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An inverse treatment planning system for Gamma Knife radiosurgery has been developed using
nonlinear programming techniques. The system optimizes the shot sizes, locations, and weights for
Gamma Knife treatments. In the patient’s prescription, the user can specify both the maximum
number of shots of radiation and a minimum isodose line that must surround the entire treatment
volume. After satisfying all of the constraints included in the prescription, the system maximizes
the conformity of the dose distribution. This automated approach to treatment planning has been
applied retrospectively to a series of patient cases, and each optimized plan has been compared to
the corresponding manual plan produced by an experienced user. The results demonstrate that this
tool can often improve the tumor dose homogeneity while using fewer shots than were included in
the original plan. Therefore, inverse treatment planning should improve both the quality and the
efficiency of Gamma Knife treatments. ©2000 American Association of Physicists in Medicine.
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I. INTRODUCTION

The Leksell Gamma Knife provides an advanced stereota
approach to the treatment of tumors and vascular malfor
tions within the head.1–4 Over 100 Gamma Knife units ar
installed worldwide, and more than 20 000 patients
treated each year.5

Each patient’s treatment plan is developed by a neuro
geon working in conjunction with a radiation oncologist a
a physicist. Through an iterative process of trial and er
they determine the number of shots along with their si
location, and weight. When the treatment volume is sm
the treatment plan may only require one or two shots
radiation. For these cases, treatment planning is typic
straightforward. The planning process, however, becom
much more complex for both irregularly shaped tumors a
tumors that are large in size. For these cases, the compl
of the treatment planning process makes it difficult to ta
full advantage of the powerful capabilities of the Gamm
Knife. Therefore, we have sought to automate the Gam
Knife treatment planning process.

We have examined a variety of techniques in hopes
developing an automated planning approach that is fast, fl
ible, and robust. The system must be fast, because the t
ment planning process cannot begin until after the patie
stereotactic head frame is in place and MRI or CT ima
have been obtained. It is therefore unacceptable to ha
planning procedure that takes hours to complete. Our g
has been to create an automated planning system tha
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produce a treatment plan within 20 min. Flexibility in defin
ing the treatment goals is also of key importance, beca
each plan must be tailored to meet the individual needs of
patient. The system must also be flexible enough to sat
the preferences of a variety of treatment planners. Fina
the system must be robust. A robust system is one that
duces a high quality solution for treatment volumes of
sizes and shapes. The ideal technique should provide a
quality result independent of the quality of the starting po
used in the optimization.

A number of researchers have investigated techniques
automating the Gamma Knife treatment planni
process.6–12 One approach incorporates the assumption t
each shot of radiation can be modeled as a rigid sphere.
problem is then reduced to one of geometric coverage, a
ball packing approach can be used to determine the
locations and sizes.6,12 The use of a modified Powell’s
method in conjunction with simulated annealing has a
been proposed.8–11

This paper addresses a different approach where the
distribution is modeled and a formal constrained optimiz
tion is used to determine the treatment plan. With this te
nique, the shot sizes, locations, and weights are optimi
simultaneously. The optimization does not require the use
provide initial shot locations, and the optimization model c
include dose constraints applied to both the target and
sensitive structures. The dose model used in this techn
was generated using a nonparametric optimization appro
27487„12…Õ2748Õ9Õ$17.00 © 2000 Am. Assoc. Phys. Med.
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2749 Shepard et al. : Inverse treatment planning 2749
The treatment plan optimization is based on the use of
grating shot locations and a nonlinear programming
proach. The effectiveness of this technique was initially
amined using a two-dimensional testing environment.
series of optimizations have also been performed using
three-dimensional patient data. This paper introduces
dose model and the optimization techniques. It also provi
comparisons between optimized patient plans and the co
sponding plans produced manually by a neurosurgeon.

Our constrained optimization program was developed
multaneously with a simpler algorithm using a least-squa
objective function. Both approaches incorporate a migrat
shot formulation. Although the least-squares model is no
extensible, it serves as a useful benchmark for evaluating
constrained optimization approach.

