Inverse treatment planning for Gamma Knife radiosurgery
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An inverse treatment planning system for Gamma Knife radiosurgery has been developed using
nonlinear programming techniques. The system optimizes the shot sizes, locations, and weights for
Gamma Knife treatments. In the patient’s prescription, the user can specify both the maximum
number of shots of radiation and a minimum isodose line that must surround the entire treatment
volume. After satisfying all of the constraints included in the prescription, the system maximizes
the conformity of the dose distribution. This automated approach to treatment planning has been
applied retrospectively to a series of patient cases, and each optimized plan has been compared to
the corresponding manual plan produced by an experienced user. The results demonstrate that this
tool can often improve the tumor dose homogeneity while using fewer shots than were included in
the original plan. Therefore, inverse treatment planning should improve both the quality and the
efficiency of Gamma Knife treatments. @000 American Association of Physicists in Medicine.
[S0094-24080)01412-1
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[. INTRODUCTION produce a treatment plan within 20 min. Flexibility in defin-
ing the treatment goals is also of key importance, because
The Leksell Gamma Knife provides an advanced stereotactigach plan must be tailored to meet the individual needs of the
approach to the treatment of tumors and vascular malformasatient, The system must also be flexible enough to satisfy
tions within the head.‘“ Over 100 Gamma Knife units are he preferences of a variety of treatment planners. Finally,
installed worldwide, and more than 20000 patients argne system must be robust. A robust system is one that pro-

treated each yefir. _ duces a high quality solution for treatment volumes of all
Each patient's treatment plan is developed by a neurosusj; o5 ang shapes. The ideal technique should provide a high
geon working in conjunction with a radiation oncologist and

o . . , uality result independent of the quality of the starting point
a physicist. Through an iterative process of trial and errorgSed )iln the optimiZation g y gp
they_determme the number of shots along with th_elr SIZ€. A number of researchers have investigated techniques for
location, and weight. When the treatment volume is small . : .
f%\utomatlng the Gamma Knife treatment planning

the treatment plan may only require one or wo shots %roces$12 One approach incorporates the assumption that

radiation. For these cases, treatment planning is typicallé L o
straightforward. The planning process, however, become ach shqt of radiation can be modeled as a rigid sphere. The
roblem is then reduced to one of geometric coverage, and a

much more complex for both irregularly shaped tumors an I ki h b d d . he sh
tumors that are large in size. For these cases, the complexi packing approach can be used to determine the shot

. . 12 . s
of the treatment planning process makes it difficult to takeocations and _:;lze%. The use of a modified Powell's
full advantage of the powerful capabilities of the Gammamethod in conjunction with simulated annealing has also

11
Knife. Therefore, we have sought to automate the Gameee”_pmpOSE& _
Knife treatment planning process. This paper addresses a different approach where the dose

We have examined a variety of techniques in hopes offistribution is modeled and a formal constrained optimiza-
developing an automated planning approach that is fast, flextion is used to determine the treatment plan. With this tech-
ible, and robust. The system must be fast, because the tredtique, the shot sizes, locations, and weights are optimized
ment planning process cannot begin until after the patient’§imultaneously. The optimization does not require the user to
stereotactic head frame is in place and MRI or CT imagegrovide initial shot locations, and the optimization model can
have been obtained. It is therefore unacceptable to have iaclude dose constraints applied to both the target and the
planning procedure that takes hours to complete. Our goalensitive structures. The dose model used in this technique
has been to create an automated planning system that cams generated using a nonparametric optimization approach.
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The treatment plan optimization is based on the use of mi- ' ' ‘ ‘ ‘
grating shot locations and a nonlinear programming ap- 1 — computed
proach. The effectiveness of this technique was initially ex-
amined using a two-dimensional testing environment. A
series of optimizations have also been performed using rea o8r
three-dimensional patient data. This paper introduces the
dose model and the optimization techniques. It also providesg s}
comparisons between optimized patient plans and the correg
sponding plans produced manually by a neurosurgeon.

Our constrained optimization program was developed si- 94T
multaneously with a simpler algorithm using a least-squares
objective function. Both approaches incorporate a migrating
shot formulation. Although the least-squares model is not as
extensible, it serves as a useful benchmark for evaluating the
constrained optimization approach. 0
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Fic. 1. A comparison between dose profiles extracted from the Leksell
GAMMAPLAN system and the profiles from dose distributions predicted by the
two error function model.

