them remains a challenging problem. Traditionally, the parameters are cho-
sen by heuristics with expert advice, or by selecting the best from a set of
candidate parameter settings. Simulation-based optimization is an emerging
field which integrates optimization techniques into the simulation analysis.
The corresponding objective function is an associated measurement of an
experimental simulation. Due to the complexity of simulation, the objective
function may act as a black-box function and be time-consuming to evaluate.
Moreover, since the derivative information of the objective function is typ-
ically unavailable, many derivative-dependent methods are not applicable.
The third example of Section 2 fits nicely into this framework.

We can think of such approaches as a mechanism for coordinating existing
optimization technologies. Each simulation evaluation corresponds to the
solution of a parameterized problem (maybe in prices, or in variables that
link together competing agents) that may be extremely time consuming to
compute, and that may incorporate complex domain information, and may
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be subject to errors due to uncertainties. The noisy function optimization
will determine (at a coordination level) what parameters are appropriate and
where to concentrate attention in the search space.

Although real world problems have many forms, many optimization strate-
gies consider the following bounded stochastic formulation:

min
x∈Ω

f(x) = E [F (x, ξ(ω))] , (13)

where
Ω = {x ∈ Rn : l ≤ x ≤ u}.

Here, l and u are the lower and upper bounds for the input parameter x,
respectively. The specific application of this framework to the electricity
grid arises from considering the variables x to be the “design” or line capacity
expansion variables. The function F would then model the response of the
underlying system (as a large complex computer simulation) to those design
decisions pωi (x) and allow for uncertainties in the operating environment via
the set Ω. An approach for solving these problems using Bayesian statistics
is outlined in [20]. Such an approach balances the computational needs of
the optimization against the need for much more accurate evaluations of the
simulation. The facilitation of these extremely time intensive solutions using
grid computational resources to couple the underlying optimization problems
is critical for efficient solution.

4.2 Conic Programming

A problem of significant recent interest (due to its applications in robust
optimization and optimal control) involves conic constraints [52, 1, 7]:

min
x∈X

pTx s.t. Ax− b ≤ 0, x ∈ C,

where C is a convex cone. For specific cones, such as the Lorentz (ice-cream)
cone defined by

C =

x ∈ Rn | x1 ≥

√√√√ n∑
i=2

x2
i

 ,

or the rotated quadratic cone, there are efficient implementations of interior
point algorithms for their solution [3]. It is also possible to reformulate the
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problem in the form (1) for example by adding the constraint

x1 ≥

√√√√ n∑
i=2

x2
i . (14)

Annotating the variables that must lie in a particular cone using a “empinfo”
file allows solvers like MOSEK [2] to receive the problem as a cone program,
while standard NLP solvers would see a reformulation of the problem as a
nonlinear program. It is also easy to see that (14) can be replaced by the
following equivalent constraints

x2
1 ≥

n∑
i=2

x2
i , x1 ≥ 0.

Such constraints can be added to a nonlinear programming formulation or a
quadratically constrained (QCP) formulation. This automatic reformulation
allows the interior point algorithms to solve these problems since they can
process constraints of the form

y2 ≥ xTQx, y ≥ 0, Q PSD.

Details on the options that implement these approaches can be found in [38].
These approaches have been been adapted to robust optimization mod-

els and applied to unit commitment problems [9]. It is straightforward to
facilitate the use of stochastic constraints that have become very popular in
financial applications. Specifically, we mention the work of [66] on conditional
value at risk, and the recent papers by [21], and [53] on stochastic dominance
constraints. All of these formulations are easily cast as constraints on decision
variables annotated by additional (in this case distributional) information.

5 Computational Needs

It is imperative that we provide a framework for modeling optimization prob-
lems for solution on the computing resources that are available to the decision
maker. The framework must be easy to adapt to multiple grid engines or
cloud computing devices, and should seamlessly integrate evolving mecha-
nisms from particular computing platforms into specific application models.
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The design must be flexible and powerful enough for a large variety of op-
timization applications. The attraction of a grid computing environment
is that it can provide an enormous amount of computing resources, many
of which are simply commodity computing devices, with the ability to run
commercial quality codes, to a larger community of users.

We strongly believe that grid computational resources are not enough to
make parallel optimization mainstream. Setting aside the issue of data collec-
tion, it is imperative that we provide simple and easy to use tools that allow
distributed algorithms to be developed without knowledge of the underlying
compute engine. In large scale optimization, there are many techniques that
can be used to effectively decompose a problem into smaller computational
tasks that can then be controlled by a “coordinator” - essentially a master-
worker approach. The above sections have outlined a variety of ways in which
this could be accomplished within our optimization framework. We believe
that in particular power flow applications, the decomposition approach can
be significantly enhanced using specific domain knowledge, but these strate-
gies may be complex to describe for a particular model. This approach is
more general that current modeling systems allow, requiring extensions to
current languages to facilate interfaces and interactions between model com-
ponents, their solutions and the resources used to compute in a potentially
diverse and distributed environment.

While it is clear that efficiency may well depend on what resources are
available and the degree of synchronization required by the algorithm, it must
be easy to generate structured large scale optimization problems, and high
level implementations of methods to solve them. Stochastic programming
(an underlying problem of particular interest within the design of the Next
Generation Electric Grid) is perhaps a key example, where in most of the
known solution techniques, large numbers of scenario subproblems need to
be generated and solved.