II. MATERIALS AND METHODS

A. Dose model

For each patient, the optimization uses an algebraic mo
in order to determine the dose delivered at each calcula
point. Calculation points are located on a three-dimensio
grid that is applied in the area of interest. In the optimizat
model,S represents the set of the shots andW represents the
possible shot sizes~4, 8, 14, and 18 mm!. The complete dose
distribution can be calculated as the sum of the contributi
from each shot. The dose calculation requires the locatio
each shot (xs ,ys ,zs) and the relative weight (as,w) that is
assigned to each. The weight is proportional to the treatm
time for the given shot. In practice, this means that the do
D, at a point (x,y,z) is

D~x,y,z!5 (
~s,w!PS3W

as,wDw~xs ,ys ,zs ,x,y,z!, ~1!

whereDw(xs ,ys ,zs ,x,y,z) is the dose delivered to the ca
culation point (x,y,z) by a shot of sizew centered at
(xs ,ys ,zs).

In order to determine the form ofDw , the treatment plan-
ning system, LeksellGAMMAPLAN ~version 5.20!, was used
to simulate the delivery of a shot of widthw placed at the
center a patient’s stereotactic head frame. For each
width, dose profiles in thex, y, and z directions were ex-
tracted. These profiles were then averaged as follows:

D̄w~d!

5
Dw~0,0,0,d,0,0!1Dw~0,0,0,0,d,0!1Dw~0,0,0,0,0,d!

3
.

~2!

The center of the patient’s head frame was defined as
origin. The values that were obtained were used as data
nonlinear parameter estimation problem.

The dose distribution for each shot of radiation was
sumed to be spherically symmetric. Consequently, the d
modeling problem was reduced to one of determining a fu
tional form for the dose delivered at a calculation point
cated a distanced from the center of the shot. The dos
Medical Physics, Vol. 27, No. 12, December 2000
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model we have used incorporates a sum of error function13

The error function can be thought of as a point source~d
function! convolved with a finely collimated aperture func
tion. The following functional form was used withd repre-
senting the distance to the center of the shot:

(
i 51

2

l i S 12erfS d2r i

s i
D D , ~3!

where

erf~xi !5
1

A2p
E

2`

xi

e2x2
dx. ~4!

For each of the four shot sizes, the six parametersl i , r i , and
s i were fit to the data via a least-squares approach.
resulting nonlinear optimization problem is

min
l,r ,s

I D̄w~d!2(
i 51

2

l i S 12erfS d2r i

s i
D D I . ~5!

This problem was solved using the nonlinear optimizat
algorithmCONOPT.14–17The results for all four shot sizes ar
shown in Fig. 1. The fit is best for the small shot sizes a
decreases slightly in accuracy for the larger shot sizes.
values of the parameters that we generated are provide
Table I.

B. Constrained optimizations

Constrained optimization models were written in t
modeling language ofGAMS ~the General Algebraic Model
ing System!.18 GAMS is a high-level modeling system fo
mathematical programming problems. It consists of a l
guage compiler and a variety of integrated high-performa
solvers.GAMS was chosen for the optimizations based on
versatility and its state-of-the-art optimization algorithms.
particular, the formulations that we describe are constrai
nonlinear programming problems, and as such are so

FIG. 1. A comparison between dose profiles extracted from the Lek
GAMMAPLAN system and the profiles from dose distributions predicted by
two error function model.
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TABLE I. The optimized dose parameters for the dose model outlined by Eq.~3!.

Shot ~mm! l1 r 1 s1 l2 r 2 s2

4 0.649 200 1.365 916 4.413 680 0.599 844 2.661 771 0.668
8 0.401 007 7.035 785 5.702 337 0.648 584 4.849 365 1.149

14 0.363 704 13.972 59 7.196 694 0 0.657 808 8.199 979 1.321
18 0.381 801 17.678 57 8.194 611 0.634 696 10.315 83 1.441
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using a state-of-the-art optimization algorithmCONOPT.14–17

For each of the nonlinear functions in our model,CONOPT

uses first-order derivative information to determine a sea
direction, which is then investigated using a classical l
search technique.

The actual algorithm inCONOPTis based upon a genera
ized reduced gradient~GRG! approach to optimization. A
critical feature ofCONOPT is that it maintains a feasible so
lution throughout the optimization once a feasible solut
has been obtained. The user can therefore choose to te
nate the optimization prematurely with assurance that
solution provided will satisfy all of the constraints. In ord
to allow for very large models, all matrix operations a
implemented using sparse matrix techniques. The overh
of the GRG algorithm is minimized through a variety
techniques including dynamic feasibility tolerances, reuse
Jacobians, and an efficient reinversion routine.

