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We characterize the property of obtaining a solution to a convex program by minimizing over the feasible 
region a linearization of the objective function at any of its solution points (Minimum Principle 
Sufficiency). For the case of a monotone linear complementarity problem this MPS property is completely 
equivalent to the existence of a nondegenerate solution to the problem. For the case of a convex quadratic 
program, the MPS property is equivalent to the span of the Hessian of the objective function being 
contained in the normal cone to the feasible region at any solution point, plus the cone generated by 
the gradient of the objective function at any solution point. This in turn is equivalent to the quadratic 
program having a weak sharp minimum. An important application of the MPS property is that minimizing 
on the feasible region a linearization of the objective function at a point in a neighborhood of a solution 
point gives an exact solution of the convex program. This leads to finite termination of convergent 
algorithms that periodically minimize such a linearization. 
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I. Introduction 

It  is wel l  k n o w n  by  the  m i n i m u m  p r i n c i p l e  (see [9, T h e o r e m  9.3.3] and  [17, T h e o r e m  

7.1.1]) tha t  e a c h  so lu t i on  o f  a c o n v e x  p r o g r a m  wi th  a d i f f e r en t i ab l e  o b j e c t i v e  f u n c t i o n  

m i n i m i z e s  the  l i n e a r i z a t i o n  o f  the  o b j e c t i v e  at any  s o l u t i o n  p o i n t  on the  f eas ib l e  

reg ion .  O u r  c o n c e r n  in this p a p e r  is the  c o n v e r s e :  w h e n  do  all m i n i m i z e r s  ( o v e r  the  

f eas ib le  r eg ion)  o f  a l i n e a r i z a t i o n  o f  the  o b j e c t i v e  f u n c t i o n  at any  s o l u t i o n  p o i n t  

g ive  an  exac t  s o l u t i o n  o f  the  c o n v e x  p r o g r a m ?  To  see tha t  this  c o n v e r s e  d o e s  n o t  

h o l d  in genera l ,  e v e n  w h e n  the  o b j e c t i v e  f u n c t i o n  is s t rong ly  convex ,  c o n s i d e r  the  

t r iv ia l  e x a m p l e :  m i n ~ 0 x  2 wi th  t he  u n i q u e  so lu t i on  x = 0 .  F o r  this p r o b l e m  

a r g m i n ~ 0 ( ( V f ( g ) ,  x)  is the  n o n n e g a t i v e  real  l ine,  w h i c h  is the  en t i re  f eas ib le  r e g i o n  

o f  the  p r o b l e m ,  r a the r  t h a n  the  o p t i m a l  s o l u t i o n  set. C u r i o u s l y ,  h o w e v e r ,  fo r  a 

so lvab l e  m o n o t o n e  l i nea r  c o m p l e m e n t a r i t y  p r o b l e m ,  the  c o n v e r s e  i m p l i c a t i o n  h o l d -  

ing  is c o m p l e t e l y  e q u i v a l e n t  to the  ex i s t ence  o f  some  n o n d e g e n e r a t e  s o l u t i o n  to the  

c o m p l e m e n t a r i t y  p r o b l e m  (see T h e o r e m  13 b e l o w ) .  We  shal l  r e fe r  to this c o n v e r s e  

c o n d i t i o n  as the  m i n i m u m  p r i n c i p l e  suf f ic iency  ( M P S )  p rope r ty .  Par t  o f  the  
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importance of the MPS property stems from the consequence that minimizing a 
linearization of the objective at any point in a sufficiently small neighborhood of 
any solution point gives an exact solution of the convex program (see Theorem 10 
and Corollary 14 below). This leads to a finite termination of any computational 
algorithm which periodically solves the linearized problem m i n x ~ s ( V f ( x  k), x)  where 
{x k} are the iterates of  the algorithm. Related results on finite termination have 

recently been given in [5, 4, 1, 3]. Another useful relation is the equivalence of the 
MPS property to the existence of a weak sharp minimum [7] for convex quadratic 
programs. The weak sharp minimum property, which is naturally possessed by all 
solvable linear programs [15], extends the finite termination property of the proximal 
point algorithm for linear programs [18, 2] to convex programs [7, 6]. 