Il. MATERIALS AND METHODS
A. Dose model

For each patient, the optimization uses an algebraic model
in order to determine the dose delivered at each calculatiomodel we have used incorporates a sum of error functidns.
point. Calculation points are located on a three-dimensionalhe error function can be thought of as a point souiée
grid that is applied in the area of interest. In the optimizationfunction) convolved with a finely collimated aperture func-
model,Srepresents the set of the shots a&ldepresents the tion. The following functional form was used with repre-
possible shot size@, 8, 14, and 18 min The complete dose senting the distance to the center of the shot:
distribution can be calculated as the sum of the contributions
from each shot. The dose calculation requires the location of 2 )\i( 1—erf d_ri> ) 3)
each shot Xs,ys,zs) and the relative weightes,,) that is i=1 T
assigned to each. The weight is proportional to the treatment, .o
time for the given shot. In practice, this means that the dose,

D, at a point &,y,2z) is

erf(x')= LJXi e dx (4)
V2 J - '
D(X!yaz): 2 aS,WDW(X51ySIZSIX1yIZ)1 (1) . .
(s,w) e SXW For each of the four shot sizes, the six parameters;, and

whereD,(Xs,Ys.Zs,X,Y,2) is the dose delivered to the cal- o; were fit to the data via a least-squares approach. The
culation point &,y,z) by a shot of sizew centered at resulting nonlinear optimization problem is

(Xsyysrzs)- )

In order to determine the form @,,, the treatment plan- min
ning system, LekselcAMMAPLAN (version 5.20, was used Ao

to simulate the c!ehvery of a ,ShOt of widt placed at the This problem was solved using the nonlinear optimization
center a patient's stereotactic head frame. For each Sh%ﬁgorithmCONOPI“‘”The results for all four shot sizes are
W|dth,dd9rshe prof|lef§| in the, yh andz dwecgonsfvv”ere e_x' shown in Fig. 1. The fit is best for the small shot sizes and
tracted. These profiles were then averaged as follows: decreases slightly in accuracy for the larger shot sizes. The

Bw(d) \_I/_alkl)JIesI of the parameters that we generated are provided in
able I.

d—r;

®

2
Bw(d)—Zl )\i(l—erf(

D,(0,0,0d,0,0)+D,,(0,0,0,0d,0)+ D,(0,0,0,0,0d)
3 .

B. Constrained optimizations

2 Constrained optimization models were written in the
The center of the patient’s head frame was defined as theodeling language ofAms (the General Algebraic Model-
origin. The values that were obtained were used as data iniag System.'® cams is a high-level modeling system for
nonlinear parameter estimation problem. mathematical programming problems. It consists of a lan-
The dose distribution for each shot of radiation was asguage compiler and a variety of integrated high-performance
sumed to be spherically symmetric. Consequently, the dossolvers.GAms was chosen for the optimizations based on its
modeling problem was reduced to one of determining a funcversatility and its state-of-the-art optimization algorithms. In
tional form for the dose delivered at a calculation point lo-particular, the formulations that we describe are constrained
cated a distancel from the center of the shot. The dose nonlinear programming problems, and as such are solved
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TasLE |. The optimized dose parameters for the dose model outlined by3Eq.

Shot(mm) N1 ry o1 N, Iy oy
4 0.649 200 1.365916 4.413 680 0.599 844 2.661771 0.668 291
8 0.401 007 7.035 785 5.702 337 0.648 584 4.849 365 1.149176
14 0.363 704 13.97259 7.196 694 0 0.657 808 8.199 979 1.321161
18 0.381 801 17.678 57 8.194 611 0.634 696 10.31583 1.441725

using a state-of-the-art optimization algoritttoNopPT4~1"  tive weight @s,w) is assigned for each of the four available