Each constrained optimization incorporates both an ob
tive function and a set of constraints. The objective functio
that we have tested include:~1! maximizing the conformality
of the dose distribution,~2! minimizing the number of shots
and ~3! minimizing the dose to a sensitive structure such
the brain stem or optic chiasm.

Each optimization also includes a series of constraints
constraint is a condition that must be satisfied in order fo
solution to be considered feasible. Constraints have b
used to specify each of the following:~1! the maximum
number of shots,~2! a minimum isodose line that must su
round the entire tumor volume, and~3! a maximum dose for
each sensitive structure.

In the first phase of the optimization, the optimizer see
a feasible solution that satisfies the constraints. After a
sible solution is obtained, the optimizer minimizes or ma
mizes the objective function. If a user is unsatisfied with
optimized plan, he or she can update the treatment goals
perform an additional optimization. The solution from th
first optimization should provide a high quality starting po
for the second optimization. Therefore, the time requi
ments for the second optimization are minimized.

We have investigated two constrained optimization
proaches, namely mixed integer programming and nonlin
programming. The mixed integer programming approach
been addressed elsewhere.19 This paper will describe the us
of a nonlinear programming approach to optimizing Gam
Knife treatment plans.

The nonlinear programming approach that we have imp
mented incorporates migrating shot locations. In ot
words, the position of each shot can change over the co
of the optimization. At each shot location (xs ,ys ,zs), a rela-
l. 27, No. 12, December 2000
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tive weight (as,w) is assigned for each of the four availab
shots. The dose computation includes a grid of calculat
points, and each point is categorized as either target~T! or
normal tissue~NT!.

A key feature of the optimization approach presented h
is that the user can specify a minimum isodose line that m
surround the entire treatment volume. For Gamma Kn
treatments, the neurosurgeon often requires that the e
target is encompassed by the 50% isodose line.~The 50%
isodose line is defined relative to the maximum dose.! We
model such a constraint by imposing strict lower and up
bounds on the dose allowed in the target. Namely, for
( i , j ,k) in T

0.5<D~ i , j ,k!<1.

This constraint guarantees that the dose throughout the tu
is maintained between a value of 0.5 and 1. Consequently
of the points in the tumor must receive a dose greater t
50% of the maximum tumor dose. For our Gamma Kn
prescriptions, the user specifies the isodose curve that m
encompass the tumor. It is only after the plan has been
viewed that the absolute dose in Gray is prescribed. Note
with this formulation it is easy to change the minimum is
dose requirement by modifying the numerical values of
bounds.

The general optimization approach that we used is ma
mize

*~x,y,z!PTD~x,y,z!dx dy dz

*~x,y,z!D~x,y,z!dx dy dz

subject to

D~x,y,z!5 (
~s,w!PS3W

as,wDw~xs ,ys ,zs ,x,y,z!,

0.5<D~x,y,z!<1, ;~x,y,z!PT, ~6!

as,w>0.

The goal of the optimization is to maximize the percenta
of the integral dose that is deposited in the target subject
constraint that the 50% isodose line must surround the tar
The maximum number of shots that can be assigned non
weights is constrained to be less than or equal toN. In this
formulation, the percentage of integral dose deposited in
target serves as a measure of the conformity of the d
distribution. Spatial integrals, represented by*dx dy dz, are
taken over all volumes of interest and are implemented a
simple sum over discrete points.
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2751 Shepard et al. : Inverse treatment planning 2751
An important feature of our nonlinear programming a
proach is that the user does not need to preselect the si
each shot. In our formulation, a shot of widthw is used at
locations if as,w>0. Ideally, the optimization would include
a binary variable assigned to each shot of radiation. T
binary variable would serve as an on/off switch to indica
whether or not a shot has been assigned a nonzero
@H(t)51 if t.0 andH(t)50 whent50#. The optimization
would then include a constraint that the sum of all the bin
variables must be less than the maximum number of all
able shots.

