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Abstract. This paper describes several methods for solving nonlinear complementarity problems. A general
duality framework for pairs of monotone operators is developed and then applied to the monotone comple-
mentarity problem, obtaining primal, dual, and primal-dual formulations. We derive Bregman-function-based
generalized proximal algorithms for each of these formulations, generating three classes of complementarity
algorithms. The primal class is well-known. The dual class is new and constitutes a general collection of
methods of multipliers, or augmented Lagrangian methods, for complementarity problems. In a special case,
it corresponds to a class of variational inequality algorithms proposed by Gabay. By appropriate choice of
Bregman function, the augmented Lagrangian subproblem in these methods can be made continuously dif-
ferentiable. The primal-dual class of methods is entirely new and combines the best theoretical features of
the primal and dual methods. Some preliminary computation shows that this class of algorithms is effective
at solving many of the standard complementarity test problems.
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1. Introduction

This paper concerns the solution of thenlinear complementarity proble(hNCP). Let
| € [—00,00)" andu € (—oo, 0o]", with | < u. Supposgx € %" || < x < u} C
D € %", and letF : D — %" be continuous. Then, the NCP is to find some R®"
satisfying the conditions

| <x<u mid(, x — F(x), u) = x, Q)

where mida, b, ¢) denotes the componentwise median of the veapbs andc. This
problem is a special case of the standeadational inequalityproblem: givenF and
a setC € N", find somex such that

xeC (F,y—x)=0 vyeC . (2)

If we takeC = {x € R" || < x < u}, then (2) is identical to (1).
The special case df= 0 andu = oo reduces (1) to

x>0 maxx — F(x), 0) = x,
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or equivalently
x>0 F(x) >0 (x, F0) = 0. (3)

If the mappingF is affine, then (3) is the classicitiear complementarity problenor
LCP.

In the theoretical portion of this paper, we will restrict our attention taxlo@otone
case in whichF satisfies

(FO —F(y),x—y) >0 Vx,yen" (4)

This assumption will allow us to model (1) as the problem of finding a root of the sum
of two monotone operators (se.[3]), as will be explained in Section 2. To find such

a root, we then apply generalized proximal algorithms based on Bregman functions [6,
7,9,12,17,18,33].

A number of recent papers [5, 6, 8] have stressed the ability of proximal terms arising
from appropriately-formulated Bregman functions to act like barrier functions, giving
rise to “interior point” proximal methods for variational inequality problems. Such
methods are derived by applying Bregman proximal methods to a primal formulation
of (1) or (2).

In contrast, we emphasize dual and primal-dual formulations. Applying Bregman
proximal methods to such formulations yields augmented-Lagrangian-like algorithms,
or “methods of multipliers.” In the dual case, we obtain a class of methods generaliz-
ing [21, "“ALGL1"]. By careful choice of Bregman function, we generate methods which
involve solving (provided thaF is differentiable) a once-differentiable system of equa-
tions at each iteration, as opposed to a nonsmooth system, as in [21]. Therefore, we can
use a standard algorithm such as Newton’s method to solve these subproblems. A similar
phenomenon has already been pointed out for smooth convex programming problems
in [24]. That paper notes that one of the augmented Lagrangian methods proposed
in [17] yields a twice-differentiable augmented Lagrangian, as opposed to the classical
once-differentiable augmented Lagrangian for inequality constramg30]).

In producing sequences of subproblems consisting of differentiable nonlinear equa-
tions, our algorithms bear some resemblance to recently proposed smoothing methods
for the LCP and NCP [10,11,22]. However, such methods are akin to pure penalty
methods in constrained optimization — they have a penalty parameter that must be
driven to infinity to obtain convergence. By contrast, our algorithms are generalized
versions of augmented Lagrangian methods: there is a Lagrange multiplier adjustment
at the end of each iteration, and we obtain convergence even if the penalty parameter
does not approach infinity.

In the course of our derivation, Section 2 develops a simple duality framework
for pairs of set-valued operators. The framework resembles [1], but allows the two
mappings in the pair to operate on different spaces. A similar duality structure for pairs
of monotone operators appears in [20]. The main distinction of our approach, as opposed
to [1,20], is to introduce a primal-dual, “saddle-point” formulation, in addition to the
standard primal and dual formulations. Towards the end of Section 2, we show how to
apply the duality framework to variational inequalities and complementarity problems,
refining the framework for variational inequalities that appears in [21,27].
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Section 3 combines the duality framework of Section 2 with Bregman function

proximal algorithms and shows how to produce new, smooth methods of multipliers
for (1). The primal-dual formulation yields a ngwoximalmethod of multipliers for (1),
alongthe lines of the proximal method of multipliers for convex programnergg[30]).
This primal-dual method combines the best theoretical features of primal methods in
the spirit of [5, 6, 8] with the best features of the new dual method. Some preliminary
computational results on the MCPLIB [14] suite of test problems are given in Section 4.
These results show that proximal method of multipliers is effective even when the
underlying problem is not monotone.