A prototype grid facility [14] allows multiple optimization problems to be
instantiated or generated from a given set of models. Each of these problems
is solved concurrently in a grid computing environment. This grid comput-
ing environment can just be a laptop or desktop computer with one or more
CPUs. Today’s operating systems offer excellent multi-processing scheduling
facilities and provide a low cost grid computing environment. Other alterna-
tives include the Condor system, a resource management scheme developed
at the University of Wisconsin, or commercial systems such as the cloud or
supercomputing facilities avaiable at the National Laboratories. We must fa-
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cilitate the use of new and evolving modeling paradigms for optimization on
the rapidly changing and diverse computing environments that are available
to different classes of decision makers.

6 Conclusions

Optimization can provide advice on managing complex systems. Such ad-
vice needs to be part of an interactive debate with informed decision makers.
Many practical decision problems are carried out in a competitive environ-
ment without overall system control. Mechanisms to allow decision making
in such circumstances can be informed by game theory and techniques from
distributed computing. To answer the major design questions, small dy-
namic models need to be developed that are “level of detail” specific, and
provide interfaces to other “subservient” models that provide appropriate
aggregation of data and understanding of underlying complex features.

A number of new modeling formats involving complementarity and varia-
tional inequalities have been described in this paper and a framework, EMP,
that allows such problems to be specified has been outlined. Such extensions
facilitate modeling with competitive agents and automatic problem refor-
mulations. We believe this will make a modeler’s task easier by allowing
model structure to be described succinctly in such a setting, and will make
model generation more reliable and automatic. In this way, algorithms can
exploit model structure to improve solution speed and robustness. Further-
more, models dedicated to well defined decisions can be formulated using
new formats such as semidefinite programming and stochastic optimization,
and such descriptions carry the potential of global optimality. EMP is only
a first step in this vein.

Solution methods for the resulting optimization problems are available
within modeling systems, and the electric power industry could exploit these
methods in a flexible manner using a combination of different model for-
mats and solution techniques. Recent advances in stochastic optimization
and conic programming are readily available within such systems. Treating
uncertainties in large scale planning projects will become even more critical
over the next decade due to the increase in volatility of the supply side as
well as the demand. Optimization models with flexible systems design can
help combat these uncertainties in the construction phase, the operational
phase of the installed system, and in the long term demand for the provided
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electricity.

Acknowledgements

The material in this paper draws heavily on discussions with Jim Luedtke,
Jesse Holzer, Lisa Tang, Yanchao Liu, Sven Leyffer, Ben Recht, Chris De
Marco and Bernie Lesieutre and I acknowledge their insights and contri-
butions to this work. I am grateful to Steven Dirkse, Jan Jagla and Alex
Meeraus for implementing the ideas in the EMP framework in the GAMS
modeling system. The opinions outlined are my own, however.

References

[1] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathe-
matical Programming, 95:3–51, 2003.

[2] E. D. Andersen and K. D. Andersen. The MOSEK interior point opti-
mizer for linear programming: an implementation of the homogeneous
algorithm. In H. Frenk, K. Roos, T. Terlaky, and S. Zhang, editors, High
Performance Optimization, pages 197–232. Kluwer Academic Publish-
ers, Dordrecht, The Netherlands, 2000.

[3] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-
dual interior-point method for conic quadratic optimization. Mathemat-
ical Programming, 95(2):249–277, 2003.
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Neuve, Université Catholique de Louvain, 1993.

34



[41] K. W. Hedman, M. C. Ferris, R. P. O’Neill, E. B. Fisher, and S. S.
Oren. Co-optimization of generation unit commitment and transmission
switching with n-1 reliability. IEEE Transactions on Power Systems,
page forthcoming, 2010.

[42] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite
programming. SIAM Journal on Optimization, 10(3):673–696, 2000.

[43] B.F. Hobbs. Linear complementarity models of Nash-Cournot competi-
tion in bilateral and POOLCO power markets. IEEE Transactions on
Power Systems, 16:194–202, 2001.

[44] B.F. Hobbs, C. B. Metzler, and J.S. Pang. Strategic gaming analysis
for electric power systems: An MPEC approach. IEEE Transactions on
Power Systems, 15:638–645, 2000.

[45] W. W. Hogan. Energy policy models for Project Independence. Com-
puters & Operations Research, 2:251–271, 1975.

[46] William W. Hogan. Financial Transmission Right Formulations, 2002.

[47] William W. Hogan, Scott M. Harvey, and Susan L. Pope. Transmission
Capacity Reservations and Transmission Congestion Contracts, 1997.

[48] Tarjei Kristiansen and Juan Rosellón. A merchant mechanism for
electricity transmission expansion. Journal of Regulatory Economics,
29:167–193, 2006.

[49] Javad Lavaei and Steven H. Low. Convexification of optimal power flow
problem. In Forty-Eighth Annual Allerton Conference, 2010. Available
from https://www.cds.caltech.edu/~lavaei/Allerton 2010.pdf.

[50] Q. Li. Large-Scale Computing for Complementarity and Variational In-
equalities. PhD thesis, University of Wisconsin, Madison, Wisconsin,
January 2010.
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