The paper  is organized as follows. In Section 2 we give various results for the 
MPS property for general convex and quadratic programs, and in Section 3 we 
specialize and sharpen these results to monotone linear complementarity problems. 
The monotone linear complementari ty problem seems to be a particularly suitable 
problem for invoking the MPS property in the sense that it endows the problem 
with a useful quasi-linearity property which was already pointed out in [13]. In 
[13], the MPS property was obtained as a consequence of nondegeneracy. In this 
paper, we show that these two properties are equivalent to each other as well as 
the existence of a weak sharp minimum for the equivalent quadratic program. 

The first principal result of  Section 2, Theorem 3, establishes the MPS property 
for a general convex program with a twice ditterentiable objective function under 
the assumption that the span of the Hessian of the objective function is contained 
in the algebraic sum of the normal cone to the feasible region at any optimal point, 
plus any nonnegative multiple of  the gradient of the objective function at any optimal 
point. This sufficient condition for the MPS property turns out to be also necessary 
for a convex quadratic program (Theorem 6). It is also equivalent to the existence 
of a weak sharp minhnum for a convex quadratic program (Theorem 6). In Theorem 
9 we give a simple proof  of a strong-upper semicontinuity result for perturbed linear 
programs due to Polyak and Tretiyakov [18], which shows that if perturbations of  
a cost vector of  a linear program converge to an unperturbed cost vector such that 
each perturbed problem is solvable, then for all sufficiently small but finite values 
of  the perturbation, all solutions of the perturbed problems solve the unperturbed 
problem. Robinson [19] established a stronger version of this result. This result is 
used in Theorem 10 to show how finite termination can be achieved under the MPS 
property by periodically solving a problem with a linearized objective function. 

In Section 3 we specialize the MPS property to linear complementarity problems 
(LCP's). We first show (Lemma 11) that for a feasible LCP, its linearization at any 
feasible point is solvable. In Theorem 12 we show that for an LCP with a nondegener- 
ate vertex solution, the linearized problem at any point in a neighborhood of the 
vertex solution is uniquely solved by the nondegenerate vertex. The principal result 
of  Section 3, Theorem 13, establishes the equivalence of nondegeneracy, the MPS 
property, the existence of a weak sharp minimum, as well a normal cone inclusion 
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property for a monotone linear complementarity problem. Corollary 14 shows that 

for nondegenerate monotone linear complementarity problems, solving the linear- 

ized problem at a point in the neighborhood of any solution point (degenerate or 

not) will yield a solution to the LCP. 

A brief word about notation is provided here for the reader's convenience. For 
a vector x in the n-dimensional real space ~n, [[xl I will denote the Euclidean norm 

and (x, y) will denote the scalar product of x and y in ~". For an m x n real matrix 

A signified by A c R . . . .  , Ai denotes the ith row, while A T will denote the transpose. 

For M c ~  "×', ]IMH will denote the Euclidean norm. The identity matrix will be 

denoted by I while a vector of ones will be denoted by e. The closed ball of  radius 

6 around ~ will be denoted by B~(2). The normal cone N(:f]S) to a convex set 

S _c R" at ff c S is defined by {y I (Y, x - Y~) <~ 0 V x  c S}. For a differentiable function 

f :  ~" ~ ~, Vf(x) denotes the gradient at x. For a convex set S c ~" the cone generated 
by S is defined by cone S={Ax]A ~>0, x z  S}. For a matrix B c R  m×" we define the 

linear spaces span (B) and ker B by { z I z  = Bu, u c ~"} _c ~ "  and {u[Bu  = O, u c R"}, 

respectively, and the conjugate cone conj B by {u [ Bu >~ O, u c R'}. If  S c ~n and 

f : ~ " ~ ,  the set a r g m i n ~ s f ( x ) ,  denotes the (possibly empty) solution set of 

m i n , ~ s f ( x ) ,  and if S is convex, the set arg vertex S denotes the (possibly empty) 

set of extreme points of S. 