The use of a true step function is disallowed in a nonl
ear programming formulation. Therefore, we have appro
mated the step function using the following approach:

H~a,t !5
2 arctan~at !

p
, ~7!

where lim
a→`

H(a,t)5H(t). Therefore, the condition

(
~s,w!P$1,...,q%3W

H~a,ts,w!<N ~8!

is added to the constraint set, whereq represents the numbe
of migrating shot locations. Typically, we include more m
grating shot locations than the number of allowable sh
(q.N). This increases the search space and provides
proved robustness.

Based on our experience, the best speed and robus
are seen when a two-step optimization is used. An ini
optimization is performed with ana value of ten. A second
optimization is then performed with ana value of one hun-
dred. The constraint on the total number of shots beco
more absolute in nature with increasing values ofa. Higher
a values, however, lead to a more nonlinear formulation t
tends to be more difficult to solve.

C. Least-squares formulation

Our initial attempt at formulating a nonlinear migratin
shot model used a simple least-squares formulation. This
proach is based on a variational principle that allows expl
generation of optimization equations.

With this method, a prescribed doseP(x,y,z) was set at
each of the calculation points.P(x,y,z) may have a complex
shape. For example, one might choose to conform to area
hypoxia in the target.N individual shot distributions are con
sidered as a set ofN non-orthonormal basis function
cn , nP$1,...,N%. These basis functions are functions
the shot locations as well as the spatial coordinates. Toge
with the relative weights (an), the shot locations form the
set of optimization parameters. Explicitly, cn

[Dw(xn ,yn ,zn ,x,y,z). The minimization problem is de
fined in terms of least-squares deviation from the prescri
dose by

S5E
~x,y,z!

M S (
n

ancn2PD 2

dx dy dz. ~9!
Medical Physics, Vol. 27, No. 12, December 2000
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A weighting factor,M (x,y,z), is assigned to each region o
interest~target, critical structure, etc.!. The weighting factor
defines the importance of matching the prescription in e
region.

Variation of S with respect to the parameter
(an ,xn ,yn ,zn) produces a set of nonlinear equations, the
lutions of which define local minima,

(
m

HamE M ~cncm!J 5E M ~Pcn!dx dy dz, ~10!

E M S (
n

ancn2PD ]cm

]xm
dx dy dz50,

E M S (
n

ancn2PD ]cm

]ym
dx dy dz50, ~11!

E M S (
n

ancn2PD ]cm

]zm
dx dy dz50.

A positivity constraint (an>0) is applied to each sho
weight. This set of equations applies for nonvanishi
weights, and is to be solved for (an ,xn ,yn ,zn). We solve
this system by linearizing the spatial equations@Eq. ~11!#
with respect to shot locations in the neighborhood of a so
tion and solving them in an iterative fashion. The expli
linearized equations are not shown. The time parameteran

are also updated at each iteration, solving Eq.~10! with the
constraint (an>0) imposed. General solutions will involv
some zero weighted shots, in which case Eq.~10! is handled
as a least-squares optimization to determine the weightsan .
Shots with persistently zero weights over several iterati
are eventually excluded. Once the zero shots have been
cluded, Eq.~10! can generally be inverted to determine t
weights.

This least-squares formulation does not allow specifi
tion of a prescribed isodose coverage, and it is often ne
sary to specify a margin around the tumor volume to incre
the minimum isodose that covers the target. More gener
the method is limited by dependence on an explicit repres
tation of an objective function that results in simple iterati
equations. This hampers the incorporation of additional
teria in the objective function. An additional limitation is tha
shot widths are determined and fixed in advance. At pres
this first-generation solver serves as a benchmark for ev
ating the second-generation constrained solver.

III. RESULTS

A. Two-dimensional optimizations

We have created a testing environment for our mod
within MATLAB , using the image processing toolbox. Th
interactive environment allows the user to draw a tw
dimensional treatment volume of any size and shape.
used aMATLAB/GAMS interface to communicate betwee
these two software packages.20

After an optimization is complete, theMATLAB/GAMS in-
terface returns the solution toMATLAB . In MATLAB , the re-
sults are visualized and analyzed using tools such as d
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FIG. 2. Three optimizations were performed using an irregularly shaped target with a sensitive structure located in the concave region of the target.white
asterisks represent the center location of a shot.~a! The optimizer sought to maximize the percentage of dose deposited in the target while surround
target with the 50% isodose line and while not exceeding six shots.~c! the optimizer sought to minimize the number of shots while maintaining 55% of
integral dose within the target and while surrounding the target with the 50% isodose line.~e! The optimizer sought to minimize underdosage of the tar
while not exceeding 20% of the maximum dose in the sensitive structure and while not exceeding eight shots.~b!, ~d!, and~f! The corresponding DVHs.
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volume histograms~DVH!. This testing environment ha
proven to be an excellent tool for pinpointing the advanta
and disadvantages of various formulations and numerous
timization techniques.

