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SOLUTIONS TO AFFINE GENERALIZED EQUATIONS USING
PROXIMAL MAPPINGS

STEPHEN C, BILLUPS AND MICHAEL C. FERRIS

The normal map has proven to be a powerful tool for solving generalized equations of the form:
find ; £ C, with 0 e F{z) + NiAz). where C is a convex set and Nr(z) is the normal cone to C
at ;. In this paper, we use the 7"-map, a generalization of the normal map, to solve equations of the
more general form: find : E dom(r), with 0 ^ E(z) + T(z). where T is a maximal monotone
multifunction. We present a path-following algorithm that determines zeros of coherently oriented
piecewise-affine functions, and we use this algorithm, together with the T-map, to solve the
generalized equation for affine, coherently oriented functions F, and polyhedral multi functions T.
The path-following algorithm we develop here extends the piecewise-linear homotopy framework of
Eaves to the case where a representation of a subdivided manifold is unknown.

1. Introduction. This paper is concerned with solving generalized equations (Robin-
son 1979b, Robinson 1983) of the form

(I) Q&Fix) + nx),

where 7 is a maximal monotone multifunction from R" into R" and F is a continuously
differentiable function from an open set i l D domlT) into R". We recall that a monotone
multifunction 7 is a point to set mapping such that for each (x\ _y'), (x^, y') in the graph
of 7,

where { • , • ) denotes the inner product, 7 is maximal if its graph is not properly
contained in that of any other monotone multifunction and dom(7) represents the
effective domain of 7.

To date, most of the algorithmic development for generalized equations has been focused
on the special case where 7 := Nc, the normal cone to a convex .set C, defined by

Tf ^ Mi \ I ^^l^^ ' >' - 2) ^ 0' V y e C} z G C,

It is well known that Nc is a maximal monotone multifunction (since, for example, it is the
subdifferential of the indicator function of C; see Aubin and Ekeland 1984, Remark, page
194). This case, therefore, yields the generalized equation

(2) OGFU) + N^-ix).
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Muny problems from mathematical programming, equilibrium, complementarity and other
fields can be expressed in this form. For example, if F := V/, then (2) represents the first
order necessary optimality conditions for the problem

minimize f{x)
subject to X E. C.

Another important instance of (2) is the variational inequality problem, which is to find z
£ C such that

This problem is known to be equivalent to (2), see Robinson (1983).
As a final example, we mention the complementarity problem; this has a wealth of

applications and appears in a variety of forms (Ferris and Pang 1997). The standard nonlinear
complementarity problem is to find .« G R+ such that

F(jc)>0 and {x. F{x)) = 0.

It is well known (Ferris and Pang 1997, Karamardian 1971) that complementarity problems
can be reformulated as variational inequalities, and therefore can be treated in the context of
the generalized equation (2).

A prominent tool for solving (2) is the normal map (Eaves 1971, Robinson 1992, Todd
1976). The normal map Fc for a function F : il ^ R" and a nonempty, closed, convex set
C D n is defined by

(3) FcW : = F(7rc ( ;c ) )+^- irdx),

where 7TC(X) denotes the projection (with respect to the Euclidean norm) of x onto the set C.
The importance of the normal map lies in the fact that solving (2) is equivalent to finding a
zero of the normal map Ff. Specifically, if J: is a zero of the normal map, then z ;= 7r((A)
solves (2). Conversely, if z is a solution to (2), then x := z — F(z) is a zero of the normal
map. Thus, the problem of solving the generalized equation (2), which is expressed with
set-valued functions, is reduced to finding a zero of a piecewise smooth, single-valued
function.

Several algorithms have been developed based on this idea. Most of these algorithms are
based on the theory of piecewise linear homotopies given by Eaves (1976). The specializa-
tion of the general algorithm given in Eaves (1976) determines a zero of the normal map by
tracing the zero curve of a piecewise linear homotopy mapping. It is shown in Eaves and
Lemke (1981) that Lemke's famous method (Lemke and Howson 1964) for solving linear
complementarity problems is conceptually equivalent to path following in a corresponding
piecewise linear system. This idea is easily extended to more general algorithms (Eaves
1978a, Eaves !978b). Based on Eaves' work, Cao and Ferris (1996b) analyzed an algorithm
for solving affine (i.e. F( x) is affine) variational inequality problems over polyhedral sets and
showed that Lemke's method processed matrices in the class Pc (Cao and Ferris 1996a).

For non-affine problems with C rectangular, Ralph (1994) proposed a Newton-based
algorithm where at each iteration the Newton point is calculated by solving an affine
variational inequality (AVI) that is a linearization of the normal map equation at the
current point. This approach was developed computationally by Dirkse and Ferris (1995)
to produce PATH, an efficient and robust code for solving mixed complementarity
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problems, see also (Dirkse 1994, Dirkse and Ferris 1996). A similar approach was
developed by Rutherford (1993).

In this paper, we begin to generalize the above class of algorithms by removing the
restriction that T be the normal cone to a convex set. As a first step, this paper focuses on
solving the affine generalized equation where F is an affine function and T is polyhedral (that
is, the graph of T is the union of finitely many convex polyhedrons).

Our strategy is, in essence, a generalization of the AVI algorithm of Cao and Ferris. We
use a generalization of the normal map to reformulate (1) as a zero finding problem of a
piecewise affine function. To solve this zero finding problem, we present a path following
algorithm for determining zeros of piecewise-affine functions.

Our path following algorithm is based on the piecewise-linear homotopy algorithm of
Eaves (1976). However it is more fiexible in the following sense. In Eaves' framework, the
function is defined in terms of a subdivided manifold (see Definition 2.6) such that the
function is affine when restricted to any single cell of this manifold. To implement the
algorithm, we need an explicit representation of this subdivided manifold. In our application,
such a representation is not readily available. Instead, the function is defined in terms of a
more general collection of cells which do not necessarily comprise a subdivided manifold.
We therefore generalize Eaves' framework to develop an algorithm for finding zeros of
piecewise-affine functions that does not rely on a representation of a subdivided manifold.
We describe this algorithm in detail in §2 and prove that under the assumption of coherent
orientation, the algorithm finds a zero after a finite number of steps.