2. Convex and quadratic programs 

We shall be concerned with the convex program 

minimize f ( x ) 

subject to x ~ S  (1) 

where S is a closed convex subset of ~" and f :  R'--> ~ is a differentiable convex 

function on R". We assume that the solution set of (1), 

:= argmin f ( x  ), 

is nonempty. We begin by stating the following key result that will be used throughout 

the paper. 

Theorem 1 [14]. Let f be differentiable and convex on ~", let S be a closed convex 

subset o f  R n and let ~ c S. Then 

~q = { x  c S I ( V / ( ~ ) ,  x - ~z) = 0,  Vf(x) = V/(2)} 

= { x c S I ( V f ( f ) , x - 2 ) < ~ O ,  V f ( x ) = V f ( 2 ) } .  [] (2) 

As a consequence, the minimum principle (see [9, Theorem 9.3.3; 17, Theorem 

17.1.1]) can be written in the following form which will be useful for our purposes. 

Theorem 2. Let  f be differentiable and convex on R' ,  let S be a closed convex subset 

o f  ~". Then 

( V f ( x ) , z - y ) > ~ O ,  Vx, y ~ S ,  V x c S .  [] 
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It is obvious from the minimum principle that ~ c  argminz~s(Vf(x),  z) for all 
x c S. We begin by giving a sufficient condition for the opposite inclusion for the 
general convex program (1). Later, we will show that this condition is also necessary 
for a convex quadratic program and the monotone linear complementarity problem. 

Theorem 3. Let f be a twice differentiable convex function on R n, let S be a closed 

convex subset o f  ~ ' ,  let ~ e S and let 

Then 

f t=l 
H ( x ) :  T M  f ( 2 + t ( x - f ) ) d t .  

t = 0  

where N(~[ S) is the normal cone to S at £,, cone Vf(~) is the cone generated by Vf(g)  

and s p a n ( H ( S ) ) : =  Ux~s span(H(x) ) .  

span (H(S) )  c_ N ( 2 1 S  ) + cone Vf(2) 

¢~ V x ~ S ,  V h e ~  n, 3~:(x,h)~>0: ( H ( x ) h -  (Vf(Yc) ,y-2)<~O V y c S  

Vx c S, Vh c R n, 3se(x, h) > 0: ( H ( x ) h  - ~:Vf(:~), x - 2) <~ 0 

(set y = x in previous statement) 

V h ~ ' :  ( V f ( 2 ) , x - 2 ) < - O ,  ( H ( x ) h , x - 2 ) > O ,  

has no solution x c S 

(for if it did have a solution x e S then we would contradict the 
previous statement) 

<=> ( V f ( 2 ) , x - 2 ) ~ < 0 ,  H ( x ) ( x - 2 ) ~ O ,  has no solution x c S  

<=> (Vf(ff), x - ~) ~< 0, x e S, Vf(x)  # Vf(2),  has no solution 

(since Vf(x)  - V f ( ~ )  = H ( x ) ( x  - ~)) 

<=> argmin(Vf(2),  x) c ~, 
x ~ S  

the last equivalence following from Theorem 1. [] 

It is interesting to note that the first inclusion of  (3), 

span (H(S) )  c_ N ( ~  t S) + coneVf(£) ,  

which is an extension of the minimum principle (Theorem 2), 

0 c N(X I S) + Vf(X), 

span (H(S) )  _c N(Xl S) + cone Vf(ff) ~ argmin(Vf(•), x) c_ ~ (3) 
xcS 

Proof. 
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may be interpreted as the inclusion in N()~ [ S) + cone Vf(ff) of  all possible contribu- 
tions of  the gradient of the "quadratic part"  o f f  When f (x)=½(x,  Hx)+(d,  x), as 
in Theorem 6 below, this is merely Hx for all x. 

We now show for a convex quadratic program that the backward implication of 
(3) also holds, and in fact the MPS property is equivalent to the existence of a weak 
sharp minimum [7] for the convex quadratic program. First of  all, we define this 
notion. 