A powerful feature of theGAMS modeling system is tha
the user can easily switch between a wide variety of mo
types, objective functions, and constraints. Consequently
have examined numerous formulations in the tw
dimensional test environment. This is illustrated in Fig.
which presents the results from three optimizations p
formed using an irregularly shaped target with a sensi
structure located within the concave region of the targ
Clinically, this type of geometry is seen when a tumor
adjacent to a patient’s optic chiasm or brain stem.

The first optimization performed using this setup sou
to maximize the percentage of integral dose deposited wi
the target. A constraint ensured that the 50% isodose
surrounded the entire target. The maximum number of sh
was set at six. This type of formulation assumes that
treatment planner can use the volume of the target and
irregularity of its shape in order to determine an accepta
number of shots. The optimized dose distribution and
corresponding dose volume histogram are show in Figs.~a!
and 2~b!.

Figures 2~c! and 2~d! present the results from a secon
optimization in which the goal was to minimize the tot
number of shots. A constraint was used to ensure that
50% isodose line covered the entire target. A second c
straint required that at least 55% of the integral dose w
Medical Physics, Vol. 27, No. 12, December 2000
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deposited within the target. Five shots were included in
optimized result.

Figures 2~e! and 2~f! show the results from a third opti
mization. The maximum number of shots was eight, and
point in the sensitive structure was allowed to exceed 20%
the maximum target dose. At least 55% of the integral d
had to be deposited in the target. Given these constraints
optimizer sought to minimize the total underdosage with
the target. In Fig. 2~e! note that the 20% isodose line close
matches the edge of the sensitive structure. Note that a
homogeneous tumor dose was accepted here to meet th
ficult constraint on the dose to the sensitive structure.

The results in Fig. 2 illustrate that an optimization can
tailored to meet each patient’s individual needs. For
ample, if a patient’s tumor dose is limited due to the pro
imity of a sensitive structure, it is possible to maximize t
tumor dose uniformity while maintaining an upper bound
the dose to a sensitive structure. Another feature of inve
planning is that one can choose to limit the number of s
sizes used in the treatment plan. This can be used to imp
treatment efficiency by reducing the number of helm
changes.

The majority of the optimizations that we have perform
have sought to maximize the percentage of the integral d
deposited within the target. Each optimization also speci
a minimum isodose line that must surround the target and
maximum number of shots. A few optimized results pr
duced using this approach are illustrated in Fig. 3. The fi
case shown is a triangular-shaped target. It is difficult
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FIG. 3. Optimized dose distributions producing using the automated approach:~a! a triangular shaped target,~b! a target in the shape of a musical note.
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conform to a triangle due to its sharp corners. With inve
treatment planning, however, a conformal result was p
duced with six shots of radiation. The second result@see Fig.
3~b!# is for an irregularly shaped target in the shape o
musical note. The long and narrow extension of this tar
provides an added level of difficulty, but the optimizer w
able to conform tightly to the target boundary.

The nonlinear programming approach that we have u
is designed to find solutions that satisfy first-order optima
conditions. Therefore, global optimality is not guarante
Our approach, however, has proven robust and effective f
wide range of target sizes and shapes. The robustness i
marily due to the fact that the shot locations are chosen
part of the optimization. The optimization code uses b
gradient information and the constraints to aid in its sear
We refer to this as a ‘‘migrating shot location approach.’