The remainder of the paper describes how the algorithm is used to solve affine generalized
equations, ln §3 we discuss a generalization of the normal map called the T-map. This
mapping, which to our knowledge was introduced by Minty (1962), provides a means of
reformulating generalized equations involving operators T that do not necessarily correspond
to the nonnal cone of any set. After describing this reformulation, we focus on the case where
T is polyhedral. This case can be viewed as an extension of the special case where T :- Nc,
with C a convex polyhedron. In §4 we describe how the algorithm presented in Section 2 can
be used to solve affine generalized equations. In §5 we further specialize to the case where
T is separable. Finally, in §6 we discuss how the algorithm can be applied to solve piecewise
linear-quadratic programming problems (Sun 1986).

Some words about notation are needed. The notation 7" : R" =J R" indicates that 7 is a
point to set mapping, or multifunction, which maps points in R" to subsets of R". In
discussing multifunctions, we may refer either to a point to set mapping, T(-), or to the graph
of that mapping, 7, which is the set T := [(x, y)\y G T(x)]. The expression T~'{-) is
defined as a set inverse; i.e., T'^(y) := (AI(X, V) G 7"}. Further, 7" '̂ = {(v, A)I(;I:, _y)
G T]. The effective domain of T, is defined by dom(r) := {x\T(x) + 0}.

In discussing matrices and vectors, subscripts are used to refer to components. For example
A,. , A . J., Ail refer to the /th row,yth column, and (i,j)th entry of A, respectively. We may
also use index sets to refer to specific components. For example if a = {1, 3, 5}, then x^
= {x^; Xi\ x^]. Further, we use the MATLAB notation of a comma to separate columns, and
a semicolon to separate rows. For example (x, y) is a row vector, whereas (x; y) is a column
vector. Unless otherwise indicated, all vectors are taken to be column vectors. Superscripts
are used to indicate an iteration count, index, or some other label for matrices and vectors.
In contrast, for scalars, sets, and functions, subscripts are used as labels.

For a set C, aff(C), im(C). ri(C), rec(C), dim(C). and S( • \C) refer to the affine hull,
interior, relative interior, recession cone, dimension, and indicator function of C respectively.
(see Rockafellar 1970 for definitions of these terms).

2. Algorithm for finding zeros of .tl-PA maps. Our first task is to describe an
algorithm for finding zeros of piecewise affine functions. The algorithm we present can be
viewed as a generalization of Lemke's method for the linear complementarity problem and
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of the algorithm for solving affine variational inequalities over convex polyhedral sets that
was described in Cao and Ferris (1996b). The theoretical basis for the algorithm is derived
from the theory of piecewise-linear homotopies given in Eaves (1976). However, we
emphasize that the theory described in Eaves (1976) assumes a representation of a certain
subdivided manifold. One of our major tasks in this section is to remove this assumption so
that the algorithm can be applied in a more general setting where such a subdivided manifold
is not readily available. This extension is necessary for application of the algorithm to the
7-map as described in §4.

In order to describe the algorithm carefully, we need some preliminary definitions.

DEFINITION 2.1 (cell). A polyhedral convex set u C R" is called a cell. If dim(o-) = k
then o-is called a k-ceM Let a := {x\Ax ^ a], where A G R'"'", and a G R'', with p a
nonnegative integer. Then (p. A, a) is said to represent a. \f p is the smallest number for
which a representation of cr exists, then (p. A, a) is called a minimal representation of cr. A
set T 6 R" is called a face of CT if for some set of indices ad (1 p}, T = {x G a
: Aa . X = a^}. If dim(T) = /, then T is called an /-face of CT.

Clearly any cell has a minimal representation.

DEFINITION 2.2 (piecewise affine). Let i l be a finite collection of n-cells and let M
:— UtrEH""- A function F : Af —> R™ is said to be piecewise-affine with respect to M., denoted
M-PA, if for each a G i i . F.^ (i.e. the restriction of F to tr) is affine. If F is M-PA for some
M satisfying the above assumptions, then we say that F is piecewise affine.

Note that in the above definition, if M is connected, then the function F must be continuous
on M, because F must be single-valued on the boundaries between cells. Furthermore, in
contrast to the work of Eaves (1976). Ji is not required to correspond to a subdivided
manifold. An alternative definition and development of piecewise affine functions is given by
Scholtes (1994) for the case where F is a continuous function on R".

DEFINITION 2.3 (function representation). Let i l be a collection of «-ceIls in R", let F be
a il-PA function, and let CT be an «-celi of M. Let b" G R'" and let B" be an m X n matrix.
(B", b") is said to represent F on CT if F(x) = B''x + b" for all ;f G CT.

We now describe an algorithm to find a zero of an .lii-PA function G, for a given finite
collection of «-celis M whose union is R". We will assume that representations of the cells
of M and of the map G have already been constructed. The basis of the algorithm is to
construct a piecewise affine homotopy mapping F(x. ^) with the following properties

1. (x*, 0) is a zero of F if and only if .v* is a zero of G.
2. A point (x\ /X|), and a direction (d\ —I) is known such that /x, ^ 0 and F(x'

- ^Ld\ ^JL' + IX) = 0 for all /J. > 0.
The algorithm uses a method described by Eaves (1976) to trace the zero curve of F,

proceeding in the direction (d\ - I ) from the starting point (x\ JLI,). TO prove that the
algorithm finds a solution in a finite number of steps, we restrict ourselves to the case where
G is coherently oriented:

DEFINITION 2.4 (coherent orientation). Let G be an il-PA map with representation (B",
h") on each CT G M... We say that G is coherently oriented if

sgn(det(B"))

is nonzero and constant for all u in .11, where
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Since M. is finite and U^MCT = R", it follows that R" = U^M rec(CT), and further that
there is a CT such that int(rec(o-)) i^ 0. Choose d such that -d G int(rec(CT)). Then for any
.r" in R", and for all ^ sufficiently large, A" — fjid G int(CT).