For each of the nonlinear functions in our modehNnoPT  shots. The dose computation includes a grid of calculation
uses first-order derivative information to determine a searclpoints, and each point is categorized as either taffebr
direction, which is then investigated using a classical linenormal tissugNT).
search technique. A key feature of the optimization approach presented here
The actual algorithm irtoNOPTIs based upon a general- is that the user can specify a minimum isodose line that must
ized reduced gradieniGRG) approach to optimization. A surround the entire treatment volume. For Gamma Knife
critical feature ofcoNOPTIs that it maintains a feasible so- treatments, the neurosurgeon often requires that the entire
lution throughout the optimization once a feasible solutiontarget is encompassed by the 50% isodose lffiae 50%
has been obtained. The user can therefore choose to ternisodose line is defined relative to the maximum dp¥ge
nate the optimization prematurely with assurance that thenodel such a constraint by imposing strict lower and upper
solution provided will satisfy all of the constraints. In order bounds on the dose allowed in the target. Namely, for all
to allow for very large models, all matrix operations are(i,j,k) in T
implemented using sparse matrix techniques. The overhead .
of the GRG algorithm is minimized through a variety of ~ 0-5<D(i,j,k)<1.

techniques including dynamic feasibility tolerances, reuse ofrpis constraint guarantees that the dose throughout the tumor

Jacobians, and an effici_en.t rejnvgrsion routine. . Is maintained between a value of 0.5 and 1. Consequently, all
Each constrained optimization incorporates both an objecss 1he points in the tumor must receive a dose greater than

tive function and a set of constraints. The objective functionssgo; of the maximum tumor dose. For our Gamma Knife
that we have tested includet) maximizing the conformality  , eqcriptions, the user specifies the isodose curve that must
of the dose distribution,2) minimizing the number of shots, gncompass the tumor. It is only after the plan has been re-
and (3) minimizing the dose to a sensitive structure such as;ie\yed that the absolute dose in Gray is prescribed. Note that
the brain stem or optic chiasm. with this formulation it is easy to change the minimum iso-

Each optimization also includes a series of constraints. A,qe requirement by modifying the numerical values of the
constraint is a condition that must be satisfied in order for g,, ,n4s.

solution to bg considered feasible._ Constraints h.ave been the general optimization approach that we used is maxi-

used to specify each of the followindl) the maximum

number of shots(2) a minimum isodose line that must sur-

round the entire tumor volume, af@) a maximum dose for S ixy.2eTD(Xy,2)dx dy dz

each sengltlve structure. S o [ xynD(X.y,2)dx dy dz
In the first phase of the optimization, the optimizer seeks

a feasible solution that satisfies the constraints. After a feasubject to

sible solution is obtained, the optimizer minimizes or maxi-

mize

mizes the objective function. If a user is unsatisfied with the  p(xy,z)= > a,Dy(Xs,Vs,Zs,X,Y,2),
optimized plan, he or she can update the treatment goals and (swjeSxw

perform an additional optimization. The solution from the

first optimization should provide a high quality starting point 05<D(xy.z)<1, V(xy2)eT, ©)
for the second optimization. Therefore, the time require- ag,=0.

ments for the second optimization are minimized.

We have investigated two constrained optimization ap-The goal of the optimization is to maximize the percentage
proaches, namely mixed integer programming and nonlineaof the integral dose that is deposited in the target subject to a
programming. The mixed integer programming approach hasonstraint that the 50% isodose line must surround the target.
been addressed elsewhét&his paper will describe the use The maximum number of shots that can be assigned nonzero
of a nonlinear programming approach to optimizing Gammaweights is constrained to be less than or equaltdn this
Knife treatment plans. formulation, the percentage of integral dose deposited in the

The nonlinear programming approach that we have impletarget serves as a measure of the conformity of the dose
mented incorporates migrating shot locations. In othedistribution. Spatial integrals, represented fax dy dz are
words, the position of each shot can change over the courgaken over all volumes of interest and are implemented as a
of the optimization. At each shot locatiory(ys,zs), a rela-  simple sum over discrete points.
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An important feature of our nonlinear programming ap-A weighting factor,M(x,y,z), is assigned to each region of
proach is that the user does not need to preselect the size ioterest(target, critical structure, efc.The weighting factor
each shot. In our formulation, a shot of widthis used at defines the importance of matching the prescription in each
locationsiif ag,,=0. Ideally, the optimization would include region.

a binary variable assigned to each shot of radiation. This Variation of S with respect to the parameters
binary variable would serve as an on/off switch to indicate(a, ,X,,Yn,Z,) produces a set of nonlinear equations, the so-
whether or not a shot has been assigned a nonzero timations of which define local minima,