We have made several modeling enhancements in ord
improve the speed of the optimizations and the quality of
final solutions. The first of these enhancements is that
four shot sizes are allowed at each migrating shot locat
During the optimization, the arctangent function is used
choose the size to be applied at each location. This appro
reduces the number of constraints in the model and sig
cantly improves the computational times. In order to impro
robustness, we typically use more trial shot locations th
are requested in the final solution while constraining the
timization to choose the most effective locations among
set. This is again accomplished using the arctangent for
lation. For example, ten possible shot locations might
included in an optimization that specifies a maximum of
shots. The optimization is constrained to choose six ou
these forty possible shots~ten locations and four shots a
signed at each!. This large number of ‘‘migrating’’ shots
increases the search space and enhances the robustness
technique. For all of the results presented in this paper,
dom shot locations were used as the starting point for
optimization. Despite the poor quality of this initial gues
each optimization produced a feasible solution with a c
formal dose distribution.
Medical Physics, Vol. 27, No. 12, December 2000
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B. Patient results

Our experience with two-dimensional optimizations a
lowed us to choose appropriate formulations to apply to r
three-dimensional patient data. The nonlinear programm
approach to treatment planning has currently been applie
four patient cases. For each case, the optimized treatm
plan was compared to the original treatment plan delivere
the actual patient.

Figure 4 provides a dose volume histogram compari
between a manually defined treatment plan and three o
mized plans produced for the same patient. Seven shot
radiation were used in the patient’s original treatment pl
Two constrained optimizations were performed using fi
and six shots of radiation, respectively. A least-squares o
mization was also performed using five shots. It can be s
that the optimized plans produced a more homogeneous
get dose without increasing the dose to the normal tissu

For the same patient, a series of isodose plots are sh
in Fig. 5. The top row displays an axial, a coronal, and
sagittal slice taken from the seven shot treatment plan p
duced by the physician. The bottom row displays the cor
sponding slices from an optimized plan using six shots. N
that the optimized treatment plan maintained the conform
of the neurosurgeon’s plan while using fewer shots.

Table II provides a comparison between optimized a
manually defined plans for four Gamma Knife patients. T
treatment goals for each optimization were determined ba
upon the patient’s original prescription. In each case,
number of shots used in the optimized plan was equal to
less than the number used in the manual plan.

In Table II, the plans are compared based upon the ra
surgery guidelines of the Radiation Therapy Oncolo
Group ~RTOG!.21 The guidelines specify that a case is p
protocol if the target is encompassed by 90% of the presc
tion isodose. In Table II, V90 indicates the percentage of
target volume covered by 90% of the prescription isodo
Table II also includes the conformity index~CI! for each
plan. The conformity index is defined as the volume of t
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FIG. 4. ~a! The solid line plots the results from a seven-shot plan produced by a neurosurgeon. A more uniform tumor dose is provided by both th
and five-shot plans produced using the inverse-planning approach. Along with the six- and five-shot plans produced using a constrained optimizatiopproach,
the DVH curve for a five-shot plan using the least-squares approach is shown.~b! Note that all four plans produce very similar DVH curves for the norm
tissue.
h
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ring
tial
prescription isodose divided by the target volume. T
RTOG considers a case to be per protocol if this ratio fa
between 1.0 and 2.0. For each of the four patients, the c
strained optimization produced a plan that satisfied
RTOG requirements in terms of both tumor coverage a
dose conformity. Typically, tumor margins are included
Medical Physics, Vol. 27, No. 12, December 2000
e
s
n-
e
d

our least-squares formulation in order to achieve adequ
tumor dose homogeneity. Consequently, the conformity
dices for this approach may deviate from the protocol.

In defining a patient’s treatment plan, a clinical judgme
must be made as to the importance of normal tissue spa
as compared to that of tumor dose homogeneity. Ini
the same
tumor.
FIG. 5. ~a!–~c! An axial, a coronal, and a sagittal slice, respectively, from the seven-shot dose distribution produced by the neurosurgeon. This is
patient that was presented in Fig. 6.~d!–~f! The corresponding slices from the optimized six-shot case. In all cases, the purple/pink line outlines the
The yellow line is the 50% isodose curve, and the green line is the 30% isodose curve.
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TABLE II. The results for four patient cases arc summarized based on V90 and conformity index. V90 ind
the percentage of the target volume covered by 90% of the prescription isodose. The conformity index
ratio between the volume of the prescription isodose and the volume of the target.

Patient
number

Target
volume
~cm3!