Definition 4 [7]. Let f : ~ "  ~ ~ and S_~ R n be convex and let S:= argminx~sf(x)  be 
nonempty and closed. The problem m i n ~ s f ( x )  is said to have a weak sharp minimum 
if there exists a positive constant a such that 

f ( x ) - f (P (x l ' J ) )>~o~ l [x -P(x [~ ) l l  V x c S  

where P(x  IS) ~ argmin=~s]]Z - x[I and [l" II is some norm on e", that is the orthogonal 
projection of x on S. 

Note that all solvable linear programs have weak sharp minima [15]. Note also 
that a weak sharp minimum generalizes the concept of  a sharp minimum [17, p. 205], 
in which P ( x [ S )  is replaced by the fixed unique solution ~ of minx~sf(x) .  The 
sharp minimum condition is more stringent than the weak sharp minimum condition, 
and does not hold, in general, even for linear programs. We also relate the MPS 
property to the notion of nondegeneracy for the convex problem and its dual. We 
shall use the following equivalent forms of the definition, which we state as an 
easily established lemma. 

Lemma 5. Consider the convex quadratic program m i n ~ s f ( x )  with nonempty solution 
set S and 

f ( x ) ' '  • =~(x, Hx)+(d , x ) ,  S:={xlAx>~b,x>~O}, 

where H ~ ~'×" is symmetric and positive semidefinite, A ~ N m×', d c ~" and b c ~ .  
The following are equivalent: 

(i) minx~sf(x)  and its dual have a nondegenerate primal-dual solution (~, ~) 
(see (7)). 

(ii) - V  f ( 2 )  6 ri N ( ~ I S )  (see Dunn [5]). 
(iii) There exist (u, v) > 0 with Vf()~) = A~u + I~v where A~ = {A~ ]A~£ = b~} and 

1~ ={I , l~,  =0}. [] 

We now characterize the MPS property for convex quadratic programs. 

Theorem 6. Consider the convex quadratic program m i n ~ s f ( x )  with nonempty sol- 
ution set S and 

f(x):=½(x, Hx)+(d ,x ) ,  S={xIAx>~b,x>~O},  ~ S ,  

where H c ~ '×"  is symmetric and positive semidefinite, A c N . . . .  , d e ~" and b c N m, 
and let A~ := {A~IA~N = b~} and I~ := {I~ [2~ = 0}. Then (i) to (iv) below are equivalent 
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and they imply (v). 

(i) argminxcs(Vf(2), x ) c  S (MPS).  
(ii) minxcs f ( x )  has a weak sharp minimum ( WSM).  

(iii) span(H) c_ N(2[  S) + coneVf0~) for each ~ c S, or equivalently 

conj I~ c_ ker H. 

L - V / ( ~ )  J 
(iv) span(H) _c N(~[ S) + span(Vf()~)) for each ~ c S. 
(v) minx~sf(x)  and its dual have a nondegenerate primal-dual solution (~, fi). 

Furthermore (v) implies (i) to (iv) under the assumption 

span(H)  c span(N(~ [ S)) + span(Vf(~)) 

or equivalently 

ker I:~ _~ ker H. 

-vf(~) 
(4) 

Proof. Note that the equivalence given in (iii) follows immediately from the Farkas 
Theorem [9, Theorem 2.4.6], since, for each ~ c S, 

span(H)  c N(X] S) + coneVf(ff) 

¢> Hh =--ATu-- ITv+vf(~)~ ' I  has solution (~/, u, v)~>0, V h e ~ "  

¢~ I~ x>~O, (h, Hx)>O, has no solutionx,  V h e R "  

-Vf(X) 

(by Farkas Theorem [9, Theorem 2.4.6]) 

¢¢' Ix x>~O ~ Hx=O 

-Vf(ff)  

¢=> conj I~ c_ ker H. 

