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Abstract. Radiotherapy treatment is often delivered in a fractionated manner over a period of time. Emerging
delivery devices are able to determine the actual dose that has been delivered at each stage facilitating the use
of adaptive treatment plans that compensate for errors in delivery. We formulate a model of the day-to-day
planning problem as a stochastic program and exhibit the gains that can be achieved by incorporating uncer-
tainty about errors during treatment into the planning process. Due to size and time restrictions, the model
becomes intractable for realistic instances. We show how heuristics and neuro-dynamic programming can be
used to approximate the stochastic solution, and derive results from our models for realistic time periods.
These results allow us to generate practical rules of thumb that can be immediately implemented in current
planning technologies.
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1. Introduction

In radiation therapy, ionizing radiation is delivered to cancerous tissue, damaging the
DNA and interfering with the ability of the cancerous cells to grow and divide
[55, 63]. Healthy cells are also damaged by the radiation but they are more able to
repair the damage and return to normal function. Since both cancerous and healthy cells
are affected by radiation, dose distributions need to be designed that expose the tumor
to enough radiation for treatment while simultaneously avoiding excessive radiation to
surrounding healthy tissue and, in particular, to nearby organs. By cross-firing beams
from a number of directions, the radiation damage is concentrated in the patient’s tumor
but is less severe and more widely distributed in the surrounding healthy regions.

Given a particular delivery mechanism, a treatment plan corresponds to settings of
the machine that facilitate the delivery of the target dose distribution. Optimization tech-
niques can be used to design such plans, see [4, 6, 46, 57] and the included references.
Schematically, the problems have the form:

min
x,y

f (x − T ) subject to x =
∑

a∈A
Daya, y ≥ 0, (x, y) ∈ X.

The objective f typically measures the weighted difference between the dose deliv-
ered x and a target (idealized) distribution T , where the dose is a superposition of dose
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distributions Da , weighted by delivery times ya . In many cases, it is desirable to use
different penalties for under and overdosing, and not to penalize small errors at all;
such modifications can be easily incorporated into the objective function using standard
modeling techniques. In conformal radiation therapy [55, 63], the set A runs over a
collection of angles from which radiation is fired, whereas in IMRT [3, 62], the set A
represents pencil beams delivered through a multileaf collimator.A variety of constraints
are represented by (x, y) ∈ X: the problems are complicated by the complexities of the
delivery mechanisms and the physicians’ need to impose quality assurance measures
on the resulting dose distribution. Furthermore, there is a large amount of data Da that
needs to be manipulated to obtain sufficient detail of the dose on the target area. More
information is provided in [55].

While these problems remain at the forefront of cancer treatment planning and many
techniques have been proposed for the large varieties of machines (for example, see [7,
10, 11, 14, 16, 28, 41, 54, 58, 33, 29, 30, 45, 34, 32, 31, 57, 12, 8, 44, 9, 10, 56, 36,
61, 49]), many of which take from minutes to hours to solve, we will not focus on this
aspect of the problem. Instead, our focus in this paper is on the day-to-day planning
problem and the stochastic issues that are inherent in such problems. Once a treatment
plan is decided on, it is delivered to the patient in a fractionated manner (typically 5 treat-
ments per week for a period of 4-9 weeks). In current clinical practice, the total dose is
divided equally between the fractionated treatments. Generally, the use of fractionation
is known to increase the probability of controlling the tumor and decrease damage to
normal tissues surrounding the tumor. However, movement of the patient or the internal
organs during or between treatment sessions can result in failure to deliver adequate
radiation to the tumor (leading to recurrence of the disease) or to painful and debilitat-
ing damage to surrounding tissues [39]. Even before the treatment starts, the physician
faces uncertainty in prescribing the radiation dose, because the extent of the cancerous
cells is often not known with complete precision. If the tumor does not lie exactly in
the region specified when designing the treatment plan, some cancerous regions may be
dramatically underdosed. Such “cold spots” can lead to the survival of clonogenic tumor
cells and ultimately to recurrence of the patient’s disease [5, 39].

Displacement of the tumor from the target region and uncertainty about its exact
position and extent are caused by several factors:

– A mistake in interpretation of the imaged data, or the presence of microscopic exten-
sions of the tumor that cannot be viewed with current imaging technology;

– Movement and/or shrinkage of the patient’s internal organs from day to day, between
treatment sessions;

– Errors in setting up (registering) the patient on the treatment device [13, 59];
– Delivery errors or differences between planned and actual delivered dosages;
– Patient movement (usually due to breathing) while the dose is being delivered.

For example, in breast cancer cases, the breast cannot be positioned exactly the same
from day to day. Also, breathing motion can move the breast out of the treatment field
if this motion is not accounted for properly in the planning and delivery. As a second
example, we illustrate a prostate cancer case in Figure 1. If the patient drinks a glass of
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(a) Fraction 1 (b) Fraction 9

Fig. 1. CT scan for a prostate case; the black region represents the rectum, the grey area above it between
the bone structures is the bladder. Both sensitive structures (bladder and rectum) move radically between
treatment periods

water, the bladder may become larger and push on the prostate, changing the relative
shapes and locations of these organs. The resulting delivery can then compromise the
bladder, and more crucially, allow portions of the cancerous tissue to receive insufficient
irradiation.

The traditional method to deal with uncertainty and patient movement in radiation
treatment is to place a margin around the tumor and consider the resulting volume as the
target [17, 19, 18]. Under this approach, we begin with a clinical target volume (CTV)
determined by adding a margin to the gross tumor volume (GTV) to take into consid-
eration “potential ‘subclinical’ invasion” [18]. The CTV is an oncological concept that
specifies the pure target. From the CTV, a planning target volume (PTV) is established.
To obtain the PTV, an internal margin (IM) and a set-up margin (SM) are combined in
some fashion with the CTV. The IM is defined to take into consideration physiologic
variations; the SM is defined to take into consideration uncertainties in technical factors
such as patient set-up and mechanical stability [18]. As noted in [19, 18], simply adding
the CTV, IM and SM to obtain the PTV may result in an excessively large PTV that
could result in normal tissue complications. Thus, typically a global safety margin is
defined that depends upon the situation at hand: when sensitive structures (organs at
risk) are nearby, a smaller margin is used. The definition of the safety margin usually
involves a compromise. For example for organs at risk, a planning organ at risk volume
(PRV), analogous to the PTV for the target, is defined [19, 18]. When the PRV and the
PTV overlap, then the safety margin becomes a compromise between the two volumes,
as determined by the radiation-oncology team [18]. The advantage to this approach is
that small displacements can occur and the tumor will still be dosed. However, normal
tissue and/or organs at risk will also be dosed, due to the use of the margins.