In the AVI algorithm described by Cao and Ferris, the cell CT and the direction d were
constructed by finding an extreme point x'' of the set C. The cell was then given by CT : = J;''
+ Nc(x'), and the direction d was chosen such that —d was in the interior of Nc(x'). For
our algorithm, rather than constructing the cell and direction, we can rely instead on the fact
that since R" = U^e.^i i"ec(o-), then for any direction d. there will be a cell a,, for which -d
G rec(CTj). Note further that for each cell CT, the boundary rec(CT)\int(rec(CT)) of rec(CT) has
Lebesgue measure zero. Therefore, since the number of cells is finite, U^, , rec(CT)\int(rec(CT))
has measure zero. Thus, for almost all d. there will be a cell CT,/ for which —d G int(rec(CT^)).

If jf" is any point in R". then for all ix sufficiently large, x" - yud will lie interior to the
cell CT,;, In other words, the cell can be chosen simply by picking an arbitrary d and
proceeding in the direction -d until a cell CT^ is reached for which -d is in the recession cone
of CT,,. For almost all d (excepting a set of Lebesgue measure zero), —d wilt be in the interior
of rec(CT,/), We note, however, that for some special cases, construction of an extreme point
may still be preferable.

Once d and CT,, have been identified, the homotopy map can be constructed. Let (B, b) be
the representation of G in CT,,. Define a function F : R" X R+ ^ R " by

(4) F(x, |Li) := G(x) + p.Bd.

Note that F(x, 0) = 0 exactly when G(x) = 0. Under the assumption that G is coherently
oriented, B is inveriible. Let A" :^ —B '/? and define

Then, since -d G int(rec(CTj)), there exists CTQ =̂  0 such that w(/i) G int((Tj), V/i, >
Thus, for fx ^ fXo,

F(w(^L). ^L) = G(w(ix)) + ixBd

= Bw(fi) + b + ixBd

(5) = B(x" - ixd) + b

= -b - iiBd + h +

= 0.

By choosing /x, > /LI,,, X' = it(jn,|), and d' = d, we see that F satisfies the conditions
needed for the homotopy map. We are now ready to state the algorithm, which is given in
Figure I. Note that by normalizing d in the discussion above to be a unit vector, we can start
the algorithm from the point (x\ fi,) constructed above with CT| := CT,,.

Some comments about Algorithm AGE are in order:
I. Most of the work in the algorithm is in step 8 where the direction (d''^\ î i+i) is

calculated. At the end of this section, in Theorem 2.13. we show that B*^' — B* is a rank-l
matrix. Thus, an efficient implementation of the algorithm can be obtained by keeping the
matrices B^ in factored form and performing rank-1 updates of the factors at each step of the
algorithm.
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Given a finite collection of n-ceils i t such that U^6.«CT = R", and an il-PA function G on
R". Let G have representation (B\ b'') on at G i l .

1) [Initialization] Determine {x\ (x^. CTI. d') satisfying

IM'II = I ,
x ' G int(CTi).

2) V, := - I .

Repeat for ^ = 1, 2, . . .

3) e^ := supieix* + ed'' G CT^, Mt + Ov^ > 0}.

If dt = +^. then

4) outputC'ray termination"); return.

Else

5) x'*' := x' + e,d'

6) /j.,,+ , := ixt + 9^Vk

If /Lt̂ î = 0 then

7) outputC'solution found at", x'^ '); return.

Else

8) determine (T;,+ I (possibly using lexicographic ordering),
J*^', and T'(.+ i such that

X G CT^+,,

B'^'d'"' + v,.,B'd' = 0,
Wd'^'W- \.
f/'̂ ' points into o-^,^ fromx**',
and CTi+i

9) goto next k.
FIGURE 1, Algorithm AGE

2. At Step 8 in the algorithm, there may be more than one possible choice of cells CT^.I.

However, a lexicographic ordering, as described by Eaves (1976. § 15), can be used to resolve
any ambiguity concerning which cell to choose. The use of such a lexicographic ordering will
be assumed in the convergence proof, and will be presented in more detail in the discussion
preceding Lemma 2.9.

3. The requirement that ||^*^'|| = I is arbitrarily chosen to force the choice of ^*^' to be
unique.

4. The requirement that x' — /xJ' G int(CTi), Vft ^ 0 guarantees that the zero curve of
F(x, fx) := G{x) + fxBd' contains a ray, and therefore assures us that it will not have any
loops. This fact will be useful in our convergence proof. However, we shall also show that.
under the assumption of coherent orientation, v^ is always negative, which by itself
guarantees that no loops occur. Thus, under the assumption of coherent orientation, it is not
necessary to find a ray start. However, in future work, we will prove convergence for a
broader class of problems, in which case the ray start requirement will be useful.

The next few pages are devoted to proving the following convergence theorem:

THEOREM 2.5. Let M be a finite collection of n-cells whose relative interiors are disjoint
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and whose union is R". Let G be a coherently oriented, M-PA function. Algorithm AGE,
lexicographic ordering, terminates affer finitely many steps with a zero x* of G.

PROOF (Outline). There are three main parts to the proof. First, as Lemma 2.9, we will
show that the algorithm terminates at a solution if M. is a subdivision of R" (see
Definition 2.6). Second, in Lemma 2.11. we will show that even if Ai is not a subdivision
of R". there is a refinement (see Definition 2.10) X of M that is a subdivision. Finally,
we show in Lemma 2.12 that if a subdivision JN̂  is a refinement of M, then running the
algorithm using X will generate exactly the same path as would be generated by using
M. Thus, the fact that the algorithm terminates at a solution using X guarantees that it
will terminate at a solution using M. n

We now prove the three lemmas mentioned above. At this point, we recommend that the
impatient reader skip ahead to Theorem 2,13. Our proof technique is based on the work of
Eaves (1976). Eaves' analysis relies heavily on the notion of a subdivided manifold:

DEFINITION 2.6 (subdivided manifold). Let -V be a set in some Euclidean space, and let X
be a finite or countable collection of w-cells in that space such that A' = Uô e,vO". Let ^ be
the collection of all faces of elements of X. (iV, iT) is a subdivided n-manifold if

1. any two /i-cells of X are either disjoint or meet in a common face;
2. each point oi N has a neighborhood meeting only finitely many «-cells of JV";
3. each (n — l)-cell of }^ lies in at most two «-celis;

If (N, JI) is a subdivided H-manifold for some subdivision K, we call A' an «-manifold and
we call M" a subdivision of A'.