2. A simple duality framework for pairs of monotone operators

In this paper, amperatorT on a real Hilbert spac¥ is a subset oX x Y, whereY is
also a Hilbert space. We cafl therange spacef T; typically, but not always, we will
haveX =Y.

ForeverysuclT € XxYandx e X, T(X) ={yeY | (x,y) € T} defines a point-
to-set mapping fronX to Y; in fact, we make no distinction between this point-to-set
mapping and its graph. Thus, the statemenyse T(x) and(x, y) € T are completely
equivalent. Thenverseof any operatofT is T™1 = {(y,x) e Y x X | (X, y) € T},
which will always exist. Trivially,(T~1)~1 = T. We define

domT ={x | TX) AP} ={xe X |IyeY:(X,y) e T},

and similarly imT = domT™1) = {yeY |Ixe X:(x,y) € T}. WhenT(x) is
a singleton sefy} for all x, that is, T is the graph of some function dom— Y,
we say thaf is single-valuedand we may write, in a slight abuse of notatidtx) = y
instead ofT(x) = {y}.

Given two operator§ andU on X with the same range spav¥etheir sumT + U
is defined via(T + U)(X) = TX) + UX) = {t+u |t e T(X),u € UX)}. If T isany
operator onX andU an operator orZ, we define theidirect productT ® U on X x Z
via (T @ U)(X, 2) = T(X) x U(2).

An operatofT on X is said to banonotonef its range space iX and

x=x.y=y)>0 Vxy, X, y)eT (5)

Note that (5) is a natural generalization of (4): if one takes- %" andT to be the
graph of the functiorF, (5) reduces to (4). Note also that monotonicityToand T—1
are equivalent, and that it is straightforward to show that if two operdt@sdU are
both monotone, then so B+ U.

A monotone operator is maximalif no strict superset of is monotone, that is,

XyeXxX, (x=x,y-y)z0VvVX,y)eT = xyeT

Maximality of an operator and maximality of its inverse are equivalent.
The fundamental problem customarily associated with a monotone op@ragor
that of finding azeroor root, that is, some € X such that 6= T(x) (seee.g.[3,31]).
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2.1. The duality framework

Suppose we are given an operafoon a Hilbert spaceX, an operatoB on a Hilbert
spacey, and a linear mappiniyl : X — Y. We will denote such a triple b (A, B, M).
For the developmentin Section 3, we will require only the special ¥aseY = R" and
M = |, but we consider the generBl A, B, M) in order to make connections to [16,
20] and other previous work.

We associate wit (A, B, M) aprimal formulationof finding x € X such that

0 e AX) + MTB(MX), (6)

or equivalently Oc Tp(x) = [A + M BM] (x), whereM™ denotes the adjoint d¥l.
Similarly, we associate with eadP(A, B, M) adual formulationof findingy € Y
such that

0e ~MA"L(-MTy) + B L(y), @)

or equivalently Oc Tp(y) = [-MA~1(—=M7) + B~1] (y). Note that (7) is the primal
formulation of P(B~1, A=1, —MT), and that twice applying the transformation

PA,B,M) — PB L AL M)

produces the original tripl® (A, B, M); that is, the dual oP(B~1, A1, —MT) is the
original primal formulation (6). The duality scheme of [1] is similar, with the restrictions
X=YandM = I|.

We also associate witf® (A, B, M) a primal-dual formulation which is to find
(X, y) € X x Y such that

0c AX)+MTy 0e —Mx+ By, (8)
or equivalently O Tpp(X, y) = K[A, B, M](x, y), whereK[A, B, M] is defined by

X _ 0O MT X
K[A. B, M] <y) - (A(x) < B l(y))+ [_M 0 }(y) 9)

In the special case of convex optimization, we can tAke o f, the subdifferential
map of some closed proper convex function X — (—oo, +o0], andB = ag for some
closed proper convey: Y — (—o0, +o¢]. Then the primal formulation is equivalent
to the optimization problem

min f(x) + g(Mx). (20)
xeX
Similarly, the dual formulation is equivalent to

min f*(=M"y) + g*(y), (11)
yeY

where *” denotes the convex conjugacy operation [28, Section 12]. Furthermore, the
subdifferential of the generalized Lagranglan X x Y — [—oo, +00] defined by

Lx, y) = f(x) + (y, Mx) — g*(y)
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is preciselyK[A, B, M] = KJ[df, ag, M]. Therefore, the primal-dual formulation is
equivalent to finding a saddle point bf that is, to the problem

min max f(x) + y"Mx — g*(y). 12)

xeX yeY
The standard convex programming duality relations between (10), (11), and (12) may
be viewed as a consequence of the higher-level, more abstract duality embodied in the
following elementary proposition, whose proof is omitted.

Proposition 1. The following statements are equivalent:

(i) (x,y) solves the primal-dual formulation (8).
(i) xe X, yeV, (x,-MTy) e A, (Mx,y) € B.

Furthermore x solves the primal formulation (6) if and only if there exigte Y such
that (i)-(ii) hold, andy solves the dual formulation (7) if and only if there exists X
such that (i)-(ii) hold.