Besides considering PTV margins, other clinical methods have been investigated [66].
Kubo and Hill [27] look at synchronizing the radiotherapy beam with respiration to mini-
mize patient movement during treatment. Wong et al. [65] study active breathing control,
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involving immobilization of the patient to minimize movement during treatment. Keall
et al. [26] consider motion adaptive x-ray therapy, which adapts the beam to follow target
motion. All of these clinical techniques focus on restricting internal movement due to
respiration, but do not consider set-up issues like patient registration errors.

Statistical approaches have also been presented to deal with uncertainty in radia-
tion treatment. Löf, Lind and Brahme [39] address the issue of modifying radiation
beams to minimize the difference between the desired dose and the delivered dose,
under the assumption that uncertainty in the process is governed by a known stochas-
tic process. They build on the work of Lind et al. [37] (who earlier had solved the
problem for special cases) by using symmetry and numerical integration techniques for
small problems, and a Monte Carlo integration method for general cases. Similarly, Li
and Xing [35] consider reducing the “hard margins” of PTV by representing random
organ motion in terms of a spatial probability distribution, specifically a three-dimen-
sional Gaussian. For fractionated stereotactic radiotherapy (radiotherapy with relocat-
able fixed beam heads), Zavgorodni [70] modifies the margin approach by convolving
the dose with the probability density distribution of the the isocenter (where the beams
meet).

Other statistical approaches use feedback from the system to adjust beam profiles.
Löf, Lind and Brahme [40] incorporate dynamic optimization techniques into their work
of [39]. Internal variations (such as organ movement) are dealt with using stochastic
optimization, as before. Dynamic optimization is added to automatically adjust beam
profiles and patient location in subsequent treatments to account for current set-up errors.
Re-optimization has also been explored. In [69],Yan et al. discuss the conceptual idea of
re-optimizing by adapting the margins treatment. Wu et al. [66] generalize this approach
by modifying the original treatment plan as well. There is a growing literature on adaptive
radiotherapy, see for example [20, 42, 64, 68], where the treatment plans are modified
based on imaging information obtained prior to, or even during each treatment fraction
[42, 50, 52, 53] to reconstruct the original planned dose.

The procedure we present requires feedback from the system. At this time, mech-
anisms to determine the actual dose delivered during individual treatments are quite
primitive. More advanced imaging devices are currently being developed that can gen-
erate more accurate delivery information, highlighting where the delivered treatment
may be inaccurate. For example, a helical tomotherapy system is able to produce mega-
voltage CT images of the patient [51] and dose reconstruction [21, 25, 22, 24, 23, 43] is
being developed to verify the dose delivered to the patient on a daily basis [47, 48, 67].
Thus, in principle any variation between the delivered and the predicted dose distribu-
tions can be compensated for in subsequent treatments. The purpose of this paper is to
exploit this knowledge to improve the overall treatment.

The paper aims to adapt the treatment plan on a day-to-day basis to account for
organ movement and deformation, shrinkage of the tumor, or errors in the original pre-
scription or treatment delivery. Rather than modifying a predetermined treatment plan,
we build the plan as treatments progress, focusing on the total dose to be delivered. In
our work we attempt to take uncertainty into account at the planning stage, and develop
a technique that allows fractionation to decrease errors, rather than increase them. We
develop a control mechanism for the treatment course, leaving the implementation of the
daily dosage to a specialized planning tool. To find the control, we use neuro-dynamic
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programming, particularly a rollout policy, to improve upon simple heuristic policies (see
Section 2.3). Our focus is on determining appropriate doses to use that hedge against
errors in the delivery process; we leave the particular implementation to specific tools
used by application experts for particular machines.

In the next section, we consider the mathematical framework in which we will be
working and describe techniques for solving the day-to-day planning problem. These
techniques include neuro-dynamic programming (NDP) and heuristic policies, one of
which is the current method of choice. Our application of NDP makes critical use of
simulation to estimate the “cost-to-go” from a particular state with a certain number
of remaining deliveries allowed. We next present examples and discuss their results,
showing how the NDP ideas can improve upon the heuristic policies. We define rules of
thumb, which allow for practical implementations of solutions suggested by NDP while
still maintaining most of the improvements. Finally, we show how our methods perform
on actual patient data under re-planning, assuming both accurate and implementable
delivery. The paper concludes with our recommendations for planning methods and
some suggestions of open research issues.

2. Model formulations

To describe the problem more precisely, we introduce some notation and a simplified
model that captures the salient features of interest. Let I be a collection of voxels (pix-
els, points) and let T (i), i ∈ I represent the required final dosage (target). Suppose the
course lasts N periods (stages), and the actual dose delivered (the state) after k days is
xk . This state evolves as a discrete-time dynamic system:

xk+1 = f (xk, uk, wk), k = 0, 1, . . . , N − 1.

Here uk is the control (the dose that will be delivered in the kth period) to be selected
from a collection U(xk), and wk is a random disturbance drawn from a set W . In the
application, we assume that these random disturbances come from errors in the delivery
process (such as patient movement) or errors in the setup (such as patient registration
errors). For this reason, we assume that wk corresponds to a shift to uk . Further, since
each treatment is delivered separately, the errors that arise pertain only to a particular
treatment and time stage, and so wk is independent over stages. A key issue to note is
that the controls are nonnegative since dose cannot be removed from the patient.

At the end of N stages, the state xN should minimize a terminal cost G. For ease of
exposition we assume that G(x) is a linear combination of the differences between the
current dose and the target at each voxel, that is

G(x) =
∑

i∈I
c(i) |xN(i) − T (i)| .

Here, the vector c weights the importance of hitting the target value for each voxel. We
typically use similar values of c for distinct areas in the target, such as the location(s) of
the tumor, sensitive structures like organs, and normal tissue. In practice, larger values
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of c correspond to tumor areas and/or sensitive structures. This gives us the following
mathematical model:

minu E(G(xN))

subject to xk+1(i) = xk(i) + uk(i + wk), ∀i ∈ I, k = 0, 1, . . . , N − 1
uk ∈ U(xk), uk ≥ 0, wk ∈ W,

(1)

with x0 given and E(·) representing expectation.

2.1. Dynamic programming

Dynamic programming can be used to solve (1). Since the dose delivered on a given day
impacts how much dose is still needed in subsequent days, the choice of control at each
time stage contributes to the final cost. Dynamic programming applies backwards recur-
sion. Starting at the last stage, the optimal control to apply for each state x is determined,
then the second-to-last stage is considered, and so on, working backward through the
stages.