V90 Conformity index

Manual Least sq. Constrained Manual Least sq. Constrain

1 8.3 99 99 100 1.70 1.92 1.94
2 7.1 100 100 100 2.06 2.04 1.59
3 6.2 100 98 100 1.76 1.41 1.03
4 35.3 100 99 100 1.28 1.49 1.27
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analysis from a recent RTOG brain metastases radiosur
trial suggests a local control benefit to prescribing at a low
isodose line~less homogeneous distributions!. This result
may be due to the delivery of higher doses to the centr
located hypoxic regions of the tumor.22 With the constrained
optimization approach, the minimum isodose coverage is
fined by the user. For example, a patient case was optim
with the minimum target isodose constrained with a low
bound of 45%. A second optimization was performed on
same patient with a lower bound of 60%. For both plans
dose of 18 Gy was prescribed to the target’s minimum is
ose line. The second plan provided a more uniform tar
dose, but conformity index increased from 1.73 to 1.
There was also an increase in the volume of normal tis
receiving more than 10 Gy~17.0 vs 21.9 cm3!. A key feature
of inverse planning is the ease with which the prescript
can be modified in order to strike the desired balance
tween dose homogeneity and dose conformity. In particu
specification of the optimization problem as a set of co
straints proved advantageous over simply matching presc
tion dose by least squares. The constrained approach al
formulation of the problem in terms of clinically oriente
guidelines, such as those proposed by the RTOG for p
evaluation, guaranteeing a satisfactory solution. The le
squares approach could only achieve such results by a
and error process.

Due to variations in both skull size and target location,
dose distribution produced by a shot of radiation chan
from one patient to the next. Consequently, the paramete
the dose model should be reoptimized for each patient. T
reoptimization process is trivial provided that the dose p
files are known. Unfortunately, there is no straightforwa
approach for extracting the dose profiles from the Leks
GAMMAPLAN system. Therefore, for this initial work, the pa
rameters in Table I were used for all of the optimizations

All of our treatment plans were optimized on a Spa
Ultra-10 with a 330 MHz processor. The amount of tim
required for optimizing each patient’s treatment plan var
widely over a range of 5–45 min. The speed of an optimi
tion is highly dependent upon both the number of shots
the number of calculation points. To improve the speed,
typically run an initial optimization using a coarser grid
calculation points. The result is then used as the star
point in a second optimization using a denser grid of poin
It should be noted that a more detailed analysis of inve
l. 27, No. 12, December 2000
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planning as applied to real patients will be provided in
future article.

IV. CONCLUSIONS

An automated treatment planning system for Gam
Knife radiosurgery has been developed. This technique
based upon the use of a nonlinear programming approac
conjunction with migrating shot locations. The system sim
taneously optimizes the shot sizes, locations, and weig
and it does not require any preplanning on the part of
user. The optimized dose distributions from a series of
tients have been analyzed, and the results demonstrate
inverse planning is often able to improve dose conform
while reducing the total number of shots. Consequently,
tool has the potential to improve both the quality and t
efficiency of Gamma Knife procedures.

V. FUTURE WORK

With refinements in the dose model, this approach to
verse planning can be further improved. This is illustrat
with a DVH comparison shown in Fig. 6. The first set
DVH curves were computed using the manually defin
treatment plan that included five shots of radiation. The s
ond set of DVH curves were computed from an optimiz
dose distribution using five shots. In this case, the dose
calculated using the error function model described earl
Finally, the optimized shots sizes, locations, and weig
were entered into theGAMMAPLAN system, and a third set o
DVH curves were obtained. It can be seen that the quality
the plan was significantly degraded due to the lack of agr
ment between the two dose calculations. The agreem
could be improved by updating the dose model on a pat
by patient basis. We are currently working on automat
this procedure. We are also planning to develop a d
model based on a cubicb-spline fit to the data. This formu
lation may prove easier for the optimizer to solve. It shou
be noted that the patient results presented earlier in this
were all based upon the final dose calculation performed
ter the optimized shot locations and weights were plugg
into theGAMMAPLAN system.

Future work will also focus on speeding up the optimiz
tion process. The optimizations performed for this paper
gan with shots of radiation placed at random locations in
target. Improving the starting point for each optimizatio
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could significantly reduce the optimization time. We are c
rently testing a variety of techniques in hopes of develop
a means of quickly obtaining a high quality initial guess.
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