The following lemma shows that when A' = R", item 3 in Definition 2.6 is redundant.
This result was proved by Robinson (1992) in the proof of Proposition 2.4. While
Robinson's proposition is stated for the normal manifold, his proof is valid for general
subdivisions of R".

LEMMA 2.7. ifJs' is a collection of cells whose union is R" and ifJ^ satisfies 1 and 2 of
Definition 2.6, then .H is a subdivision ofR".

The next step in our analysis is to prove that the algorithm works whenever i l is a
subdivision of R". In this case, by defining ^ := {CT X R+ICT G , H | , we see that 5/ is a
subdivision of R" X R+ and further thai F is J/-PA. The starting point (x\ ^x,) of the
algorithm lies interior to the cell T), := CTI X R , of ŷ . Further, the ray {(x', /A,) — fx{d\
-l)\fi ^ 0] lies within -17,. Let 9'be the collection of all faces of elements of.'?. Algorithm
AGE is then seen to be equivalent to the algorithm described by Eaves (1976, §10.2), with
the following relationships between the algorithms:

Eaves' Algorithm Algorithm AGE

M £?
F(x) F(x, IX) := G(x)

V, (d\ V,)

To discuss the behavior of this algorithm in more detail, we need some definitions from
Eaves (1976).

DEFINITION 2.8 (regularity). Let (A', J^) be a subdivided (n + 1 )-manifold. let Js be the
collection of n-cells in Jf, and let F : A' ^ R" be a >i"-PA map. A point x in A' is said to be
degenerate (otherwise regular) if JC lies in a cell CT of Ji" wilh dim(F(CT)) < n. A value y in
F(A') is said to be a degenerate value (otherwise a regular value) if F''(y) contains a
degenerate point.

Note that if y is a regular value, then F " ' ( y ) cannot intersect any t-cells of if with k < n.
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By the assumption of coherent orientation, G is one-to-one in every H-cell of M. Thus,
dim(F(7])) = n for all (n + l)-cells TJ of &^. Since the starting point ( x ' , ^ i ) of the
algorithm is interior to 17,, it is a regular point of F. According to Eaves (1976, Theorem
15.13), since ^/ is finite, the algorithm generates, in finitely many steps, either a point (.v*,
/Lt̂ ) in the boundary of R" X R+, or a ray in F '(0) different from the starting ray. In the
first case, we know that /x^ - 0, since the boundary of R" X R+ is R" X {0}. It then
follows, from our earlier remarks, that x* satisfies G{.x*) - 0. Therefore, to guarantee that
the algorithm finds a solution, we need only show that it cannot produce a ray different from
the starting ray.

We first consider the case when 0 is a regular value of F. In this case, by Eaves {1976,
Theorem 9.1), F '(0) is a l-manifold which is subdivided by sets of the form -q H F ' (0) .
Further, since F" ' (0 ) cannot intersect any ^-cells with k < n, each point on F~' (0) is in at
most two (n + I )-cells of .f. Thus, in step 8 of the algorithm, the choice of o"i+i is
well-defined. (The only difficulty would be if ( J : ^^ ' , ^ ( , , ) lies in only one (n + l)-cell (Xt
so that no 0-̂ +1 could be selected. But in this case, {x''^\ Mi+i) would be a boundary point
of R" X R ,̂ Thus, jLtj,+1 — 0, so the algorithm would have terminated in step 5.)

Let (d\ I'i) be the direction of the path within the (n + 1 )-cell -p*, of if, and let G have
representation (B*, /J*) on the n-cell a^ of M. Then by Eaves (1976, Lemma 12.3), the curve
index, given by

{sgn Vi)(sgndetS*)

is constant everywhere along the path. Since v^ = —\ for the starting direction (d\ I'l), and
since G is coherently oriented, it follows that v^ is negative in each cell that the path enters.
But this means that the parameter jx decreases strictly in each cell. Thus, after finitely many
steps, we must have fx = 0.

When 0 is a degenerate value of F, F " ' ( 0 ) may intersect a A-cell of y with k < n. Thus,
in step 8 of the algorithm, there may be multiple choices for which cell 0-4,, to enter next.
To address this problem, a lexicographic ordering can be used to resolve ambiguities
concerning which cell the path will enter. Such a scheme is conceptually equivalent to
solving a perturbed problem, which we now describe.

Let X = [^' ^"1 be an (« + I) X « matrix such that [X, id': - 1 ) ] is of rank
(n + 1). Define the vector Ie] := (e ' , e% . . . , e")^ (note: the superscripts here refer to
exponentiation). Define (x ' ( e ) ; fx^ie)) ;= ( x ' ; jU-i) + X[e]. Since (x ' ; /^,) in Algorithm
AGE is interior to TJI, then ( J : ' ( € ) ; /X|(e)) G int(fi,|) for small enough e. Further, since i—d\
I) G int(rec(/x,)), ( x ' ( e , /x,(e)) + / x ( - ( / ' , 1) G int(Tji), f"r all JLL > 0. Thus, A-'(e), /i,,{e),
(T|, and d^ satisfy the starting conditions needed to apply the algorithm to the perturbed
problem given by

0 = Fix, tx) - p{€},

where p(e) := F (x ' ( e ) , /Xi(e)). Observe that

(6)

where Y := [B\ B'd']X. Y is an invertible n X n matrix, so that by Eaves (1976, Lemma
14.2), pie) is a regular value for all e sufficiently small. Thus, by the arguments given above
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for regular values, using Algorithm AGE to solve the perturbed problem will, after a finite
number of steps J. produce a point {x\e)) such that Gix\e)) = pie).

Let (.v*(e), jLt((e)) be the sequence of points generated by the algorithm for the perturbed
problem. By the discussion in Eaves (1976, §15), there is a sequence of matrices X*
G R'" '̂>*"' and a sequence of points (J:*, jLtj) such that (jc'(e); /^^(e)) := (A:'; JX^) + X*[e]
for all small e. The points (x'', (Xt,) are exactly the sequence of points generated by the
algorithm for solving the unperturbed problem using the lexicographic ordering. Since the
algorithm terminates after J steps for all small e, we see that fXjie) = 0 and Gix^e))
= pie). It follows that /Ltj = 0 and further that G(x^) = 0. Thus, using a lexicographic
ordering, the algorithm finds a solution after a finite number of steps.