As a means of determining the optimal control for a state, we consider the cost-to-go
from the state x after k stages have elapsed, Jk(x). As noted in [1, 2], the cost-to-go
functions satisfy the dynamic programming recursion

Jk(x) = min
u∈U(x)

E[gk(x, u, w) + Jk+1(f (x, u, w))] (2)

with initial condition

JN(x) = G(x), (3)

where gk(x, u, w) represents the immediate cost of applying control u at stage k.
The individual controls ūk can be found in the backward recursion:

ūk(x) = arg min
u∈U(x)

E[gk(x, u, w) + Jk+1(f (x, u, w))]. (4)

If we wanted to use equations (2), (3), and (4) in the radiation treatment application,
we would need to calculate Jk(x) and ūk(x) for every possible state x at each stage k.
A standard technique for doing this is to discretize the state space for x and form a
lookup table for Jk and uk over this discretization. Even for the simple examples that
we describe in Section 3, this becomes unmanageable.

2.2. Heuristic policies

One approach to avoid the computational burden outlined above is to apply simple
heuristic policies.

Several heuristic control techniques immediately spring to mind. First, there is the
simple plan to deliver

uk := T/N
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at each stage and not account at all for disturbances in the delivery. This plan can be
used when treatment errors cannot be measured directly, and is currently the method of
choice. We refer to this plan as the constant policy. Note that the implementation on a
particular machine of this policy only needs one optimization to be performed at the start
of the process. However, even when a voxel has been overdosed at stage k, the constant
policy continues to add dose at subsequent time stages. An alternative is to only add
dose if the current dose is less than the target dose. We refer to this modification as the
constant-plus policy; this latter policy would require re-planning at every stage.

If the distribution of the random disturbances is known, then we can construct a
policy ue whose expected delivery is the target distribution

E(ue) = T .

In practice, ue can be calculated for discrete probability distributions by solving a linear
system, and will probably deliver more than the constant policy near the boundary of
the target. It is then possible to deliver

uk := ue/N

at each stage. Additionally, we can take a convex combination of this policy with the
constant policy; we call such a policy a modified constant policy.

An alternative to these (constant) policies is to attempt to compensate for the error
delivered in the previous time by spreading the error over the remaining time stages. At
each time stage, we divide the residual over the remaining time stages:

uk := max(0, T − xk)/(N − k).

We refer to this plan as the reactive policy. Since the reactive policy takes into consid-
eration the residual at each time stage, we expect that the reactive policy will perform
better than a constant policy. Note, though, that the reactive policy requires knowledge
of xk and re-planning at every stage k.

In actual treatment plans, individual doses are subject to an upper bound, applied in
order to limit burning and allow for healthy tissue to recover between treatments. For
this reason, we assign a cutoff value that restricts the dose prescribed by each control to
such an upper bound. For testing purposes, we set the cutoff to be 2Tmax/N , which is
double the dose prescribed by the constant policy in the worst case. Such a value allows
for a large dose to be prescribed, while still ensuring that the dose is not unreasonably
large. Although this is used in all our computations, very little changes if this upper
bound is not applied.

2.3. Neuro-dynamic programming (NDP)

To overcome the “curse of dimensionality”, various approximation techniques have been
proposed for the solution of problems similar to (1). A particularly simple one is a rollout
policy, an instantiation of neuro-dynamic programming [1, 2]. This approach can also
be thought of as a heuristic improvement mechanism.
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The key idea is to iterate (4) forwards over stages, finding the control to apply imme-
diately by optimization and replacing Jk+1(f (x, u, w)) by an approximation. This is
much closer to the way a decision maker would work in practice: only today’s decision
is needed precisely; the remaining decisions can be approximated. One approximation
assumes the existence of a good base (heuristic) policy that will be used at all future
stages. Then for k = 0, 1, . . . , we choose the control ūk to use at stage k by solving

ūk(xk) = arg min
u∈U(xk)

E[gk(xk, u, w) + Hk+1(f (xk, u, w))] (5)

where Hk+1 is the approximation of Jk+1 obtained by simulating the future and applying
the base policy at all decision points in the future. Under appropriate assumptions, it has
been shown [2] that the policy

(ū0(x0), ū1(x1), . . . , ūN−1(xN−1))

outperforms the given base policy. While this approach is probably the simplest form of
neuro-dynamic programming, it has proved to be very effective in a variety of practical
examples.

The minimization in (5) is carried out by complete enumeration in the setting where
U(x) is a finite set. Defining the Q-factor

Qk(xk, u) := E[gk(xk, u, w) + Hk+1(f (xk, u, w))]

the minimization could be carried out by comparisons between Qk(xk, u) and Qk(xk, ũ)

for u, ũ ∈ U(xk). Rather than calculating Hk+1 at all possible states f (xk, u, w) using
multiple simulations, we instead use a single simulation to estimate the Q-factor Qk

as Q̃k . Since simulation is involved, difference calculations between Q̃k(xk, u) and
Q̃k(xk, ũ) will be prone to errors. These errors can be alleviated somewhat by simu-
lating the Q-factor differences Qk(xk, u) − Qk(xk, ũ) instead of taking the difference
between two simulated Q-factors [1]. Essentially, we simulate differences that are cal-
culated from the same realizations of w. The simulation code we use generates 10000
paths through the simulation tree between stage k and stage N . While in our examples
this enabled us to ensure we chose the correct u, more sophisticated techniques based on
the variances of the differences, or ranking would be better. For each path, the Q-factor
differences are calculated; at the end, the average of these differences determines ūk .

Thus our NDP rollout policy is generated as follows. We begin by choosing the
base policy for the calculation of Hk+1. As the base policy is applied at all later stages,
it should be a heuristic policy that performs well. In our numerical experiments, we
use the reactive policy, described above in Section 2.2. Starting at a given x0, for each
pair of controls u and ũ ∈ U(x0), we simulate (concurrently) the Q-factor differences
Q0(x0, u) − Q0(x0, ũ), and choose the ū(x0) that makes all these differences negative.
(In our example these differences actually only involve the terminal state xN .) We then
calculate x1 using the state dynamics, and repeat the entire procedure at the next stage.

In the radiation treatment application that is expressed in (1), we assume no imme-
diate costs in applying individual controls and so gk(x, u, w) = 0 (if the costs for
missing the target area are additive, g could account for these explicitly when they
occur). In practice, the procedure could also implement an on-line policy choice since
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the simulation model could be modified as time stages elapse. In the current setting,
we approximate the future by simulation and choose the policy to apply right now by
optimization. After applying this policy, we wait for time to elapse and repeat the same
process at the next stage. For a particular radiation therapy, the choice of the current
control may itself involve a lengthy optimization similar to that outlined in Section 4.2,
and the error produced in delivery will be provided to the decision-maker as a by-product
during delivery. (For example, observed anatomical changes may also be incorporated
into later simulations.)