[H(t)=1 if t>0 andH(t) =0 whent=0]. The optimization

would then include a constraint that the sum of all the binary 2 amf M(i/fnl//m)] :f M(Py,)dx dy dz (10
variables must be less than the maximum number of allow- ™

able shots.
j M

The use of a true step function is disallowed in a nonlin-
ear programming formulation. Therefore, we have approxi-
mated the step function using the following approach: f
M

J M

A positivity constraint &,=0) is applied to each shot
weight. This set of equations applies for nonvanishing
H(a,tey) <N ®) weights, and is to be solved foa(,X,,Yn,Z,). We solve
rts,w/ TS . . .. . .
(sw) e{L..ghxW ’ this system by linearizing the spatial equatidisy. (11)]
with respect to shot locations in the neighborhood of a solu-
is added to the constraint set, whereepresents the number tion and solving them in an iterative fashion. The explicit
of migrating shot locations. Typically, we include more mi- linearized equations are not shown. The time parameters
grating shot locations than the number of allowable shotsire also updated at each iteration, solving @d) with the
(g>N). This increases the search space and provides intonstraint &,=0) imposed. General solutions will involve
proved robustness. some zero weighted shots, in which case @€) is handled
Based on our experience, the best speed and robustness a least-squares optimization to determine the weights
are seen when a two-step optimization is used. An initialShots with persistently zero weights over several iterations
optimization is performed with am value of ten. A second are eventually excluded. Once the zero shots have been ex-
optimization is then performed with am value of one hun-  cluded, Eq.(10) can generally be inverted to determine the
dred. The constraint on the total number of shots becomegeights.

J
2 anz,/;n—P)ﬂdx dy dz=0,
n IXm

E an‘pn_P

n

Ifm
——dxdy dz=0, 11
) Py y (12)

Hat) = 2 arct:mat), @)

J
2 anzpn—P)ﬂdx dy dz=0.
n azm

where lim _ H(a,t)=H(t). Therefore, the condition

more absolute in nature with increasing valuesxoHigher This least-squares formulation does not allow specifica-
a values, however, lead to a more nonlinear formulation thation of a prescribed isodose coverage, and it is often neces-
tends to be more difficult to solve. sary to specify a margin around the tumor volume to increase

the minimum isodose that covers the target. More generally
the method is limited by dependence on an explicit represen-
Our initial attempt at formulating a nonlinear migrating tation of an objective function that results in simple iterative
shot model used a simple least-squares formulation. This agquations. This hampers the incorporation of additional cri-
proach is based on a variational principle that allows expliciteria in the objective function. An additional limitation is that
generation of optimization equations. shot widths are determined and fixed in advance. At present,
With this method, a prescribed doB¥x,y,z) was set at  thjs first-generation solver serves as a benchmark for evalu-

each of the calculation pointB(x,y,z) may have a complex ating the second-generation constrained solver.
shape. For example, one might choose to conform to areas of

hypoxia in the targetN individual shot distributions are con- . RESULTS
sidered as a set oN non-orthonormal basis functions
#n, ne{l,..N}. These basis functions are functions of A. Two-dimensional optimizations
the shot locations as well as the spatial coordinates. Together \wa have created a testing environment for our models
with the relative weightsdy), the shot locations form the ithin waTLAB, using the image processing toolbox. This
s_et of optimization  parameters.  Explicitly, ¢n  jnteractive environment allows the user to draw a two-
=Du(Xn,Yn:Zn,%y,2). The minimization problem is de- gimensional treatment volume of any size and shape. We
fined in terms of least-squares deviation from the prescribeflseq amaTLAB/GAMS interface to communicate between
dose by these two software packages.
After an optimization is complete, th@ATLAB/GAMS in-
S=f M
(xy,2)

2 .
E an i, — P) dx dy dz (9) terface returns the solution t0ATLAB. In MATLAB, the re-
Medical Physics, Vol. 27, No. 12, December 2000
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sults are visualized and analyzed using tools such as dose
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Fic. 2. Three optimizations were performed using an irregularly shaped target with a sensitive structure located in the concave region of thevthitget. The
asterisks represent the center location of a staptThe optimizer sought to maximize the percentage of dose deposited in the target while surrounding the
target with the 50% isodose line and while not exceeding six skmtshe optimizer sought to minimize the number of shots while maintaining 55% of the
integral dose within the target and while surrounding the target with the 50% isodosée]ifidne optimizer sought to minimize underdosage of the target
while not exceeding 20% of the maximum dose in the sensitive structure and while not exceeding eiglibsidisand(f) The corresponding DVHs.