We have proven the following lemma:

LEMMA 2.9. Let Mhe a .subdivision o/R" and G he a coherently oriented, M-FA function.
Algorithm AGE, using lexicographic ordering, terminates after finitely many steps with a
zero X* of G.

We now address the case where M is not a subdivision of R". We begin by proving that
M can be refined to produce a subdivision.

2.10 (refinement). Let i i and X be finite collections of «-cells. X is said to be
a refinement of M if each cell a of M. is the union of a finite collection of cells T, of X, and
if each ceil of .Ii is contained in some cell of M.

The following lemma is proved by Hudson (1969, Lemma 1.5), however, using different
nomenclature. In particular, the term "subdivision" is used in place of our term "refinement."

LEMMA 2.11. Let M := {C,} be a collection of J < '^ n-cells which covers R". There
exists a subdivision X ofR" such that X is a refinement of M.

We now show that using X, the algorithm follows the same path as it would using M.

LEMMA 2.12. Let G be a coherently oriented M-PA function, where M is a finite
collection of relatively disjoint n-cells whose union is R". Let X be a refinement of M. such
thai X is a subdivision o/R". Then Algorithm AGF, using lexicographic ordering, will find
a solution x* to G{.x) = 0 in a finite number of steps. Furthermore, the sequence of points
generated by the algorithm using M is a subsequence of the points that would be generated
using X.

PROOF. Consider first running the algorithm using X instead of M. By Lemma 2.9, the
algorithm will terminate after some finite number of steps J. The algorithm will visit a
sequence of n-cells { T( ) C X, k = I J, and will generate a sequence of points {(x*,
fit)}, k = \, . . . , J + I and directions {id\ v^,)], k = 1 J.

Lety, := 1 and let tr, be the unique cell in Ji that contains T,. Then for / = 2, . . . ,
lety, be tbe smallest index greater than 7,-1 such that T,, (t o",-!, se t t ing / = 7 + 1 if
no such index exists. If y, ^ J, let a, be the unique cell in M that contains T,,. Let K be
such that;',f+i = 7 + 1 . This process defines a sequence of cells [a-,], i ^ I, . . . , K
and indices {),}, / = \. . . . , K + I. with the property that T^ C CT, whenever7, < k
< / . > . i = I K.

We will show that if the algorithm is run using M, then the sequence of points {(^', r,)}
generated by the algorithm satisfies the equation (^', v^) — (x'\ (XiX for 1 = I, . . . , A" -i- I.
Thus .d '^^ ' , I's+i) = (x''^\ l^j']), so the algorithm finds a solution after a finite number of
steps.

Let {(5', I,)} be the sequence of directions chosen by the algorithm using M. Clearly,
since the algorithm is started at the point ix\ /Xj) in the direction id\ —1), tbe following
is true: (^', i*,) = ix^\ Vj,), (S ' , ^|) = id", u^,), and the first ceil visited by the algorithm
is CT|.

We now proceed by induction: Assume that (^', f,) ^ ix'', Vj,), (6' , ^,) = (d", v,,), and
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that, using M, the ith cell visited by the algorithm is a,. We shall prove that {^'^', v,+^)
= {x"", Vj,^,), (S'"", ^,^.|) = id"*', fj,^|), and that the (i + l)st cell visited by the algorithm
is (T, + |.

Let (B', b') be the representation of G on o";. This is also the representation of G on T*
whenever / ^ k < / + , . Thus, in step 8 of the algorithm using X, the direction (t/*^', Vt+,)
chosen when enteritig cell TJ+I must satisfy

B'd'"' + v,^,B'd' = 0

f o r / ^ k < j , + i. Since G is coherently oriented, B' is invertible. Further, ||(i**'|| = I and,
by our earlier discussion, v^+i is negative. Thus, the direction is uniquely determined by the
representation. In particular, {d'\ Vj,) = id-"^\ Vji + i) = • • • = id''*\ Vj,^,) ~ (6' , ̂ , ) . From
this it is clear t h a t y " lies on the ray {^'i9)\9 ^ 0 } , where | ' ( 6 ) := | ' + 98'. Further, x^'^'
is on the boundary of a,.

If the ray {| '(9)I6 ^ 0} contains a point in the interior of a,, then the ray cannot be
extended pasix''^' without exiting c , . Thus, jc"^' = ^'(^,) where 9^ := sup{0l^'(0) E a^).
In other words, (x'"', fij.^,) = (^'*', i',+i).

If the ray {^'(^)l^ — 0} does not contain an interior point of (T^, then we must resort to
the lexicographic ordering to prove that x'"'" = ^'(9,). Since a, and T;,,, are relatively
disjoint convex sets, there exists a separating hyperplane H^ defined by a vector c', and a
scalar a, such that c' x < a,, \fx G int{o-,), and c' x ^ a^, \fx G T,,^,. Suppose we run
the algorithm using X to solve the perturbed problem G^ix) := G{x) — p(e) = 0, where
pie) is defined by (6). Then, for e small enough, the algorithm will visit the same sequence
of cells {Tt} as it visits in the unperturbed problem. Also, by our earlier discussion, the
algorithm will generate the sequence of points {(j:*(e); fi^ie))} = {(jt*; /j.̂ ) -I- A'*[6]},
where {X''] is a fixed sequence of matrices.

Since 0 is a regular value of G,, dim(Ge(Tt D T^n)) >: « - 1 for any k. Thus, G~\0)
contains only one point in T^ n TJ+I, namely J : ' ^ . Therefore, the direction d'''^' must point
into the interior of TJ..^.

By similar arguments as before, r"*' lies on the ray [^fiB)\9 > 0 } , where ^^(6) := x'Xe)
+ 9{d"). But, since d**' points into the interior of T ,̂, this ray must contain a point x in the
interior of o-̂ . Thus, c' x < a,. But c 'V '* ' >: a, since x"^' is in T^,^,. It follows that c'd"
> 0. Thus, even for the unperturbed problem, the ray ^'{9) cannot be extended past the point
x"*^ without crossing the hyperplane //, , and thereby exiting cr̂ . Thus, y * ' = ^'{9^, and as
before, {x"'\ ixj,^,) = (^'^', i',+ i).