Note that for general choices &, B, andM, this duality framework is slightly
weaker than, for example, linear programming, in thaeing a primal solution ang
being a dual solution aneot sufficient for(x, y) to be an solution of the primal-dual
(“saddle point”) formulation, even iA and B are maximal monotone. For an example
of this phenomenon, consider the case= Y = 52, M = |, A(x1, X2) = {(—X2, X1)},
andB(x1, X2) = {(X2, —Xx1)}.

We now turn to the issue of solving (6), (7) or (8), under the assumptiothatlB
are maximal monotone.

Consider first the primal formulation (6). Given thatis monotone, it is straight-
forward to show thaM ™ BM is also monotone. The monotonicity 8fthen gives the
monotonicity ofTp = A + MTBM. Therefore, the primal formulation is a problem of
locating a root of the monotone operaiigr on X. The convergence analyses of root-
finding methods for monotone operators typically require that the operator be not only
monotone, but also maximal. While will typically be maximal if A andB are, such
maximality cannot be guaranteed without imposing additional regularity conditions.
Some typical sufficient conditions fdpto be maximal are thak andBbe maximal, that
MMT be anisomorphism of, thus guaranteeing maximality 8" BM (see [21, Propo-
sition 4.1] or [20, Proposition 3.2]), and a condition such as danintdom(BM) # ¢,
in order to ensure maximality of the suf = A+ MTBM [29]. This last condition
can be weakened somewhalfis finite-dimensional.

The analysis of the dual formulationis similar. The formulation involves locating the
root of the operatofp = —MA~1(—=MT)+B~1onY, which is necessarily monotone by
the monotonicity ofA andB, but is not guaranteed to be maximal solely by maximality
of AandB. One mustimpose similar conditions to the primal case, suth’ad being
an isomorphism oK, and dondA=1(—MT)) Nintim B # ¢.

The primal-dual formulation also involves finding the root of a monotone operator:
we establish in Proposition 2 below that the operdigs = K[A, B,M] on X x Y
(with the canonical inner product induced ByandY) is monotone ifA and B are.

The proposition also shows that the primal-dual is in some sense the “best behaved” of
our three formulations, in the sense tiKqtA, B, M] is maximal wheneveA andB are
both maximal.
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Proposition 2. If A and B are monotone operators on the Hilbert spacésand Y,
respectively, and/l is any linear mapX — Y, then the operatoK[A, B, M]on X x Y
defined by (9) is monotone. FurthermoreAifand B are both maximalK[A, B, M] is
maximal.

Proof. Set

y

Note thatT; and T, are both monotone, and[A, B, M] = T1 + To. If AandB are
maximal, Ty is also maximal. The linear map is also maximal [26], and maximality
of Ty + T, then follows from [29, Theorem 1(a)].

:
T.=A®B*! Tﬂk”=[:hhg}<x)

We remark that it is also straightforward (but more lengthy) to prove Proposition 2
from first principles, without invoking the deep analytical machinery of [26,29].

In summary, given a lineavl and monotoné and B, we can formulate the same
problem in three essentially equivalent ways: finding a root of the primal monotone
operatorTp = A+ MTBM on X, finding a root of the dual monotone operaigy =
—MA~Y(—=MT) + B~t onY, or finding a root of the primal-dual monotone operator
Tpp = K[A, B, M] on X x Y. Of these operator3pp is the only onegguaranteedo be
maximal, given the maximality oA and B.

2.2. Dual and primal-dual formulations of variational inequality
and complementarity problems

We now return to the variational inequality problem (2), whereD — %" satisfies the
monotonicity condition (4)D 2 C, andC is a closed convex set. Define the operator
Nc € C x R C K" x R"via

den" |(d,y— ov C C
Nc(x)={(g N [ldy-xj=0vye }’§ZC. (13)

It is well-known thatN¢c is maximal monotone ofi". Furthermore, the variational
inequality (2) is equivalent to the problem

0 e F(X) + Ne(X). (14)

We take (14) as our primal formulation in the duality framework of (6), (7), and (8).
Consequently,weled = F,B= Nc,X =Y = %", andM = |, whencelp = F+Nc.
We then hav@p = —F~1(—1) 4+ Nc %, and the problem dual to (14) is thus

0e —F 1~y + Nc Ly, (15)

where “1” denotes the operator-theoretic inverfe.l andNc ~1 may both be general
set-valued operators otl', in the sense of Section 2. Although the notation is different,
this dual problem is essentially the same dual proposed in [21,27]. The formulation (15)
may appear somewhat awkward, but we will not have to work with it directly in

a computational setting. It will, however, prove very useful in deriving algorithms.
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Itis a simple consequence of Proposition 1 fredlves (15) if and only iff = —F(x)
for some solutiorx of (14), or equivalently of the variational inequality (2).

The primal-dual formulation, in this setting, is to find a zero of the opefBipr=
K[F, Nc, 1] defined via

Teot ) = (F00 x Ne 20+ (_Y).

X
Equivalently,x andy solve the system
FOO = -y Ne(y) 3 %, (16)

that is,x solves the variational inequality (2), agd= —F(x).