volume histogramgDVH). This testing environment has deposited within the target. Five shots were included in the
proven to be an excellent tool for pinpointing the advantagesptimized result.
and disadvantages of various formulations and numerous op- Figures 2e) and Zf) show the results from a third opti-
timization techniques. mization. The maximum number of shots was eight, and no
A powerful feature of thesams modeling system is that point in the sensitive structure was allowed to exceed 20% of
the user can easily switch between a wide variety of modethe maximum target dose. At least 55% of the integral dose
types, objective functions, and constraints. Consequently, whad to be deposited in the target. Given these constraints, the
have examined numerous formulations in the two-optimizer sought to minimize the total underdosage within
dimensional test environment. This is illustrated in Fig. 2,the target. In Fig. @) note that the 20% isodose line closely
which presents the results from three optimizations permatches the edge of the sensitive structure. Note that a less
formed using an irregularly shaped target with a sensitivedhomogeneous tumor dose was accepted here to meet the dif-
structure located within the concave region of the targetficult constraint on the dose to the sensitive structure.
Clinically, this type of geometry is seen when a tumor is The results in Fig. 2 illustrate that an optimization can be
adjacent to a patient’s optic chiasm or brain stem. tailored to meet each patient’s individual needs. For ex-
The first optimization performed using this setup soughtample, if a patient’s tumor dose is limited due to the prox-
to maximize the percentage of integral dose deposited withiimity of a sensitive structure, it is possible to maximize the
the target. A constraint ensured that the 50% isodose lineumor dose uniformity while maintaining an upper bound on
surrounded the entire target. The maximum number of shotthe dose to a sensitive structure. Another feature of inverse
was set at six. This type of formulation assumes that thelanning is that one can choose to limit the number of shot
treatment planner can use the volume of the target and th&izes used in the treatment plan. This can be used to improve
irregularity of its shape in order to determine an acceptabléreatment efficiency by reducing the number of helmet
number of shots. The optimized dose distribution and thehanges.
corresponding dose volume histogram are show in Fi@s. 2 The majority of the optimizations that we have performed
and 2b). have sought to maximize the percentage of the integral dose
Figures 2c) and 2d) present the results from a second deposited within the target. Each optimization also specifies
optimization in which the goal was to minimize the total a minimum isodose line that must surround the target and the
number of shots. A constraint was used to ensure that thmaximum number of shots. A few optimized results pro-
50% isodose line covered the entire target. A second corduced using this approach are illustrated in Fig. 3. The first
straint required that at least 55% of the integral dose wasase shown is a triangular-shaped target. It is difficult to
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Fic. 3. Optimized dose distributions producing using the automated appr@achtriangular shaped targeh) a target in the shape of a musical note.

conform to a triangle due to its sharp corners. With inverseB. Patient results
treatment planning, however, a conformal result was pro-

gEch)(]ad Wf'th SIx S.hOtS (I)f rladu;uon. dT?e setcgn?hre&ﬁe Fig. ‘ lowed us to choose appropriate formulations to apply to real

musicIZI r?(;tsn'rlar:?gnar };nsd ig?ro argeter:g'oneo? tﬁ'zeta?r gthree-dimensional patient data. The nonlinear programming
. ' 9 narrow-ex ! Fn 9 épproach to treatment planning has currently been applied to

provides an added level of difficulty, but the optimizer WaStour patient cases. For each case, the optimized treatment

able to conform tightly to the target boundary. L )
. ) lan was compared to the original treatment plan delivered to

The nonlinear programming approach that we have use .
e actual patient.

is designed to find solutions that satisfy first-order optimality Figure 4 provides a dose volume histogram comparison

conditions. Therefore, global optimality is not guaranteed. ) .
Our approach, however, has proven robust and effective for Be_tween a manually defined treatment plan and three opti-
ized plans produced for the same patient. Seven shots of

wide range of target sizes and shapes. The robustness is pﬁ‘- o . S
rsadlatlon were used in the patient’s original treatment plan.