Finally, note that for all small e, the point x"^'(e) is a regular point, so T(J,>, -u and T ,̂̂ , are the
only «-cells of X that contain x''^\e). Thus, a^ and (T^+I are tbe only n-cells of M that contain
jr"*'(e). Thus, for all small e, tbe algorithm, using M will enter cell cr,+ i at the next iteration. But
this means that using lexicographic ordering the algorithm will enter cell (r,^.f next when solving
the unperturbed problem. Finally, since the representation of G on (T,^., is identical to the
representation of G on T,,,,, we must have (6'^', ^i+i) = (d'*', t/'*').

The lemma is now proved by induction, n
This completes the proof of Theorem 2.5. Our final task in this section is to establish the

claim made in Comment 1 following Algorithm AGE.

THEOREM 2.13. Under the hypothesis of Theorem 2.5, let {(7^} be the sequence of cells
chosen in Step 8 of Algorithm AGE using lexicographic ordering, and let iB\ b^) represent
Ar on o-i. Then fi*^' - B* has rank 1.

PROOF. Using lexicographical ordering, the algorithm will choose the same cell o-;4i in
step 8 as it would when solving the perturbed problem for small e. However, 0 is a regular
value for the perturbed problem, so T* : ^ a t O 0-4+, must have dimension n - I. Now, for
any two points x ' , x^ G TJ
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B*^'(x' - x^) = fi*(jc' - x^) => (x' - x^) G ker(fi*"' - B")

Thus, dim ker(fi*^' - B') = n - 1 so rank(B'"' - B') = 1. D

3. The r-map. The T-map, denoted FT, is a generalization of the normal map that is
formed by replacing the projection operator TTC in (3) by the resolvent operator FT
:= (/ + r ) " ' . Specifically, the T-map is given by

(7) Frix) :=F{Pr{x))-\-x-Pr{x).

We assume throughout that T is a maximal monotone operator. In this case, Minty (1962)
showed that Pj is a continuous, single-valued, nonexpansive function defined on all of R".
Since the image of FT is dom(70 (which is contained in the domain of F, fl), it follows that
Fj^ is a single-valued function defined on all of R".

By Brezis (1973, Example 2.1.2), / -I- 7 is monotone, and therefore FT is monotone. We
now show that solving GE(F, 7) is equivalent to finding a zero of FT.

THEOREM 3.1. Given a maximal monotone multifttnction 7 : R" =» R", and aft^nction F
: n C R" ^ R", let FT be defined by (7). If x is a zero of Fj, then z := Prix) solves GE(F,
T). Conversely, if z solves GEiF, T), then x := z - f(z) is a zero of FT.

PROOF. Suppose Frix) = 0 and let z := PAx). Then 0 = Fr(;c) = F(z) + x - z, and

- F{z) = x- z

G(/-(' 7)(7+ T)'\x) -z

= Tiz).

Conversely, suppose —F(z) G T(z) and let x := z — Fiz). Then x G z + Tiz) = (/
+ T)iz), so Prix) = U + T)~\x) = z. Thus FT(X) = Fiz) -\- x - z = F{z) - Fiz)
= 0. n

So far, we have not made any assumptions on 7 other than that it is maximal monotone.
We now focus on the case where 7 is polyhedral.

DEFINITION 3.2 (polyhedral). A multifunction 7 is polyhedral if its graph is the union of
finitely many polyhedral convex sets.

Our first task will be to show that, for polyhedral 7, the resolvent operator Pj .= {I
+ 7)" ' is a piecewise-affine map.

LEMMA 3.3. A single-valued multifunction 7 : R" =J R" whose graph is a convex
polyhedron is affine on dom(7).

PROOF. Assume dom(7) i^ 0 . (Otherwise the lemma is true vacuously.) Since the graph
of 7 is a polyhedron, 7 can be written as 7 = {{x, y)\ Ax + By ^ c] ^or somei4 G R''"",
B G R''"", and c G R'', wherep is some nonnegative integer. LetSff := {IM,..J: + B^.y - c,,
V(J:, y) G 7) . In words, % is the set of row indices for which the corresponding constraint
is active for all points in 7.

We first establish that % is nonempty and that ker B^. = [0). To do this, let 3f := {i\i
^ 3{}. If 9^is nonempty, then for each i E M, B{x', y') e 7withA,jc' + B,y' > c,. Let
ix, y) = S,e^ (x', y')/ldffl, where 1̂ 1 is the cardinality of the index set Stf. If 36 = 0 , choose
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( i , y) arbitrarily in T. In either case, (x, y) E. T and also, 4,.i + B,.y > c,, V/ G ̂ . Let
y be any nonzero vector such that B^.y = 0 for all i E 3f. Then, for e > 0 small enough.
Ax + B{y + ey) > c. Thus, ( i , _y -1- ejj) E 7, contradicting the single-valuedness of 7.
It follows that 3f ^ 0 and that ker fi,,. = {0}.

Now, by the definition of 3{̂ , we have ix, y) E. T =^ A^}c.x + B^y = c^- Conversely,
suppose ix, y) satisfies A-x-x + Bj(.y = CTI. If ^ G dom(7), then 3y such that (x, y) E 7.
But this means that A .̂jc + B^f.y = c^. which implies that v - v G ker B,, ^ {0}. That
is _y ^ }). We have thus shown that

{x, v) E 7 O .V E dom(7) and A-^jc + B^.y - c^.

Finally, since ker B ,̂. = {0|, fij,. has a left inverse R G R'"'''. Thus, forx G dom(7),

ix, y) G 7 O A'^jc + Bjf.y = c^{

O y = ficj( — RA^JC.

So 7 is an affine function on dom(7). n

THEOREM 3.4. Given a maximal monotone polyhedral multifunction 7 : R" zij R", the
resolvent operator PT := (I + T)'^' is a piecewise affine function on all ofR".