We now investigate the structure Ng andNc ~ in the case of the NCP (1), where
C={xeNf" |l <x <u}. Inthis caseNc is the direct product ofi simple operators
on of the form

Ni = |:({||} X (—00, O)) u ([|i, ui] x {O}) U ({ui} x (0, +Oo)):| n "2,

as depicted on the left side of Figure 1. It then follows tNat ™ is the direct product
of then operators

Nt = [((—oo, 0) x {li}) U ({0} x [I;, ui]) U ((0, +00) x {Ui})i| n %" (17)

as depicted on the right side of Figure 1.

Fig. 1. The operatoN; on 9 (left), and its inverseN; ~1 (right)

Since maximality is needed to prove convergence of the solution methods we propose
in Section 3, we now address the question of maximalitfFpfip = F + N¢, Tp =
—F1(=1)4+ N¢%, andTpp = K[F, N, I].

Proposition 3. Let F be a continuous monotone function ol with open domain
D> C={xei"|l <x<u}. ThenTp = F + Nc is maximal monotone.
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Proof. Let F be some maximal extension Bfinto a monotone operator [32, Proposi-
tion 12.6]. Then we have dom 2 D O C = domNc # ¢, and therefore ridork N
ridomNc # ¢, where “ri” denotes relative interior [28, Section 6]. From [29] we have
that F + Nc must be maximal. Now, the opennessibaind the analysis of [26, The-
orem 4] imply thatF agrees in value witlF on D > C = domN¢ = domTp, S0 it
follows thatF + Nc = Tp.

Proposition 4. SupposéF is a continuous monotone function &7 that is maximal
as a monotone operator (some sufficient conditionsrafé + F) = %" or that F has
maximal open domain). Suppasen F contains some point € %" with the property
that

Yi=0 Vi:lj =—o00, Uy =+4o0
Vi<0 Vi:lj =—-00, U <400 (18)
Vi >0 Vi:lj > —o00, Uy =400

ThenTp = —F~1(—1) + Nc 1 is maximal, wher€ = xenf" |l <x<ul

Proof. Given thatF constitutes a maximal monotone operator, it is straightforward to
show that-F~1(—1) is also maximal. Now, dot-F~1(—1)) = —im F. By appealing

to (17), it is clear that the conditions (18) grare equivalent te-y € ridom(N¢ ).
Therefore, we have ridofa F~1(—1)) N ridom(Nc~1) # @. The maximality ofN¢

and [29] then imply the maximality ofp = —F~1(—1) + Nc L.

Note that ifl > —oco andu < +4o0, the conditions (18) are void, and Proposition 4
requires only maximality of. Finally, we address the maximality @fp with the fol-
lowing proposition, which follows immediately from Proposition 2 and the maximality
of F andNc.

Proposition 5. Supposé is a monotone function dR" that is maximal as a monotone
operator. Then, for any closed convex €eb K", the operatofpp = K[F, Nc, |1 is
maximal.

3. Bregman proximal algorithms for complementarity problems

For the remainder of this paper, we IBt= {x € ®" || < x <u}. We now have
three formulations of the monotone complementarity problem (1): finding a root of the
primal monotone operatdir = F + Nc, finding a root of the dual monotone operator
To = —F1(=1) + Nc~%, and finding a root of the primal-dual monotone operator
Tep = K[F, Nc, 1]. We can attempt to solve (1) by applying any method for finding the
root of a monotone operator to eithBs, Tp, or Tpp. In this paper, we employ only the
Bregman-function-based proximal algorithm of [18], and study the algorithms for (1)
that result when it is applied @, Tp, andTpp.

We now describe the algorithm of [18] for solving the inclusioa 0(x), whereT
is @ maximal monotone operator oifl. Earlier treatments of closely related algorithms
may be found in [6,7,9,12,17,23,33]



Smooth methods of multipliers for complementarity problems 73

The algorithm in [18] requires two auxiliary constructs, a functivand a setS
Given two pointsx, y € )" and a functiorh differentiable aty, we define

Dn(x, y) = h(x) — h(y) = (Vh(y), x — ). (19)
We then say that is aBregman function with zon®if the following conditions hold:

B1. SC %" is a convex open set.

B2. h: \" — % U {400} is finite and continuous o8.

B3. h s strictly convex orS.

B4. his continuously differentiable o8.

B5. Given anyx € Sand scalat, theright partial level set

LX, &) ={y | Dn(X,y) < o}

is bounded.
B6. If{yX} C Sisaconvergentsequence with lingfe, thenDp (y°, y¥) — 0.

B7. If {v*} ¢ S {wK} c Sare sequences such thet — w™ and{vX} is
bounded, and furthermoi®y, (vK, wX) — 0, then one has® — w™.

Examples of pairgh, S meeting these conditions may be found in [9,13,17,33], and
many references therein. In particular, [13] gives some general sufficient conditions for
(h, S to satisfy B1-B7. We now state the main result of [18].