marily due to the fact that the shot locations are chosen a_I_ ined oo ‘ d using fi
part of the optimization. The optimization code uses both wo constrained optimizations were performed using five

gradient information and the constraints to aid in its searchf’“?d SIX shots of radiation, r'ESDE_CtIVE_Iy. A least-squares opti-
We refer to this as a “migrating shot location approach.” mization was also performed using five shots. It can be seen

We have made several modeling enhancements in order {52t the optimized plans produced a more homogeneous tar-
improve the speed of the optimizations and the quality of thé?&t dose without increasing the dose to the normal tissue.
final solutions. The first of these enhancements is that all FOr the same patient, a series of isodose plots are shown
four shot sizes are allowed at each migrating shot location" Fig- 5. The top row displays an axial, a coronal, and a
During the optimization, the arctangent function is used toSadittal slice taken from the seven shot treatment plan pro-
choose the size to be applied at each location. This approadt!ced by the physician. The bottom row displays the corre-
reduces the number of constraints in the model and signifisPonding slices from an optimized plan using six shots. Note
cantly improves the computational times. In order to improvethat the optimized treatment plan maintained the conformity
robustness, we typically use more trial shot locations tha®f the neurosurgeon’s plan while using fewer shots.
are requested in the final solution while constraining the op- Table Il provides a comparison between optimized and
timization to choose the most effective locations among thignanually defined plans for four Gamma Knife patients. The
set. This is again accomplished using the arctangent formdreatment goals for each optimization were determined based
lation. For example, ten possible shot locations might balpon the patient’s original prescription. In each case, the
included in an optimization that specifies a maximum of sixnumber of shots used in the optimized plan was equal to or
shots. The optimization is constrained to choose six out ofess than the number used in the manual plan.
these forty possible shotgen locations and four shots as-  In Table I, the plans are compared based upon the radio-
signed at eadh This large number of “migrating” shots surgery guidelines of the Radiation Therapy Oncology
increases the search space and enhances the robustness ofGiheup (RTOG).?! The guidelines specify that a case is per
technique. For all of the results presented in this paper, rarprotocol if the target is encompassed by 90% of the prescrip-
dom shot locations were used as the starting point for théion isodose. In Table Il, V90 indicates the percentage of the
optimization. Despite the poor quality of this initial guess, target volume covered by 90% of the prescription isodose.
each optimization produced a feasible solution with a conTable Il also includes the conformity indg)Cl) for each
formal dose distribution. plan. The conformity index is defined as the volume of the

Our experience with two-dimensional optimizations al-
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Fic. 4. (a) The solid line plots the results from a seven-shot plan produced by a neurosurgeon. A more uniform tumor dose is provided by both the six-shot
and five-shot plans produced using the inverse-planning approach. Along with the six- and five-shot plans produced using a constrained oppinsaeltipn a

the DVH curve for a five-shot plan using the least-squares approach is stigvipte that all four plans produce very similar DVH curves for the normal
tissue.

prescription isodose divided by the target volume. Theour least-squares formulation in order to achieve adequate
RTOG considers a case to be per protocol if this ratio fallsumor dose homogeneity. Consequently, the conformity in-
between 1.0 and 2.0. For each of the four patients, the cordices for this approach may deviate from the protocol.
strained optimization produced a plan that satisfied the In defining a patient’s treatment plan, a clinical judgment
RTOG requirements in terms of both tumor coverage andnust be made as to the importance of normal tissue sparing
dose conformity. Typically, tumor margins are included inas compared to that of tumor dose homogeneity. Initial

el

Reconstructed. x: 1358

Reconstructed, y: 8 Reconstructed. x: 1358

€ f

Fic. 5. (a)—(c) An axial, a coronal, and a sagittal slice, respectively, from the seven-shot dose distribution produced by the neurosurgeon. This is the same
patient that was presented in Fig.(6)—(f) The corresponding slices from the optimized six-shot case. In all cases, the purple/pink line outlines the tumor.
The yellow line is the 50% isodose curve, and the green line is the 30% isodose curve.
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TasLE Il. The results for four patient cases arc summarized based on V90 and conformity index. V90 indicates
the percentage of the target volume covered by 90% of the prescription isodose. The conformity index is the
ratio between the volume of the prescription isodose and the volume of the target.