PROOF. Since 7 is polyhedral, / + 7 is also polyhedral (Robinson 1979a) and therefore
so is Pj = U + T)'\ Thus, PT = UF^, where [T,] is a finite collection of polyhedral
convex sets. Let C, be the projection of T, onto the domain of Pr (ie., C, = 7ri(r,), where
77, := (x, y) ^ x). Define M := [CJdim(C,) = n).

Since Pr is defined on all of R", UC, = R". Let M := Uf,£.«C,. Since M is closed, its
complement, \M := W\M, is open. Thus, \M is either the empty set, or it has nonempty
interior. But \M C Uj,n,(c,)<«C,. Thus, W has no interior. In other words \M = 0 and thus,
M := R\

To show that PT is il-PA. all that is needed is to show that for each C, G M, the restriction
of Pr to Ci is affine. However, since P^ is single-valued, the graph of Pr restricted to C; is
simply the convex polyhedral set T,. By Lemma 3.3, Pr is affine on C,. a

COROLLARY 3.5. ifTisa maximal monotone polyhedral multifunction and F is affine, then
the T-map, FT, defined by il) is piecewise affine.

4. Aftine generalized equations. We now show how to apply the algorithm of §2 to
construct an algorithm to solve the affine generalized equation:

(8) OeAx- a-\-T{x),

where A E R""̂ ", a E R", and 7 is a maximal monotone polyhedral multifunction. For this
problem, the 7-map is given by

(9) AT := A P r { x ) + x - a.

As was shown in §3, for polyhedral 7, A^ is piecewise affine with respect to some finite
collection M of/i-cells whose union is R". Thus, to complete the description of the algorithm
for affine generalized equations, it remains to show how to generate the representations.

The task of constructing M is dependent upon how 7 is described. For example, in
Robinson (1992), 7 is taken as the normal cone Â -̂ to a polyhedral convex set C. M is then
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chosen to be the normal manifold, which is defined in terms of the nonempty faces F, of C.
Specifically, the cells of the normal manifold are defined by

where N^, is the common value of Nf, for x G ri(F,). This particular choice of cells leads
to the algorithm given in Cao and Ferris (1996b).

For more general 7, we assume that 7 is described as the union of a finite collection of
polyhedral convex sets C,. We can then describe Pr as the union of the sets 5, := {ix
+ y, x)\ix, y) G C;}. By projecting each 5, onto the domain of P^, we produce a collection
of sets

O-, :={x-^ vl(jr, y) G C,}.

Since we know dom(Pr) = R". it follows that Da, = R" and thus Ji := {o-,lint(o-,) i= 0).
To provide an example of this process, we return to the case where 7 = Nc- Observe that

Nc = U U Ix] X /V^ = U F , X N r ,

Thus, we see that R" is the union of the polyhedral convex sets

C,. := {;c + y\{x, y) E F, X N,} = F, + N,,

It follows that the process described above yields the normal manifold.
Robinson (1992, Proposition 2.4) proved that the normal manifold is a subdivision ofR".

However, in general, the collection of cells M generated by the above process is not a
subdivision. This can be demonstrated by tbe following example. Let

C, :={(^, 0 )G R ' x R ^ U , < 0 } ,

C. := {U, 0) G R^ X R^IJC, > 0, JC; > 0},

C3 := {ix, 0) G R ' X R^U, > 0, JC2 ^ 0},

and let 7 :=̂  Uf=, C,. Observe that 7 is simply the zero mapping, and is thus a maximal
monotone multifunction. However, employing our procedure for constructing M, we obtain
a, = {x E R'U, < 0) , (72= [x ^ R'U, > 0, X, > 0}, 0-3 = {x G R'l.r, ^ 0, x^
^ 0 } . Since o"i n CTJ is not a face of CTI, we see that M. := (c i , a^, (Ji) is not a subdivision
ofR".

Since P r is single-valued, then by Lemma 3.3. Pj is affine on each cell cr, E M. A
representation of A 7 on each cell is then given by (9). In order to have a workable description
of these affine maps, it would appear necessary to exploit the underlying structure of 7. One
such case is the subject of the next section.

5. Separable 7. A particularly important class of affine variational inequalities is that
for which the set C is rectangular, i.e., C is defined by the constraints
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where / and u are vectors in R", with /, G [-^, '^) and u, G ( —x, GO] for I ^ i < n. This
problem class has a number of features that are very attractive for pivotal algorithms similar
to Algorithm AGE. In particular, the cells of linearity of the normal map are rectangular, and
furthermore the normal map itself takes on a very simple form. Specifically, for an affine
function Fiz) := Az + b, the matrix used to represent the normal map on any cell is formed
simply by replacing some of the columns of A by the corresponding columns of the identity
matrix.

Rectangular variational inequalities are also attractive from a theoretical standpoint. In
particular, if at least one of /, and u^ is finite for each (, then the normal map is coherently
oriented with respect to C if and only if A is a P-matrix.

DEFINITION 5.1 ((Cottle. Pang and Stone 1992)). AmatrixA is said to be a P-matrix if all
its principal minors are positive.

Note that when C is rectangular, then Ndz) = Ny_Jz) ^ U"=, A |̂,,,»,|(2,). This suggests
that we can extend the notion of rectangularity to generalized equations by requiring that the
multifunction 7 be separable, i.e., it is of the form

T

where for each /, 7, is a maximal monotone polyhedral multifunction from R to R. With such
a 7, we shall see that the cells of linearity of the 7-map A 7- are rectangular.

We begin by looking at the resolvent operator F^ = (/ -I- 7 ) ' ' . Note that

Prix)

where for each /, P^, = (1 + 7 , ) '. Since Pr is a continuous piecewise affine function, it
follows that Pr, is continuous piecewise affine function from R into R. Let k, be the number
of breakpoints of Pr.- Then, for some strictly increasing sequence of breakpoints {^,,), j
= 1, . . . , A:, and some set of coefficients {f/,,, b,,], j - 0, . . . , k,.

,t, < X.