3. Model computations

In this section we analyze the behavior of small models. Section 3.1 suggests alternative
approaches when re-planning is not allowed at every stage. A variety of approaches that
deliver the same dosage at each stage are compared under disturbances during deliv-
ery. Section 3.2 extends the analysis to investigate approaches that allow re-planning at
each stage, and shows how these approaches improve upon the other techniques. Due to
the added computational burden of determining such methods, we investigate “rules of
thumb” in Section 3.3 that allow plans to be determined without forward simulations.
We believe that the distribution of the errors may affect the form of our solutions. We use
the term volatility loosely to measure the variance of the distribution. The rules of thumb
are promising for low volatility cases, but are less applicable under high volatility.

3.1. Modified constant policy

We investigate the use of the modified constant policy as described in Section 2.2. We
consider a case where I = {1, . . . , 20}, with T (i) = 1 and c(i) = 5 when 3 ≤ i ≤ 18,
T (i) = 0 and c(i) = 1 otherwise (see Section 2 for details on this notation).

The probability of shifts for all our models are given by:

wk(δ, µ) =






−2 with probability δ

−1 with probability µ

0 with probability 1 − 2(δ + µ)

1 with probability µ

2 with probability δ.

(6)

for different choices of δ and µ.
In this section, low volatility refers to the shift probabilities given by δ = 0.05 and

µ = 0.1, while high volatility corresponds to δ = 0.1 and µ = 0.2. In this simple
example, we can calculate ue from Section 2.2 easily, and can evaluate the terminal
cost as an average over 1000 simulations. The modified constant policy depends on the
volatilities: we show in Figure 2 the results of runs at these two volatilities for a convex
combination of ue with the constant policy uc parameterized by:

u = γ uc + (1 − γ )ue. (7)

Note that in the low volatility case ue significantly outperforms uc but in the high
volatility case this is no longer true. Clearly, our approaches must be able to deal with
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Fig. 2. Expected error for modified constant policy, parameter γ and N = 20

different levels of volatility in delivery. Dependent on the volatility we see improvement
for particular choices of γ over both ue and uc. We also note that separate calculations
demonstrated that the value of γ decreases as N increases as we would expect; for the
low volatility case we found that γ = 1 for N = 4 and 6, γ = 0.5 for N = 10 and
γ = 0.35 for N = 14.

For completeness, Figure 3 shows the terminal cost associated with all the policies
we investigated that require only a single planning step as a function of N . We rec-
ommend using the modified constant policy in this situation provided there are good
estimates of the probability distribution of disturbances.

Most of the error for the constant policy is due to underdosing of the target area,
not overdosing of the sensitive structures. By choosing a multiple of T/N (greater than
1) to deliver at each stage (instead of T/N itself), we can reduce this error at the cost
of increasing the total dose delivered to the patient. However, on targets with extensive
interiors, including the one analyzed above, this leads to significant overdose in the these
regions; we do not discuss such approaches further.

3.2. Simple NDP rollout policy examples

To gain intuition regarding the potential of the re-planning approaches, we first consider
two simple, one-dimensional targets under different weighting and probability distribu-
tions, pictured in Figure 4. For both targets, I = {1, 2, . . . , 9} and we allow a maximum
shift of 2 voxels. In both targets, the “spikes” of dose 0.8 represent tumor locations. Thus,
it is important that these areas receive as much of the 0.8-prescribed dose as possible,
and so these areas will have a relatively high weighting in the objective. The 0.1 areas
can represent sensitive structures (which can be exposed to a certain level of radiation)
or normal tissue, depending upon the particular weighting scheme employed. We apply
3 different weighting schemes to the spike target in Figure 4(a). Moving from easiest to
hardest, these schemes are:
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Fig. 4. Example targets

– the smooth weighting: c = [1, 1, 1, 1, 10, 1, 1, 1, 1], which only enforces the 0.8-
dosage, allowing for more variation in the other voxels (including a “building” up
to the spike);

– the nonsymmetric weighting: c = [1, 1, 1, 1, 10, 5, 5, 1, 1], which allows for a build-
up to the spike on the left-hand-side, but enforces the spike structure rigidly on the
right-hand-side; and
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– the spike weighting: c = [1, 1, 5, 5, 10, 5, 5, 1, 1], which enforces the spike structure
rather rigidly.

For the double spike target of Figure 4(b), we apply the double spike weighting scheme:
c = [1, 1, 10, 5, 5, 5, 10, 1, 1], which enforces high dosage on the target edges and the
low dosage in the center. The examples have been chosen to simulate practical cases of
interest in the application area. We consider first the low volatility case where δ = 0.02
and µ = 0.08 in (6) for every stage k.

We apply the NDP rollout approach using the reactive policy as the base policy.
We require a rich collection of heuristics for the finite set U(xk). We include in this
collection the constant and reactive policies, and we add what we refer to as categorical
policies. For these policies at stage k, we calculate the residual target for each voxel i by
max{0, T (i) − xk(i)}. Then, the voxels are divided into three categories by comparing
their residual target to the maximum residual:

max
i∈I

max{0, T (i) − xk(i)}.

The three categories correspond to voxels whose residual target is less than 40% (low
residual), between 40% and 70% (medium residual), and greater than 70% (high resid-
ual) of this maximum value. In each category, we apply one of three controls. Either we
apply 0 dosage, 0.4 of the residual target, or 1/(N −k) of the residual target. This yields
an additional 26 policies for U(xk) (as the reactive policy is the categorical policy with
1/(N − k) applied in each category).

Figure 5 displays simulated results of each example. For each graph, the constant
policy, reactive policy, and NDP rollout policy results are displayed, as well as the opti-
mal results for time stages 4, 5, and 6. The optimal results come from reformulating the
problem as a stochastic linear programming and solving it exactly. The curse of dimen-
sionality precluded exact solution with more time stages with this approach, although
it may be possible to extend to a few more stages using scenario reduction or sampling
techniques [15, 38].

Note that the alphabetic ordering of targets (a) to (d) are increasingly difficult and
lead to larger errors, independent of the optimization scheme chosen. Common to all
examples is the poor performance of the constant policy. The reactive policy performs
better than the constant policy, but not as well as the NDP rollout policy. The level of
improvement depends upon the difficulty of the target. We see that the reactive policy
gives a large improvement over the constant policy — the error is nearly halved. NDP
does even better, yielding about a 50% drop in the reactive policy error at larger time
stages, and achieving near-optimal results at smaller time stages. As time advances, the
improvement for both the NDP and reactive policies becomes greater: where constant
remains almost level, reactive and NDP continue to drop as we move to later time stages.
Further, NDP decreases faster than the optimal results do, suggesting that it may become
optimal at later time stages.

In addition to three-category policy choices, we also experimented with two-cate-
gory policy choices. Under these policies, the voxels were classified as either less than
50% of the maximum residual or more than 50% of the maximum residual. To maintain
approximately the same number of policies, we allowed five choices for each category
(resulting in a total of 27 policies, including the constant policies). In one experiment,
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(a) Spike target with smooth weighting.
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(b) Spike target with nonsymmetric weighting.
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(c) Spike target with spike weighting.
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(d) Double spike target/double spike weighting.