Proposition 6. Let T be a maximal monotone operator &%, and leth be a Bregman
function with zon&, whereSN ridomT # . Let anyoneof the following assumptions
A1-A3 hold:

Al. SD domrT.
A2. T = af, the subdifferential mapping of some closed proper convex
functionf : %" — N U {+o0}.
A3. T has the following two properties (se=g.[6—-8]):
(i) If {(XX, y9)} c T, {(x*} ¢ S and{xK} is convergent, thefiy}
has a limit point;
(i) T is paramonotongt, 8], thatis, (x, y), (X', y) € T and

(x=x,y—-y)=0
collectively imply thatx, y') € T.
Suppose the sequende¥},-, C Sand{e},—, c %" conform to the recursion

T(Zk+1) T C_:II-( (Vh(zk+1) _ Vh(Zk)> 5 &, (20)

Where{ck}ﬁio is a sequence of positive scalars bounded away from zero. Further suppose
that

> e é] < oo (21)
k=0
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and

o€, Z) exists and is finite. (22)

WK

=
||

1
ThenifT =T + Ng has any roots{z¥} converges to some® with T(zm) > 0.
Proof. By minor reformulation of [18, Theorem 1].

Similar forms for the error sequence can be found for example in [25]. Note that the
condition (22) is implied by the more easily-verified condition

> e € 2] < oo (23)
k:0

Furthermore, wherS or domT is bounded{ZX} is necessarily bounded, and (21)
implies (23) and (22).

One question not addressed in Proposition 6 is whether seqt{ehpoég C Sand
{ek}ﬁil C 9" conforming to (20) are guaranteed to exist. The following proposition
gives sufficient conditions for the purposes of this paper.

Proposition 7. LetT be a maximal monotone operator iifl, let {ck}° , be a sequence
of positive scalars, and ldt be a Bregman function with zor&8 > domT. Then if

imVh = 9", sequence$z},_, C Sand{e}-, c %" jointly conforming to (20)
exist.

Proof. Setek = 0 for all k, and consult case (i) of [17, Theorem 4].

We now consider applying Proposition 6 with eitAee= Tp, T = Tp, or T = Tpp. Each
choice will yield a different algorithm for solving the complementarity problem (1).

3.1. Primal application to complementarity

The most straightforward application of Proposition 6 to the complementarity prob-
lem (1) is to seffl = Tp = F + Nc. SubstitutingT = F 4+ Nc andz¥ = xX into the
fundamental recursion (20) and rearranging, we obtain the recursion:

1

(et 2

(Vh(xk+1) - Vh(xk)ﬂ + N (XF1) 5 €. (24)

In other wordsx**1 is an||€|-accurate approximate solution of the complementarity
problem

l<x<u mid(l, X — Fr(X), u) =X,

whereF(x) = F(X) + ck~1(Vh(x) — Vh(xX)). For general choices of there appears
to be little point to such a procedure: to solve a single nonlinear complementarity
problem, we must now (approximately) solve an infinite sequence of similar nonlinear
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complementarity problems. However, the situation is more promising in the special case
thatl < u, the zonesof hisintC, and||Vh(x)|| — oo asx approachesary e bdC. In

this case, we must havé*™® € int C for all k > 0. SinceNc (x) = {0} for all x € intC,

we can drop thé\Nc (xk+1) term from the recursion (24), reducing it to the equation

F () = (Vh(XH) - Vh(d)) = ¢ (25)

So, each iteration must soM&(x) + ¢, 'Vh(x) = ¢ Vh(x¥) for x within accu-
racy||ek||. If F is differentiable, therF + cx~1Vh is differentiable on in€. Thus, we

can solve a nonlinear complementarity problem by approximately solving a sequence
of differentiable nonlinear systems of equations. SiRdeapproaches infinity on the
boundary ofC, it acts as a barrier function that simplifies the subproblems by removing
boundary effects. This phenomenon has already been noted in numerous prior works,
including [5, 8].

However, settinds = int C also has drawbacks. First, in attempting to apply Propo-
sition 6,S = int C rules out invoking Assumption A1, forcing one to appeal to Assump-
tions A2 or A3, each of which places restrictions on the maximal monotone op&rator
In applying Proposition 6 to the primal formulation, these restriction3 omply re-
strictions on the monotone functidh The following result summarizes what we can
say about the convergence of method (25) for complementarity problems:

Theorem 1. Suppose the complementarity problem (1) has some solution, and also that
| < u, Fis monotone and continuous on some opemsetC = {x € R" || < x < u},
and F satisfies at least one of the following restrictions:

P1. F(x) = Vf(x) for all x € C, where f is convex and continuously
differentiable orC.
P2. Forallx,x' € C, (x — X/, F(x) — F(X)) = 0 impliesF(x) = F(x).

Let h be a Bregman function with zor®e= intC, with lim,_ [|[Vh(w)|| = oo for
anyw € bdS = bdC. Suppose the sequence&}oy C S {&}cog C %", and
{aklpey C [c,00) C (0, 00) satisfy the recursion (25) and that 2, okl < oo,
while Y22 ck(€X, x¥) exists and is finite. The(x} converges to a solution of the
NCP (1).