Note that since Pr is monotonic and nonexpansive, 0 < (i,̂  < 1.
The breakpoint sequence defines a subdivision of R given by M., = U *1(, o-,̂ , where

X ^

We then define a subdivision of R" by i t = n,"=i i t , witii n-cells defined by IT|J,.,J

= (Tij., X (Ty. X • • • X a•„|,.
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Clearly, Pr (and therefore A 7) is JW-PA. This establishes our earlier statement that the cells
of linearity oi AT are rectangular. For each cell o-,̂ ,,;, j , , of i t , define a diagonal matrix

D\,un. .;.-] ^y ^\J^.n jM^ 0 = d,,,. Further, define the vector/7(y,j, ,„, = [/?„,; bjj,; . .- ;
b^jj. Then on o",̂ , j j ;„,, Pr is represented by (D^^,^,, ^,|, t,,,,;; ;„,). Thus, on a^j.j, ^ |̂,
the 7-map is given by

Arix) = AiPrix)) + a + X - Prix)

Thus, we see that the matrix Mfj.j, ,„, which represents AT on (T^,,J, ;„, has columns
which are convex combinations of columns of A and the corresponding columns of /.

We now set about proving the main result of this section. Namely, if A is a /^-matrix, then
Ar is coherently oriented for any separable polyhedral maximal monotone multifunction 7.
We first need to prove two technical lemmas.

LEMMA 5.2. If A and B are n X n matrices where B is rank-\ such that det(A) > 0 and

det(A + B)> 0, then det(A + \B) > 0 for all A G [0, 1].

PROOF.

det(A + AS) = S det[C;,, . . . , C^J,

where the summation is taken over all possible choices of ( ; , , . . . , 7 J such that C ,̂ is either

A , or AS.,. Since B isrank-1, the determinants in the above sum are zero for all choices that

include at least two columns of KB. Thus,

det(A + AS) = det A + S det[A.,, . . . , AS.,, . . . , A.J

= det A + A det[A.
(=1

Thus, det( A + KB) is an affine function of A, which is positive at A ^ 0 and A = 1. Thus,

it is positive for all A G [0, I ] , n

LEMMA 5.3. Let A be an n X n matrix and let {B\ . . ., B''] be a collection of rank-1 n
X n matrices. / /det(A -K A,5' + • • • -\- K,B^) > Qfor all choices of k, = 0 or 1, then det(A
+ A,S' + • • • + k.B") > Qfor ail choices of k, G [0, I].

PROOF (By induction). The lemma is true for ^ = I by Lemma 5.2. Now, suppose the
lemma is true for all (t < m, we shall prove the lemma true for k = m.

Suppose {B\ .- - , S") is a collection of rank-1 n x n matrices such that det(A + A , B '
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+ • • • + k.,,B'") > Ofor all choices of A, = 0 or l .Le tA := A -\- B"". ThenA and {fi', . . . ,
S""'} satisfy the conditions of the lemma foTk = m - 1. Thus, if Â  E [0, I ] , V/, then

det((A + B'") + A|fi' + - • • A- A,_ ,S" ' - ' ) > 0.

Similarly, with A := A, we have

det(A + A,B' -\- • • • + A,«_|B"' ' ) > 0 .

From these two results, we see that if we let A := A + A.fi' -I- -I- A,,,-,^'""', then A
and B" satisfy the hypotheses for Lemma 5.2. Thus, for k„, E [0, 1],

0 < d e t ( A + A,^fi"'),

= det(A + A|fi' + • • • 4- A^fi""). D

THEOREM 5.4. If A is a P-matrix, then for any .separable maximal monotone polyhedral
multifunction 7, the T-map AT defined by (9) has the property that in any cell of linearity, the
matrix representing AT has positive determinant. In particular, A^ is coherently oriented.

PROOF. Let AT have the representation (A. b) in the «-cell a. By the our earlier
discussion, A can be formed by replacing columns of A by a convex combination of columns
of A and the corresponding columns of the identity matrix. Thus, the matrix is of the form

A= A-h A,B' -F • • . + A„fi^ A, E [ 0 , 1]

where B' := (/., - A.,)/.|. Observe that B' is a rank-l matrix.
Since A is a P-matrix, the matrix formed by replacing an arbitrary set of columns of A by

corresponding columns of the identity matrix has positive determinant. Thus, the matrices A,
B\ .. . , B" satisfy the hypotheses of Lemma 5.3. Thus, by Lemma 5.3, det(A) > 0. n

COROLLARY 5.5. If A is a P-matrix and 7 is a separable maximal monotone polyhedral
multifunction, then using lexicographic ordering. Algorithm AGE will find a solution to Ar(x)
= 0 in a finite number of steps.

6. Piecewise linear-quadratic programming. We conclude by giving an example of
a well known problem in mathematical programming that can be solved using the technique
we have presented. The piecewise linear-quadratic programming problem (PLQP) is given by

(10) min/i(A) =f{x) + (t>{Ax),

where A G R'""", and / : R" ^ R U {=<;) and <̂  : R'" ^ R U {oc} are convex piecewise
linear-quadratic functions, defined below.

DEFINITION 6.1. A function/: R" ^ R U joo) is piecewise linear-quadratic if dom/is
closed and convex and there exists a finite subdivision i t of dom(/) such that for each a
E M, f,^ is a quadratic function.

Note that dom/is polyhedral, and further that since the cells in the subdivision are closed,
/ is a continuous function on dom/.

The optimality conditions for PLQP are stated by the relation

0 G dhix).
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where dh is the convex subdifferential operator defined by

dh{x) : = { z l / i ( w ) > / i ( x ) + z^{w- x), VH'

Under an appropriate constraint qualification (i.e. ri(A(dom(/))) fl ri(dom(4))) ^ 0 ) , it
follows that

dh{x) = df{x) -\- A^d(t){Ax).

Thus, for the optimality conditions to be satisfied, there must be an J: G dom(/) and y
G d<}>iAx) such that - A ' v G dfix). By Rockafellar (1970, Theorem 23.5), the first
statement is equivalent to

A:t G d(i>*iy),

where (f)* is the conjugate of (p. The optimality conditions are then

-A'yEdfix),

Axe S<t>*iy).

Thus, if we define

1
J ,

the optimality conditions for PLQP can stated as the generalized equation

(11) -A{x;y)eT{x-y).

The fact that 7 is polyhedral was shown in Sun (1986). Thus, the optimality conditions for
the piecewise linear-quadratic program can be expressed as an affine generalized equation,
which can then be solved using our algorithm.
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