Fig. 5. Simple examples under low volatility

we allowed for small multiples: 0, 1/(N − k), 0.01, 0.1, or 0.4. In another experiment,
we allowed for large multiples: 0, 1/(N − k), 0.1, 0.4, or 0.6. Applying these policies to
the double spike example (the hardest example), we found very little change in the NDP
results. The small-multiple category choices returned approximately the same results as
the three-category choices, while the large-multiple category choices returned slightly
better results but nothing visually significant on the plot.

These results suggest that significant improvements over the presented NDP results
cannot be achieved while choosing from among approximately 30 policies. Note that in
addition, we also experimented with many more examples, including different targets,
different weighting schemes, and larger targets. The results from these other examples
were qualitatively the same. We did find, though, that for higher volatility examples,
constant weighting (c(i) = 1, ∀i ∈ I) resulted in significant hedging and consequential
underdose of the target. This strongly suggests that the use of an appropriate weighting



400 M.C. Ferris, M.M. Voelker

Table 1. Expected error after 20 stages for Section 3.1 example using 1000 simulations

Policy Mean Variance

Constant 2.40 0.81
Modified Constant (0.2) 1.75 0.43

Reactive 0.74 0.10
Modified Reactive (3.0) 0.56 0.16

NDP rollout 0.53 0.17

scheme to focus the treatment is imperative. Further computational testing is reported
in [60].

We experimented with a different collection of policy choices in the NDP approach,
namely replacing the categorical choices with a collection of choices of multiples of the
reactive delivery at each stage. Thus, we allow delivery of

αk max(0, T − xk)/(N − k) (8)

at each stage k, with αk taken from a finite collection. Repeating the low volatility
experiments of Section 3.1 gave the results shown in Table 1. (Note that the value 0.2
corresponds to the value chosen for γ in (7) and the value 3.0 corresponds to the value
of αk in (8).) The modified reactive policy uses a fixed αk = 3 at each stage, whereas
the NDP approach updates the value in the manner described above. Note that all the
re-planning techniques outperform the single planned methods, both in mean and vari-
ance. Furthermore, the more aggressive modified reactive policy (that chooses αk = 3
at every stage except the last two) performs very well. The NDP rollout policy, choosing
the multiples using forward simulations, outperforms all the methods at this volatility.
For higher volatilities, the NDP approach remains the best, but the aggressive modified
policy becomes inferior to the reactive policy due to a significant increase in variance of
its solution errors. This is not the case for the NDP approach. Thus, the forward simu-
lations facilitate adapting to uncertainty; it remains to be shown whether the additional
computational cost is allowable in the application.

3.3. Rules of thumb

While building simple models and analyzing their properties can lead to great insight
into the application at hand, it is important to draw definitive conclusions that are appli-
cable to the real problem. In this section, we endeavor to derive policies uk that are not
derived from a forward simulation from the state xk . Removing this requirement, allows
such policies to be directly implemented in the radiation treatment planning arena by
simply modifying the delivery target at each stage k.

For the results of Section 3.2, we applied an outer simulation to generate many paths
through the scenario tree and we used an inner simulation (for Q-factor differences)
to determine ūk . To find policies without recourse to simulation, we look for policies
that are used most often at stage k. For a particular example, the outer simulation gives
a series of possible policies to apply. By considering the average Q-factors for each
control, we have an idea of how effective that control is for that example at that stage.
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Table 2. Rules of thumb for 20 time period examples

Stage Low Volatility Med. Volatility High Volatility Simple Rule

1–9 (0, 0, 0.4) (0, 0, 0.4) (0, 0, 0.4) (0, 0, 0.4)

10 (0, 0.09, 0.4) (0, 0.09, 0.4) (0, 0.09, 0.4) (0, 0.09, 0.4)

11 (0, 0.1, 0.4) (0, 0.1, 0.4) (0, 0.1, 0.4) (0, 0.1, 0.4)

12 (0, 0.11, 0.4) (0, 0.11, 0.4) (0, 0.4, 0.4) (0, 0.11, 0.4)

13 (0, 0.4, 0.4) (0, 0.125, 0.4) (0, 0.4, 0.4) (0, 0.4, 0.4)

14–17 (0, 0.4, 0.4) (0, 0.4, 0.4) (0, 0.4, 0.4) (0, 0.4, 0.4)

18 constant-plus constant-plus (0.4, 0.4, 0.4) (0.4, 0.4, 0.4)

19 constant-plus constant-plus (0.5, 0.5, 0.5) (0.5, 0.5, 0.5)

20 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

In [60] we tried three different volatility levels, namely low (δ = 0.02, µ = 0.08 in
(6) as reported above), medium (δ = 0.05, µ = 0.15) and high (δ = 0.05, µ = 0.25).
Averaging these Q-factors across examples with the same volatility and choosing the
controls that correspond to the smallest Q-factors at each time stage, we determine a
generalized policy for each volatility. We refer to this generalized policy as the “rule of
thumb” policy for that volatility. These rules of thumb allow us to remove the depen-
dence on the simulation and provide us with a pre-defined plan to use for a particular
volatility.

We can take the generalization further and remove dependence on the volatility by
averaging the Q-factors across volatilities as well. We refer to the resulting policy as the
“simple rule of thumb”. The rules of thumb and simple rules of thumb for N = 20 are
given in Table 2. The categorical policies (including the reactive policy) are indicated
as triplets; the first entry corresponds to the low residual areas; the second entry corre-
sponds to medium residual areas; and the third entry corresponds to the high residual
areas. These entries correspond to the multiplier of the residual that is used at all voxels
in that area.

Examining the tables, we notice some general trends in the control choices. First of
all, within each table, the controls become more aggressive as we near the final time
stages, generally moving from controls in which only the high residual areas are dosed,
to controls in which all areas are dosed. Typically, we use the first half of the time periods
to work aggressively on the high residual areas and ignore the other areas.

Controls in the middle stages tend to focus on both the medium and high residual
areas first. Later stages focus on all three categories, ending in every case aggressively
with the reactive policy (to attempt to apply all of the remaining dose). An interesting
question arises as to whether the low and medium volatility rules follow this general
trend. In these three cases, the rule of thumb makes use of the constant-plus policy in
the later time stages. While 1/20-th of the original target dose is a seemingly rather
small amount, we claim that it is very likely to be an aggressive control at the later time
stages since the remaining residual is likely to be small, and hence a small fraction of
the original dose is in fact a large dose in comparison to the residual. In this case, the
removal of overdosing (the difference between constant and constant-plus) is important.