-Vf (~)  

(i) ¢~ (iii) By Theorem 1, it follows that Vf(ff) is constant on the solution set of 
a convex program, and hence for any ~ 6 S, 

argmin(Vf(ff), x) _~ 
x c S  

¢~ (Vf(~) ,x-2><~0,  Ax>~b,x>~O, V f ( x ) - V f ( ~ ) = H ( x - 2 ) # O ,  
has no solution x 

(by Theorems 1 and 2) 
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( V f ( £ ) , x - £ ) ~ O ,  Ax>~b,x>~O, ( h , H ( x - ~ ) ) > O ,  
has no solution x, Vh ~ R" 

<=> -~Tf(~)+ A T u + v +  ~Hh =0,  (Vf(g), 9~)7/-(b, u>-(h, Hg>.~+ p =0,  
has solution (r/, u, v) > 0, 0 # (~, p) > 0, Vh c ~" 

(by Motzkin's Theorem [9, Theorem 2.4.2]) 

¢:> -V f (~ )~ l+  A V u + v +  Hh - 0 ,  (Vf(g) ,  Y~)~l-(b, u ) - ( h ,  Hg)<~O, 
has solution (r/, u, v )>0 ,  VhcW'  

(Set ~ = 1. For, if ~: = 0, setting ~/= 0 contradicts primal 
feasibility, while setting ~/> 0 contradicts the fact that 
(Vf(~), g) = min~s(Vj'(~), x).) 

~> - V f ( ~ ) r l + A T u + v + H h = O ,  O<~(u,A~-b)+(v,~)<~O, 

has solution (,/, u, v)~>O, V h c E "  

(substitute for Hh from the equality in the inequality) 

¢~ Hh = --ATu -- t~v+Vf(X)71 

has solution (7, u , v ) > 0 ,  V h c R "  

s p a n ( H ) c N ( ~ ] S ) + c o n e V f ( X )  fo reachXcS.  

(iii)¢~,(iv) The forward implication is trivial. For the backward implication we 
have by Theorem 2 that 

O< N ( X I S ) + V f ( £ ) .  

Combining this with 

span(H) c N(.~]S) + span(~Tf(~)) 

gives (iii). 
( i i )~( iv)  See [3]. 
( i )~ (v )  We need to show that the dual quadratic programs [9, Problem 8.3.9] 

min{l(x, Hx) + (d, x) lAx  >~ b, x >~ O} (5) 
X 

and 

max{ - ½<x, Hx) + <b, u>[ Hx - ATu + d >~ b, u >10} 
x 

have a nondegenerate primal-dual solution (~, fi), that is 

~ + H ~ - A T ~ + d > O ,  ~ + A ) ~ - b > 0 .  

(6) 

(7) 
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Let Y c S. By the nondegeneracy result for linear programming [8, Corollary 2A], 
the dual linear programs 

min{(Vf(2), x) Jax >~ b, x >~ O} 
x 

and 

max{(b, u)]AV u<~ Vf(£), u ~>0} 
u 

have a nondegenerate primal-dual solution (£, ~), that is 

A~-b>~O, ~>~0, ( ~ , A ~ - b ) = 0 ,  ~ + A ~ - b > 0 ,  
(8) 

-AX~+Vf(£)>~O, ~>~0, (2,--AX~+vf(~'~))=0, 2 - A T ~ + v f ( £ ) > 0 .  

By hypothesis of (i), ~ c S, and since £ c S, it follows by Theorem 1 that Vf  (2) = Vf(£), 
and therefore Vf(£)  can be replaced by Vf(~)  in (8). With this replacement conditions 
(8) are sufficient Karush-Kuhn-Tucker  condtions for ~ to solve the primal problem 
(5) and (2, ~) satisfy the nondegeneracy conditions. Since (2, ~) is feasible for (6) 
and 

(½(~, H~) + (d, ~)) - ( - ½(~, H~) + (b, ~)) = (~, H~) + (d, 2)) - (b, ~) 

=(2, H x - A X  ~ + d)+(~, A:~-b) 

= O, 

it follows that (~, ~) is also optimal for the dual (6). 
(v )~( i i i )  We establish this implication assuming (4) holds. 