Proof. (25) is equivalent to the fundamental recursion (20) of Proposition 6 with
T =Tp = F+ Nc andZX = xX. The conditions o€} are identical to the error
conditions (21) and (22) of Proposition 6. The condition thdie continuous o en-
sures thalp will be maximal, via Proposition 3. Therefore, we may invoke Proposition 6
if we can show at least one of its alternative Assumptions A1-A3 hold.

Now consider Assumption P1. In this case, we h@we= Vf + Nc = Vf +
35(-1C) = a(f + 8(-|C)), where the last equality follows from [28, Theorem 23.8]
and domf 2> C = domé(-|C) # @. Therefore, Assumption A2 of Proposition 6 is
satisfied.

Alternatively, assume that P2 holds. Sinéds continuous orD > C = Sand
Nc(x) = {0} for all x € S = intC, Assumption A3(i) holds folT = F + Nc.

P2 implies that A3(ii) holds fol = F. Itis also easily confirmed that A3(ii) holds for
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T = Nc. Finally, it is straightforward to show that paramonotonicity is preserved under
the addition of operators, so A3(ii) also holds o= F + Nc.

We may therefore invoke Proposition 6 and conclude ti4} must converge to
aroot of Tp + Ng = Tp + Nc = Tp, that is, a solution of (1).

This result represents a minor advance in the theory of primal complementarity
methods, in that most prior results have required exact computation of each iteration,
that is,e€ = 0, the exception being [7]. The approximation condition (25) is much more
practical to check than the corresponding condition in [7].

We cannot apply Proposition 7 to show existencéx} in this setting, because
S 2 domT. However, suitable existence results may be found in [5-8].

Note that in the case> —oo andu < +oo, the condition ord_g>, ck(€X, x¥) is an
immediate consequence pf,°, ckll€|l < oo, and becomes redundant. It only comes
into play when there is a possibility 9%} being unbounded.

While the restriction thaF be continuous oD > C seems reasonable, the alter-
native Hypotheses P1 and P2 impose extra restrictions.dfurthermore, while it is
not necessary to drive to infinity to obtain convergence, as in a true barrier method,
the procedure does inherit some numerical difficulties typical of barrier algorithms. The
nonlinear system to be approximately solved in (25) becomes progressively more ill-
conditioned ag approaches b@, where the solution is likely to lie. This ill-conditioning
constrains the numerical methods that may be used. Furthermore, the function on the
left-hand side of (25) is not defined faroutside intC; to apply a standard numerical
procedure such as Newton’s method, one needs to install appropriate safeguards to avoid
stepping to or evaluating points outside Gt

3.2. Dual application to complementarity

In situations where the above drawbacks of the primal method are significant, we
suggest dual or primal-dual algorithms, as described below. In these approaches, the
Bregman function acts through the duality framework to provide a smooth, augmented-
Lagrangian-like penalty function, rather than the barrier function one obtains from
a primal approach. We first consider a purely dual approach, applying Proposition 6 to
T =Tpb.

The fundamental Bregman proximal recursion (20)Foe Tp and iterategt = y¥
takes the form

1

_F—l(yk+1) + NC—l(yk+1) + .
Kk

(Vh(yk+1) - Vh(yk)) 5 &, (26)

Since the domain offp will in general be unknown, we will choose the Bregman-
function/zone pairth, S so thatS = R". This choice ensures that = T + Ns =
Tp + Nyin = Tp, and thus that the recursion will locate rootslgf

In general, it will not be possible to express the inverse opefatdrin a manner
convenient for computation, so we cannot work directly with the formula (26). Instead,
we “dualize” the recursion using Proposition 1. For simplicity, temporarily assume that
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e = 0, so that (26) becomes

1

_F—l(yk+1) + Nc—l(yk+1) + .
k

(Vh(yk+1) - Vh(yk)) 50 27)

We now take (27) to be the primal problem in the framework of Section 2.1, setting
X =Y =NR"andM = |. We takeA = Ay andB = By, whereAx and By are defined

by

Ay) = —F7H(=y) (28)
_ 1
By) = No )+ - (Vho = Vh(y)) . (29)

Note that if F constitutes a maximal monotone operatdr= Ax will be maximal,
and Nc 1 is maximal by the maximality oN¢. Vh is maximal monotone since it is
the subgradient map of the functitin continuous oMi". The operations of subtract-
ing the constan¥h(y*) and scaling by Ack preserve this maximality. Finally, since
domVh = %", we also have maximality d8 = By from [29].

Invoking Proposition 1, the problem dual to (27), or equivaleilyy) + Bk(y) > O,
is of the form— A~ 1(—=x) + B 1(x) > 0, where we are interchanging the notational
roles of *x” and “y”. It is immediate that—A 1(—x) = —[-F (=] L(-x) =
—(=F(=(=x)) = F(0, so— A *(=1) = F.