Since they are generalizations, we expect that the rules of thumb and the simple rule
of thumb will perform worse than the NDP rollout policy. This is the case, although
the differences tend to be so small that they are not noticeable. Figure 6 compares the



402 M.C. Ferris, M.M. Voelker

4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Time Periods

E
xp

ec
te

d 
E

rr
or

NDP Low
Thumb Low
Simple Low
NDP Medium
Thumb Medium
Simple Medium
NDP High
Thumb High
Simple High

(a) Spike target with smooth weighting.
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(b) Spike target with nonsymmetric weighting.
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(c) Spike target with spike weighting.
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(d) Double spike target with double spike
weighting.

Fig. 6. Rules of thumb and simple rules of thumb results for the examples

NDP rollout results to the rules of thumb and simple rules of thumb for each example.
In addition Table 3 shows the percentage decrease achieved by the reactive policy, the
NDP rollout policy, rules of thumb and simple rules of thumb over the currently-used
constant policy at 20 time stages.

The results applying the rules of thumb and simple rules of thumb are almost always
indistinguishable from one another. We only see a noticeable difference in the high
volatility example of Figure 6(a). It is not surprising that one target suffers under a
generalization built from considering all targets. This case, corresponding to the easiest
target, probably does not require the same controls as the other targets, and so suffers
particularly in the high volatility case where things are more likely to go wrong. Table 3
provides the end point for the results shown in Figure 6. In all cases, the NDP, rules of
thumb and simple rules of thumb improved upon the reactive policy results significantly.
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Table 3. Percentage decrease over the constant policy at 20 time stages, calculated for the reactive policy, the
NDP rollout policy (NDP), the rules of thumb (RoT) and the simple rules of thumb (SRoT)

Target Volatility Reactive NDP RoT SRoT

Smooth Spike Low 76% 94% 94% 94%
Smooth Spike Medium 51% 83% 81% 83%
Smooth Spike High 24% 51% 47% 47%
Nonsymmetric Spike Low 70% 89% 89% 89%
Nonsymmetric Spike Medium 44% 71% 69% 71%
Nonsymmetric Spike High 15% 30% 29% 29%
Spike Spike Low 66% 85% 85% 85%
Spike Spike Medium 38% 61% 60% 61%
Spike Spike High 8% 17% 16% 16%
Double Spike Low 68% 86% 86% 86%
Double Spike Medium 43% 69% 67% 68%
Double Spike High 17% 31% 31% 31%

However, the percentage decrease over the constant policy varies very little between the
three of them. This suggests that very little is sacrificed in moving to the generalized
simple rules of thumb; this is the choice used in Section 4.1.

Note that if the policy pool U is changed, the simulations must be rerun and this
process must be repeated on the new results in order to determine appropriate rules of
thumb and simple rules of thumb.

The results do have a disturbing trend, in that as the volatility increases the percent-
age improvement over the constant policy decreases. In order to investigate this further,
we consider a much larger example, based on realistic data.

4. Real-life treatment planning example

In this section, we consider how well the NDP simple rule of thumb generalizes to a
real-life example. The example that we use in this section is a three-dimensional example
drawn from actual patient data.

As in the one-dimensional case, the area of consideration is divided into voxels. We
consider an area where the x-axis varies from 0 to 110, the y-axis varies from 0 to 90,
and the z-axis varies from 0 to 80. Within this area, there are 747, 667 voxels in nor-
mal tissue; 69, 270 voxels in four sensitive structures (spinal cord, liver, left and right
kidneys); and 1, 244 voxels in the tumor. Figure 7 shows the layout at z = 30.

We consider a 20-stage treatment. Let T be the set of tumor voxels, S be the set of
sensitive structure voxels, and N be the set of normal tissue voxels. Upon completion,
we would ideally like to have the tumor dosed completely, with no dose delivered to the
sensitive or normal tissues:

T ∗(i, j, k) =
{

1 if (i, j, k) ∈ T
0 if (i, j, k) ∈ S ∪ N .

(9)

However, this is not possible as radiation beams must pass through normal and/or sen-
sitive tissues to reach the tumor, see [36] for a description. Instead, application experts
allow for some error by relaxing their requirements to the following [36]:

T (T ) ∈ [0.95, 1.07], (10)
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Fig. 7. Pancreas example: The large mass in the backround is the liver, the spinal cord is in the foreground,
the kidneys are to the right and left of the darkly shaded target structure

90% of sensitive tissues should have T (S) ≤ 0.2 · T ∗(T ) = 0.2, (11)

and

T (N̄ ) should be as small as possible (12)

where N̄ is a reduced set of normal tissue voxels, consisting of those normal tissue
voxels around the tumor and a sampling of the other normal tissue voxels. In our case,
N̄ consists of 96, 154 voxels.

4.1. Re-planning with perfect delivery

We consider a direct translation from the simple example. As before, we allow for a shift
in the delivery of one or two voxels. In the three-dimensional example, we allow for six
possible shift directions (up, down, left, right, forward, back); this gives thirteen total
possibilities (including no shift). Here again, we consider three volatilities, based on the
volatilities from the one-dimensional case: low volatility (probability of a shift is 0.2),
medium volatility (probability of a shift is 0.4), and high volatility (probability of a shift
is 0.6). In addition, we consider a very volatile case, where the probability of a shift is
0.78. We also assume that the ideal dose can be delivered, and so we measure the error
against T ∗ from equation (9).

Table 4 displays the average results for the constant, reactive and NDP simple rule of
thumb policies after 1000 simulations. Displayed are the errors on the tumor, the errors
on the sensitive structures, the errors on the normal tissues, and the overall error. The
overall error is a linear combination of the three other errors, found by weighting the
areas as in the one-dimensional examples: the weight on the tumor is 10, the weight on
the sensitive structures is 5, and the weight on the normal tissues is 1.
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Table 4. Results of simple shifts on the real-life example

Policy Volatility T Error S Error N Error Overall Error

Constant Low 54.3 0.5 53.8 599.3
Reactive Low 5.1 0.6 58.4 112.4
Simple NDP Low 0.3 0.6 60.1 66.1

Constant Medium 107.7 1.0 106.7 1188.7
Reactive Medium 18.7 1.1 127.6 320.1
Simple NDP Medium 5.0 1.2 134.6 190.6

Constant High 151.7 1.0 150.7 1672.7
Reactive High 48.5 1.4 201.5 693.5
Simple NDP High 34.3 1.4 221.1 571.1

Constant Very High 263.1 4.7 258.4 2912.9
Reactive Very High 145.6 6.7 403.4 1892.9
Simple NDP Very High 166.5 7.4 481.9 2183.9

The table shows that the simple NDP rules of thumb significantly outperforms the
constant policy on the tumor in all cases. It also does very well compared to the reac-
tive policy, beating the reactive policy in all cases except for the very high volatility.
This is not surprising since the simple NDP policy was built from considering only the
low, medium and high volatilities, but not the very high volatility. The NDP policy is
too aggressive under very high volatility; it produces significantly worse errors on the
normal region.