(v) 4=> Vf(Cc)-A~u-l~v=O has solution (u, v )>O 
(by Lemma 5) 

¢~ Vj '(~)~-A~u-Ii~v =0  has solution (~:, u, v ) > 0  

0 ¢ [~ x ~> 0 has no solution x 

- V / ( £ )  

(by Stiemke's Theorem [9, Theorem 2.4.7]) 

conj I~ _c ker I~ 

- V  f ( 2 )  k - v f ( ~ )  

¢=> conj I~ _~ ker H, 

-vf(~) 

the last inclusion following from (4). Hence (iii) holds with 2 replaced with 2, which 
means that (i) holds with 2 replaced by 2, and since Vf(~) = Vf(~) by Theorem 1, 
the required result follows. [] 
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Example 7. The example 

minimize (x~ - 1)2+ (x2+ 1) 2 

subject to xl, x2~> 0 

does not have the MPS property at its unique solution point ~ = (1, 0). However,  
is nondegenerate and does not satisfy (iii). This shows that condition (4) cannot be 
removed for convex quadratic programs as is the case for monotone linear com- 

plementarity problems (see Theorem 13). 
We proceed now to show how the MPS property leads to an exact solution of a 

convex program by minimizing objective function in a sufficiently small neighbor- 
hood of any solution point. For that purpose we need a strong upper-semicontinuity 
result for linear programs due to Polyak and Tretiyakov [18, Lemma 4], for which 
we give a simple derivation. Robinson [19, Lemma 3.5] gives a stronger version of 
this result. We employ an extreme point characterization of a possibly unbounded 

solution set of  a linear program which is based on a Goldman-Tucker  characteriz- 
ation [8, Theorem 15] of such a set. Our characterization is in terms of vertices of  
polyhedral sets (S and T) which depend on the feasible region but not the objective 
function. 

Lemma 8. Let 

S:= { x [ A x  >~ b, x~>O}, 

where A c R m and c c N'. Let  

Then 

where 

and 

S =  argmin(c, x ) ¢ 0 ,  (9) 
x~S  

T:= {xlAx>~O, x>~O, (e, x ) =  1}. 

S = { x l x  = r U + s V ,  r>~O,(e, r )=  1, s~>0} 

U " ~  Iv l vertex S 
xGS 

Ut = arg vertex min(c, x) c arg 

V:-- " = ~arg vertex minx~T (c,x), 

_c arg vertex T. 

(10) 

(11) 

i f  T = O  or minx~T(c ,x )>O,  

otherwise, 

(12) 

Proof. Note that either U or V may be empty. By [8, Theorem 15, p. 89], (10) holds 
with U being defined by (11) and V being the finite set of extreme directions of  

optimal rays of minxes(C, x). But by [8, Lemma 9, p. 87], the rows of V are the 
extreme points of  the set 

{xlx~ T, (c, x)<~O}={xlx~ T, (c, x)=0} 
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the equality following from (9). However, these extreme points are precisely the 
extreme point solutions of min~r(C,X) when min~r(c ,x)~<0,  from which (12) 
follows. [] 

We use the above lemma to establish Polyak and Tretiyakov's strong upper- 
semicontinuity of solution sets of  linear programs with a perturbed objective function 
which is stronger than the upper semicontinuity result of Meyer [16, Theorem 2]. 

Theorem 9 [18, Lemma 4]. Let {ck}-~ C such that argminx~s(C k, x) ¢ O, where S:= 
{x lAx~b ,x>~O }. Then 

arg min(c k, x) ~ arg min(c, x) ~ 0 for  k ~ K,  some K. 
x~S  x~S  

(13) 

Proof. Let ~k := argminx~(c k, x), then by Lemma 8, 

~g = {xl x = rUk + sV k, r ~O, (e, r )=  1, s~>0} (14) 

where U k and V k are defined in (11) and (12) with c replaced by c k. Since uk_~ 
arg vertex S and V k _~ arg vertex T and the sets arg vertex S and arg vertex T are 
finite and independent of k, it follows that for k ~> K for some K, there is a fixed 
finite number, say l, of  subsets {( U k', V k~) . . . .  , ( U k', Vk0} of {(arg vertex S, arg ver- 
tex T)} that appear infinitely often in the sequence {(U k, vk)} defining ~k in (14). 
For each (U~, vkj), j = 1 , . . . ,  l, the corresponding ~k, defined by (14) solves both 
min~( c k ,  x) for k >~ K, and min~s(C,X). [] 

We can immediately use the above theorem to show that for a differentiable 
objective function minimization over a polyhedral set, the MPS property ensures 
finite termination at an exact solution for any convergent algorithm which periodi- 
cally solves minx~s(Vf(xk), x) where {x k} are the algorithm iterates. 