We now consideBy 1. We know thatNc~1 has the separable structuxe ~1 =
N:1®...®@N,~1, whereN; ~1is given by (17). Further assume thetas the separable
structureh(y) = 3", hi(yi), whence (as an operatofh = Vh; ®...® Vh,. Assume
temporarily that > —oo andu < +o0. ThenBy = Bx1 ® ... ® Bkn, Where eactBy;
is an operator ofit given by

: 1 : (WK
||+C—k<Vh|(V)_Vhl(yi))} y<0

1 1
Bui(1) = |:|i + o (VO = hi()) v+ - (Vi@ — v (yik))} y=0

1
Ui + C_k (Vhi (y) — Vhi(yik))} y> 0.

SinceBy ! = By 1®...® By L, it suffices toinverBy, k = 1, ... , n. For eachBy;,
we haveBy; = B U B2 U B, where

B 1
BY = {0} x [Ii + c_lk (Vhi (0) — Vhi(yik)) Ui + c_lk (Vhi (0) — Vh; (ylk))i|

By = {(V Ui +C—lk(Vhi(J/)—Vhi(yik))) ‘ y > 0}.
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It follows directly from the definition of the operator-theoretic inverse tBat* =
(B tuBH~tu (Bt Now,

(Bg) ' = { <|i + C—lk (Vhi) = vhi(yh)). y) ‘ y < 0}
= { (& V) H(Vhi (%) + s € 1)) | (Vi) H(Vhi () + o = 1)) < O]
= { (& (V) (I () + ke 1)) [ e <ti + C—lk (Vhi© - Vhi(yik))} ,
where the first equality is obtained by solving foin terms of¢ in
E=li+ C—lk (Vhi(y) - Vhi(yik)) ,

and the second by solvin@h;) % Vh; (y,") + o (E—1j)) < Oforé.
Similarly, we obtain

(Ba) =
1
{(s, (Vh)~H(Vhi (%) + e € — u) ) ) ‘ &> ui+ o (Vhi© — Vhi(y)) } -
(Bf(’i)—1 is simply the function that yields 0 on the interval
. 1 1
Py = [Ii to (Vhi (0) — Vh; (yik)) U (Vhi 0) — Vhi(yik))} . (30)
Combining these three results and using the monotonici®hadnd(Vh)~1, we obtain
1
(Vh) (VR (y) + 0 (& = 10) € <1+ - (Vi) — Vhi(y)
~Legy 1
PO = )T o —w) &> i+ (Vhi0) - V()
0 otherwise

= (vhi) ™ (mid(Vhi () + o (€ ~ 1), Vhi(0), Vhi (¥) + i — ).

Note that this operator is single-valued, so we have dropped extraneous braces.

We have not considered the possibility that= —oco and/oru; = +oo. In these
casesB,; and/orB., respectively, are absent from the calculations. In all cases, however,
it may be seen that the above relationship continues to hold.

Combining our results for = 1,...,n, we obtain thatB, 1 = Py, wherePy :

R — K" is given by

Pe(x) = (Vh)~ L (mid(Vh(yk) + ok(X — 1), Vh(0), Vh(y¥) + ck(x — u))) . (3D
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The dual problem- A1 (—x) + Bk 1(x) > 0 of the exact recursion formula (27)
then simplifies to the equation

F(x) + Pc(x) = 0. (32)

Let x¥*1 be a solution to this equation. Invoking part (i) of Proposition 1, the solution
y**1 of the original recursion (27) is simply given by

yk+1 _ H((Xk+1). (33)

Now, solving (32) forx is a considerably more familiar and tractable computation
than its dual, the inclusion (27). We now address a number of issues relating to this
computation: first, we would liké= + P to be differentiable, so that we can employ
standard smooth numerical methods; second, we would like to solve (32) approximately,
rather than exactly. We address differentiabilityFof- P first.

For a start, it seems reasonable to require thate differentiable. Therefore, the
question reduces to that of the differentiability@ Let us further suppose th@rh)—1
is everywhere differentiable. In this case, non-differentiabilitieBdran only occur at
“breakpoints” satisfying any of the equations

Vhi(yik)—i— X —1)) =Vvhj 0 i=1...,n
Vhi(yik)—i-ck(xi—ui):vhi(O) i=1,...,n

that is, atx € )" that have componenss at the endpoints of any of the intervabs;,

i =1,...,n.Now, P(x) is constant ag moves within any of these intervals, all other
coordinates being constant, that[i$,Pc(x)]i = 0 for x; € int ®y. Thus, to haveP

be continuously differentiable, it must have zero derivative;approache®y; from
either above or below. Appealing to (31), this requirement is equivalent to the condition
that (Vhi)~1 must have zero derivative &th; (0) for all i. Compactly, but somewhat
opaquely, we require

v ((Vh)—l) (Vh(0)) = 0. (34)

To clarify this condition, we invoke the standard chain-rule based formula for the
gradient of an inverse function, which in this case gives

1
V2h((Vhi) i)

v (V™) o) =

for all i. Therefore, we can restate the requirements(¥iay —1 be differentiable and
that (34) hold as

Vzhi(yi)>0 Vyi#0 i=1,...,n

35

lim V2h; (yj) = 400 i=1....n (35)
yi—>0

One possible choice of a Bregman function meeting these conditions [17, Example 2] is

l n
h(y)=aZ|yi|q, l<g<2 (36)
i=1
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In this caseVhi(yi) = (sgny)|yi|9~%, andV?2h;(yi) = (q — 1)|yi|9 2 has the desired
properties. We then obtain

1
q-1

P00 = mid( (%) Y + cex = 1. 0, (%) 4 + oxx - U))< :

wherew'P = ((sghwy)|w1|P ... (sgnwn)|wn|P). The caseq = 3/2 leads to an
expression resembling the convex programming cubic augmented Lagrangian discussed
in [24].