Under the other volatilities, the NDP policy has about the same error as the reactive
policy on the sensitive tissue, and slightly worse error on the normal tissue. The degraded
performance on the normal tissue is not surprising, considering the simple one-dimen-
sional examples that were used to build the NDP policy. We note that the simple NDP
policy was built focusing on the tumor: in the one-dimensional examples, the tumor
areas (spikes) were always weighted high. As a result, the NDP policy concentrates on
fully dosing the tumor, whereas avoidance of normal and sensitive tissues is a secondary
consideration.

Also, we note that the simple NDP policy delivers more overall dose to the patient
than the constant policy. In addition, most of this dose is delivered early on, when the
residual is high (since we deliver 0.4 of the high residual). Due to the shifts, this higher
dose is generally not delivered to the tumor (although some of the tumor may be over-
dosed). Thus, we would expect that the error on the normal and sensitive tissues to be
larger for the simple NDP policy.

Like the NDP policy, the reactive policy may deliver more dose overall than the con-
stant policy. However, in the ideal case of no shifts, the reactive policy reduces exactly
to the constant policy. Unlike the NDP policy, where a great deal of dose is delivered
early on, the reactive policy policy starts out by delivering little dose early on (1/20-th
of the residual — exactly the constant policy at the first time stage). Thus, at the last time
stage, where we deliver the full residual, the reactive policy may be delivering a large
amount of dose to make up for errors earlier on. As a result, a shift in the last policy can
be disastrous for the reactive policy.

As noted earlier, unlike the NDP or the reactive policies, the constant policy delivers
exactly the same dose at every time stage. Because it does not adjust its dose for errors
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Fig. 8. Boxplots of target values

on the tumor, the constant policy tends to underdose the tumor. In fact, as can be seen
from Table 4, the constant policy error on the tumor is the sum of the errors on the normal
and sensitive tissues — the tumor dose was simply shifted to the normal and sensitive
tissues instead.

The boxplots of Figure 8 show more detail on the distribution of the target values
over the 1000 simulation runs carried out to generate Table 4. In each column, the box
has lines at the lower quartile, median and upper quartile values. The whiskers are lines
extending from each end of the box to show the extent of the rest of the data. Outliers
are data with values beyond the ends of the whiskers and are indicated by crosses. It is
clear that as the volatility increases, the effectiveness of a simple NDP policy based on
simulations at lower volatilities on a simple model diminishes. Figure 8(a) shows that
the simple model is indeed very useful as a predictive mechanism for the real data model
when the volatility is not too great; both the mean and the variance are significantly
reduced under the simple NDP policy.

4.2. Re-planning with implementable delivery

In the previous examples, we assumed that we could achieve any dose that was necessary
for the policies. However, these doses may not be physically implementable. To obtain
an implementable dose, we must use a planning tool. Our work thus far has been inde-
pendent of any planning tools. In this section, we make use of a particular planning tool,
presented in [36], to demonstrate how the policies perform under actual re-planning.

Given the ideal dose T ∗ from equation (9), the planning tool in [36] solves a mixed-
integer programming problem to determine the angles (out of a total of 36) from which
individual beams of radiation should be delivered and the length of time that each deliv-
ery should last. To reduce the solution time, we preselect ten angles to use. This reduces
the problem to a linear programming problem:
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min
w,D

λt (‖(DT − θL(T ))+‖∞ + ‖(θU (T ) − DT )+‖∞)

+ λs

Cs
‖(DS − φ)+‖1 + λn

Cn
‖DN ‖1

subject to D� =
∑

A∈A
Dose(A, �)wA, � = T ∪ S ∪ N

DT ≤ u

0 ≤ wA ≤ M, ∀A ∈ A

(13)

Here, A is the set of (ten) angles that can be used to deliver radiation. wA represents the
length of radiation exposure time for each angle A ∈ A, bounded above by M (M is
predetermined by application requirements). Dose(A, �) is a data matrix that contains
the amount of radiation that is delivered to each voxel (i, j, k) ∈ � = T ∪ S ∪ N when
wA = 1. D� is the total radiation dose delivered to each voxel in �. Note that DT is
bounded above by u; we set

u = 1.15 · θ(i, j, k), ∀(i, j, k) ∈ T ,

where θ(i, j, k) is the desired dose at voxel (i, j, k). Here, we do not impose an upper
bound on dose that can be delivered to each non-target voxel, but use the objective func-
tion to penalize large deviations from the desired dose. However, u could also be used
to limit the total dose delivered during each stage: for example, we could set u = 1/10
(twice the ideal constant dose) to correspond to the upper bound from the simple one-
dimensional examples. θL and θU are the lower and upper bounds, respectively, on the
acceptable tumor dose. From the prescription (10),

θL(i, j, k) = 0.95 · θ(i, j, k), ∀(i, j, k) ∈ T (14)

and

θU (i, j, k) = 1.07 · θ(i, j, k), ∀(i, j, k) ∈ T . (15)

φ is the acceptable upper bound on the sensitive tissue. From the prescription (11),

φ = 0.2 · (fraction of total dose to be delivered).

(Note that, due to the difficulty in applying this restriction to only 90% of the sensitive
tissue, as in the original prescription, we instead apply it to all of the sensitive tissue.) The
scalars λt , λs , and λn are parameters that weigh the importance of the prescriptions for the
tumor, sensitive structures, and normal tissues, respectively. We set λt = λs = λn = 10.
Cs and Cn represent the cardinality of the sensitive and normal tissues, respectively,
allowing us to compare the average error on the sensitive and normal tissues to the
maximum error on the tumor.

To apply the constant policy, we need only solve model (13) once. If we solve
model (13) with

θ(i, j, k) = 1, ∀(i, j, k) ∈ T

and
φ(i, j, k) = 0.2, ∀(i, j, k) ∈ S,
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Table 5. Results of re-planning on the real-life example under very high volatility

Policy T Error S Error N Error Overall Error
Constant 613.5 0.0 2743.9 8878.9
Reactive 41.2 242.6 6633.0 8258.0
Simple NDP 75.2 62.3 6454.5 7518.0

we find the implementable dose for all of T ∗. We can then divide the resulting dose by
20 to obtain the implementable dose to deliver at each time stage. (Note that each time
stage’s dose is implementable: we set the weights for each stage to wA/20.)

To apply the reactive policy, we must re-plan at each time stage. This requires 20
solutions to model (13), each with a possibly different θ and φ. For time stage k, we set

θ(i, j, k) = max

{
0,

T ∗(i, j, k) − xk(i, j, k)

N − k

}
∀(i, j, k) ∈ T

and
φ(i, j, k) = 0.2/(N − k) ∀(i, j, k) ∈ S.