Theorem 10. Let f :  W' -~ R be a continuously differentiable function on W', let S := 
{x IAx  >~ b, x >! 0}, let {x k} ~ 2, {x k} c_ S and let ~k := argminx~s (Vf(xK), X) ~ O. Then 

~k __C argmin(V()~), x) ~ 0 for k >1 K, for some K. (15) 
x c S  

I f  in addition ~ ~ argminx~s f ( x )  and the MPS property is satisfied, that is 

then 

argmin(Vf(.~), x) _c argmin f ( x ) ,  (16) 
x ~ S  x c S  

Sk ~ argmin f ( x )  for k >~ K, for some K. 17) 
x~S  
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Proof. The inclusion of (15) follows from (13) of Theorem 9 by setting c k = Vf(x  k) 
and invoking the continuity of Vf(x).  The inclusions (15) and (16) imply (17). [] 

We note in passing that Robinson [19, Lemma 3.5] established the stronger 
result where argminx~s(C,X) in (13) is replaced with argminx~gL(ck, x), where 
SL := argminx~s( C, X). This strengthening can be reflected in Theorem 10 by 
replacing argminx~s(Vf(~),x) in (15) with argmin~c~,(Vf(xk),x), where SL: = 

argmin~s(Vf(~) ,  x). 

3. Linear complementary problems 

In [13] it was shown that the existence of some nondegenerate solution to a monotone 
linear complementarity problem was sufficient for the MPS property to hold, as 
well as for the equivalent convex quadratic program (19) below to have a weak 
sharp minimum. In this section we obtain the rather surprising result that all these 
properties are equivalent (Theorem 13). They all lead to the useful property that 
solving a linearized complementarity problem at a point in a sufficiently small 
neighborhood of a solution gives an exact solution (Corollary 14). Throughout this 
section we consider the linear complementarity problem 

Mx+q~O,  x>~O, (x, Mx+q)=O, (18) 

where M c N,,×n and q c Nn. We define the equivalent quadratic program 

0 = min f (x)  (19) 
x c S  

where 

S:={xlmx+q>~O,x>~O}, f(x):=(x,  mx+q)  (20) 

and the solution set of (18) and (19) as 

S:-- {xl x ~ S,f(x)  = 0}. (21) 

We say that the linear complementarity problem in nondegenerate if it possesses a 
nondegenerate solution, that is 

~ c S ,  ~ + M ~ + q > 0 .  

We begin with an elementary result which shows that for any feasible linear 
complementarity problem, not necessarily monotone, the linearized problem is 
always solvable. This result also follows from [20, Lemma 3.2.4]. 

Lemma 11. S ¢ O~argminy~s(V f(x) ,  y) ¢ (5 for all x c S. 

Proof. The dual of the feasible primal linear program minycs(Vf(x), y) is 

maximize ( -q ,  u) 

subject to MVu<~(M+MV)x+q, 

//>10, 
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for which u = x ~  S is feasible. Hence the feasible primal linear program is 
solvable. [] 

We next show that the linearized complementari ty problem at any point in a 
sufficiently small neighborhood of  any nondegenerate vertex solution is uniquely 

solved by the nondegenerate vertex solution. Note that the linear complementarity 
problem need not be monotone,  and the point at which the linearization is made 
could be infeasible. 

Theorem 12. Let g be a nondegenerate vertex solution of  the L C P  (18). Then g is a 
locally unique solution of  (18) and there e.rists a ball l/~a(g ) such that g is' the unique 
solution of  the linear program 

min(Vf(y), x) V y ~ ( . f ) .  (22) 
x c S  

Proof. That g is a locally unique solution of (18) follows from [10, Corollary 3.2]. 

By Theorem 1 we have that ~ ~ a rgmin~s (Vf (g ) ,  x). We also have that ~/= g solves 
the dual linear program 

maximize ( - q ,  u) 
(u, v) 

subject to v = - M a u  + V f ( g ) ,  

(u,v)>~O. 