Target V90 Conformity index
Patient volume
number (cmd) Manual Least sq. Constrained Manual Least sq. Constrained
1 8.3 99 99 100 1.70 1.92 1.94
2 7.1 100 100 100 2.06 2.04 1.59
3 6.2 100 98 100 1.76 141 1.03
4 35.3 100 99 100 1.28 1.49 1.27

analysis from a recent RTOG brain metastases radiosurgeplanning as applied to real patients will be provided in a
trial suggests a local control benefit to prescribing at a lowefuture article.

isodose line(less homogeneous distributionsThis result

may be due to the delivery of higher doses to the centrallyy. CONCLUSIONS

located hypoxic regions of the tum&rWith the constrained An automated treatment planning system for Gamma

optimization approach, the minimum isodose coverage is deI_énife radiosurgery has been developed. This technique is

fined by the user. For example, a patient case was optimizeb : . ;
, - . ; : ased upon the use of a nonlinear programming approach in
with the minimum target isodose constrained with a lower

bound of 45%. A second optimization was performed on th conjunction with migrating shot locations. The system simul-

same patient with a lower bound of 60%. For both plans, aane(_)usly optimizes Fhe shot sizes, Ipcauons, and weights,
. . .’ and it does not require any preplanning on the part of the

dose of 18 Gy was prescribed to the target’s minimum isod- . T .
ser. The optimized dose distributions from a series of pa-

ose line. The seco_nd _plan p_rowded a more uniform targegems have been analyzed, and the results demonstrate that
dose, but conformity index increased from 1.73 to 1.81.

; . - _“Inverse planning is often able to improve dose conformity
There was also an increase in the volume of normal tissue

receiving more than 10 G{L7.0 vs 21.9 cf). A key feature While reducing the total number of shots. Consequently, this

of inverse planning is the ease with which the prescriptiontOOI has the potential to improve both the quality and the

can be modified in order to strike the desired balance be‘?ﬁcICIenCy of Gamma Knife procedures.
tween dose homogeneity and dose conformity. In particular,
specification of the optimization problem as a set of con-Y- FUTURE WORK
straints proved advantageous over simply matching prescrip- With refinements in the dose model, this approach to in-
tion dose by least squares. The constrained approach allowgrse planning can be further improved. This is illustrated
formulation of the problem in terms of clinically oriented with a DVH comparison shown in Fig. 6. The first set of
guidelines, such as those proposed by the RTOG for plaDVH curves were computed using the manually defined
evaluation, guaranteeing a satisfactory solution. The leastreatment plan that included five shots of radiation. The sec-
squares approach could only achieve such results by a tri@nd set of DVH curves were computed from an optimized
and error process. dose distribution using five shots. In this case, the dose was
Due to variations in both skull size and target location, thecalculated using the error function model described earlier.
dose distribution produced by a shot of radiation changeg&inally, the optimized shots sizes, locations, and weights
from one patient to the next. Consequently, the parameters were entered into theAMMAPLAN system, and a third set of
the dose model should be reoptimized for each patient. ThiBVH curves were obtained. It can be seen that the quality of
reoptimization process is trivial provided that the dose prothe plan was significantly degraded due to the lack of agree-
files are known. Unfortunately, there is no straightforwardment between the two dose calculations. The agreement
approach for extracting the dose profiles from the Lekselcould be improved by updating the dose model on a patient
GAMMAPLAN system. Therefore, for this initial work, the pa- by patient basis. We are currently working on automating
rameters in Table | were used for all of the optimizations. this procedure. We are also planning to develop a dose
All of our treatment plans were optimized on a Sparcmodel based on a cublespline fit to the data. This formu-
Ultra-10 with a 330 MHz processor. The amount of time lation may prove easier for the optimizer to solve. It should
required for optimizing each patient’s treatment plan variedbe noted that the patient results presented earlier in this text
widely over a range of 5—45 min. The speed of an optimizawere all based upon the final dose calculation performed af-
tion is highly dependent upon both the number of shots ander the optimized shot locations and weights were plugged
the number of calculation points. To improve the speed, wénto the GAMMAPLAN system.
typically run an initial optimization using a coarser grid of  Future work will also focus on speeding up the optimiza-
calculation points. The result is then used as the startinjon process. The optimizations performed for this paper be-
point in a second optimization using a denser grid of pointsgan with shots of radiation placed at random locations in the
It should be noted that a more detailed analysis of inverseéarget. Improving the starting point for each optimization
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