Like the reactive policy, the simple NDP policy requires 20 solutions to model (13).
To obtain θ , we use the simple rule categorical multipliers from Table 2: for (i, j, k) in
category c (= low, medium, or high residual),

θ(i, j, k) = mk(c)(T
∗(i, j, k) − xk(i, j, k))

where mk(c) is the k-th multiple for category c. φ is similar to that for reactive, except
we conform to the prescription and do not restrict a percentage of the sensitive tissue in
each structure:

φ(i, j, k) =
{

0.2 · mk(low) for the smallest 0.90 · mk(low) of each structure
∞ for the largest 0.10 · mk(low) of each structure.

We apply the realistic shifts from the previous section, under the very high proba-
bility (probability of a shift is 0.78). Table 5 shows the results for the constant, reactive
and simple NDP policies after 20 simulations. The errors given correspond to errors on
the prescriptions (10), (11) and (12).

As shown in Table 5, the reactive and simple NDP policies significantly outperform
the constant policy on the tumor, cutting the error by more than one-sixth. However,
the error on the sensitive and normal tissues is also significantly higher — around three
times more on the normal tissue, and a great deal more on the sensitive structures. Note
also that the reactive policy does better than the simple NDP policy on the tumor, but
the reactive’s overall error is worse. This comes from the fact that the simple NDP pol-
icy performs significantly better on the sensitive structures, cutting that error by about
one-fourth.

The improvement of the simple NDP policy over the constant and reactive policies
shown in Table 5 is not as great as when perfect delivery was used. This suggests that
the simple NDP policy suffers more from re-planning error than the reactive policy,
further suggesting that the reactive policy generates dose distributions that are easier to
plan. Considering a more advanced delivery tool, such as IMRT, may improve the NDP
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results since these methods can deliver dose distributions having steep gradients at the
boundaries of structures, similar to the deliveries that are necessary in our modified tar-
get distributions. In addition, incorporating a “re-planning error” term in the simulation
during the building of the NDP policies may yield more robust simple NDP policies.
Both of these are issues for future study.

For immediate use, we suggest that either the reactive policy or the NDP rollout
approach be employed, as long as the errors on the sensitive and normal tissues are
acceptable. If these errors are too high, a different weighting scheme that puts more
emphasis on avoiding the sensitive and/or normal tissues can be used. The process
though, remains the same. On a day-to-day basis, the treatment planner, knowing xk ,
can calculate the dose required at each voxel in the manner outlined in Section 2.2,
accounting for the stochastic errors that have occurred. Once this dose distribution is
known, existing planning tools can be used to implement this on particular machines, as
we have demonstrated here.

5. Conclusion and future work

Day-to-day treatment planning is a complex procedure that can significantly benefit
from knowledge of the errors that occur during the delivery process. While dynamic
programming and stochastic optimization would undoubtedly lead to better plans, they
are currently intractable for application problems of realistic size and complexity.

This paper proposes a solution based on neuro-dynamic programming, coupled with
heuristic policies that are based on the particular application. In terms of increasing
planning complexity, we suggest the following approaches are the most promising:

– The modified constant policy (Section 2.2): if no re-planning is allowed through the
course of treatment, this policy performs well provided the user has a good estimate
for the distribution of the errors involved in delivery.

– If re-planning is allowed, and the case has low volatility, the simple rules of thumb
(derived from the NDP rollout policy applied to simple examples) perform very
well and outperform all the single plan policies and the reactive policy under per-
fect delivery. The practical implementation of both the simple rule and the reactive
policies are exactly the same. First of all, knowledge of xk is required. Given this
information we can calculate the actual dose that should be delivered at each voxel
i ∈ I by determining which category the voxel resides in, and then multiplying
the residual T (i) − xk(i) by the categorical multiplier. Knowing the dose at every
voxel i is all the data that is required to specify a plan optimization that determines
how to implement that particular dose on a specific machine. As mentioned in the
introduction, we allow existing planning tools to perform this step, and we believe
this is a key advantage of our approach.

– When the volatility increases, or delivery devices are incapable of delivering the cat-
egorical policies generated above, the reactive policy of Section 2.2 performs well
if the user is unwilling to perform forward simulations. The modified reactive pol-
icy (Section 3.2) can outperform this method for certain volatilities but its variance
increases rapidly making it a dangerous choice for high volatility.
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– If re-planning is allowed, the NDP rollout policy performs the best on small examples
and under perfect planning. It is able to compensate for errors effectively provided
some distributional information is available. Improved estimation of the cost-to-go
function leads to better solutions. The principal disadvantage of the NDP rollout
policy is the time needed to calculate the estimate Hk for the cost-to-go using sim-
ulation.

We propose some simple ideas to improve the accuracy of the estimation and reduce
the time overhead.

– The backwards recursion step of dynamic programming can be used to determine the
policies that will be used in the last few steps optimally. While this is impractical to
carry out for all stages N , it can be used to provide very good estimates of cost-to-go
with few stages remaining. Simulation can be used to extrapolate these values back
to earlier stages.

– Simulation generates an upper bound on the cost-to-go value. By estimating a lower
bound on this value using simple arguments, the accuracy of the estimate can be
improved with smaller computational times. Determining valid estimates is a topic
for future research.

– Limiting the number of times re-planning is carried out will reduce the size of the
problem instances significantly. It is not known how much this reduction will affect
the quality and robustness of the solution methods. Additionally, reduced re-plan-
ning intervals could be used only to generate the cost-to-go estimates, invoking a
new policy at every stage.

– Is it possible to extract features of the problem to allow cost-to-go estimation based
on these features, instead of a full blown simulation involving all the voxels in the
problem? We believe such features as variance of the values of xk , drop off near the
boundary of the target, etc may be sufficient to calculate the cost-to-go estimates to
suitable accuracy. Furthermore, the addition of new policies in the NDP approach
may lead to better solutions. For example, if we know what features give good cost-
to-go values, we can generate new policies to modify xk appropriately. As a specific
example, having uniform values for all voxels in xk generates smaller cost-to-go
values, and a “fill-up” policy that only delivers to voxels that are below a certain
level may be useful to employ at certain stages.

While these approaches provide a variety of planning techniques that offer increasingly
accurate treatment of errors in return for increasingly complex planning problems, it
remains an open question as to which method (or methods) will be the most applicable
in clinical practice.
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37. Lind, B.K., Kăllman, P., Sundelin, B., Brahme, A.: Optimal radiation beam profiles considering uncer-
tainties in beam patient alignment. Acta Oncol. 32, 331–342 (1993)

38. Linderoth, J.T., Shapiro, A., Wright, S.J.: The empirical behavior of sampling methods for stochastic
programming. Optimization Technical Report 02-01, Computer Science Department, University of Wis-
consin, Madison, Wisconsin, 2002
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