Hence optimal dual basic variables (or optimal reduced costs) are given by 

~7i = Mp?+ q~ > 0, tij =ffj  > 0, 

where I u J = { 1 , . . . , n }  and l ~ J = O ,  by nondegeneracy. It follows from [11, 
Theorem 2.1] that g is the unique solution of minx~s(Vf0~), x), and by [12, Theorem 
4] it follows that ff =min , c s (Vf (y ) ,  x) for all y satisfying [[Vf(y)-Vf(g)[]  ~< e for 
some e >0 .  The desired conclusion of the theorem follows by letting 0 <  8<~ 

[] 

A practical consequence of Theorem 12 is that for a nonmonotone LCP with 
some nondegenerate vertex solution it is advisable to periodically solve the linear 
program given by (22), no matter what algorithm one is using, because B~(g) may 
contain a current iterate, and hence an exact solution could be obtained by solving 

the linear program. 
We now establish the principal result of this section, namely the equivalence of 

the MPS property, the existence of a weak sharp minimum, nondegeneracy and a 
normal cone inclusion property. Note that the nondegeneracy assumption for the 
LCP is equivalent to the nondegeneracy assumption of Dunn [5] specialized to 
quadratic programs, and also employed by Calamai and Mor6 [4]. 
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Theorem 13. Let the LCP (18) be monotone, that is let M be positive semidefinite and 
let S # O. Then S #  0 and the following are equivalent: 

(i)-(iv) as in Theorem 6 with S, S and f defined by (20) and (21). 
(v) The LCP (18) is nondegenerate. 

Proof. The implication S ¢ 0 ~ S #  0 is standard for M positive semidefinite. The 
equivalence of (i)-(iv) follows from Theorem 6. The implication (v )~ ( i )  follows 
(without the extra assumption used in Theorem 6) from [13, Lemma 2.2]. We now 
establish the implication ( i )~ (v )  by contradiction. Note that the same implication 
from Theorem 6 cannot be used directly because it applies to minxes(X, M x + q )  
and its dual and not to the LCP (18). 

Let ~ c S, argminx~s(Vf(~), x ) c  ~ and suppose that (18) is degenerate, that is, it 
is not nondegenerate. Then, using (i), 

min{-e lmx+q>~O,x>~O,(Vf (g) ,x -~)<~O,( l+M)x+q>~ee}=O.  (23) 

The dual of the linear program (23) is 

max {-(q,  u + v ) - ( ~ ,  m~)~ I m V u + ( l + m T ) v  
(u. v. ~)~0 

- (q+(M+MX)g)¢<~O,  (e, v)= 1} = 0. 

Let (u, v, ~:) be optimal dual variables, then setting the optimal dual objective equal 
to zero and premultiplying the first dual constraint by (u + v) gives: 

( q , u + v ) = - ( g ,  mg)¢, (u+v, m X u + ( I + m T ) v - ¢ q - ¢ ( m + m X ) g ) < ~ O ,  

(e, v)= 1, (u,v,()>~O 

::~ (U q'- V, V) q-(U q- V, MT(u q- V))q- ¢2(3C, M X ) - ~ ( u + v ,  (M+MT)2)<~O, 

(e, v)= 1, (u,v,~)>~O 

O~(u+v, v)+(u+v-~X,M(u+v- ~))<~O, 

(e, v)= 1, (u,v,~)>~O 

v = 0 ,  (e, v)= 1, 

which is a contradiction. [] 

The following corollary follows from the above theorem and Theorem 10. 

Corollary 14. Let the assumptions of Theorem 13 hold together with one of the 
conditions (i)-(v). Let {xk}~ 2 ~ S, {x k} ~ S and let ~k := argminx~s(V f (xk) ,  x). Then 

~k c ~ for k ~ K, for some K. 

In fact a stronger result can be easily established with the help of Theorems 9 
and 13, which we merely state: For a nondegenerate monotone linear complemen- 
tarity problem, there exists a 6 > 0 such that 

arg min(Vf(x), y) c S Vx ~ S c~ [S+B~(O)]. 
y~S 
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