Ng: Nt My :

Invert

e -

Fig. 2. Taking the inverse oNc, adding a perturbation with an infinite slope at 0, and then inverting once
again produces the smoothed exterior functign

Figure 2 illustrates, in the one-dimensional case- 1, how dual application of
the Bregman proximal method smoothes the set-valued, nonsngotierm in the
original problemF(x) + Nc(x) > 0 into the differentiable ternf of the subproblem
computation. First, we takBc, and “dualize” it to obtain its inverssic 1. To N¢ 1,
we add the proximal perturbation functidty : y — (1/ck)(Vh(y) — Vh(yk)), which
has infinite slope at 0, and finite positive slope elsewhere. This operation yields the
operatorBy; because of the infinite slope of the perturbatibpnat zero, the “corners”
in the graph ofNc ~* are now smoothly “rounded off.” We now dualize once more by
taking the inverse oB, obtaining the functiorP. Because of the rounded corners
of Bk, Px is a differentiable function. Note that the smoothing is applied to the exterior
of C, whereas in the primal approach it is applied to the interior.

Summarizing, if we choose a separahlevith zonei" and having the proper-
ties (35), then the system of nonlinear equations (32) to be solved at each iteration will
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be differentiable. Note that the domain of definition of this system will be the same
asF’s, sincePk is finite and defined everywhere. Therefore, unlike the primal method,
there is no need for stepsize guards, except for those requiréd for

To make our dual procedure practical, we need only allow for approximate solution
of (32). In the following two theorems, we summarize the above development, incor-
porating analysis of approximate forms of the iteration; however, the approximation
criteria take a somewhat strange form due to the subtleties of working in the dual. We
let dist(x, Y) = infyey [[X — V]|

Theorem 2. LetF, |, andu describe a monotone NCP of the form (1), conforming to the
hypothesis of Proposition 4, and possessing some solution.#dt, . .. , n, leth; be

a Bregman function with zor, and Iet{ck}k_0 C (0, co0) be bounded away from zero.
Suppose that the sequendey%}k_o {x 1]}k_l, {x 2]}k . C C R and {8}, C [0, o0)
meet the conditions

V) < o0 37)
mel {‘51” < 8k Yk>0 (38)
w1 k+1
— F(}Eh =y = P(xfgh)  Yk=0, (39)
where P is defined as in (31). Theyk — y* = —F(x*), wherex* is some solution

to (1). All limit pointsx® of {x,} and {xk2]} are also solutions of (1), witlF(x>®) =
—y* = F(x*). IfimVh; = R for all i, then such sequences are guaranteed to exist.

Proof. Invoking Proposition 4Tp = —F(—1) + Nc~1 is maximal monotone. Also
h(x) = Zi”:o hi (i) is a Bregman function with zorfg". We claim that{yk} confirms
to the recursion (26), wherg},~, c %" is such that|e|| < 8 for all k > 0. The
recursion can be rewritteAx(Y<t1) + By(y*t1) 5 &, where Ax and Bk are defined
by (28)-(29). From (39), we haveqi|*, —y<*1) e F and (xG*, y**1) e P, which
yield (Y1, —xf5ih) € Axand(y<+L, x5)1) € By, courtesy of (28) and = Bx %, as

established above. Settiely = xi* — xf5 " for all k > 1, whence|e"|| < & by (38),

we haveAx (Y1) + Br(y¥t1) 5 &, and the claim is established.

Appealing to (37), (21) must hold with our choice @&}, and also (23). All the
hypotheses of Proposition 6 are thus satisfied, angly$p converges to a root of
Tb + Ny = Tp. The final statement follows from Proposition 7, even if we were to
requiredx = 0, so it only remains to show that all limit points ()f[l]} and {x& 2]} are
primal solutions.

From (37) andck} being bounded away from zerdy, — 0 ande® — 0. Therefore,
{xh]} and{x{‘Z]} have the same limit points. L&t be such that

X[l] X[21 X%

for some infinite seK < {0, 1, 2, ...}. SinceF is continuous anu}'k —F(xkl]) for

all k > 1, taking limits ovelk € K yieldsy* = —F(x*). From y"Jrl Pk(x'[‘zJ]rl), we
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also haveq‘g]“l € By(y*t1), and hence

1
(x{‘z] + o (Vh(yk) _ Vh(yk+1)) 7 yk+l> € Nc

for all k > 0. N¢, being maximal monotone, is a closed sefithx R", while Vh must
be continuous ay*, and{ck} is bounded away from zero. So, taking limits oket K
yields (x*°, y*) € N¢. Proposition 1 then gives that® must solve the primal problem
F(X) + Nc(x) > 0.

Theorem 3. In Theorem 2, sufficient conditions assuring (38)-(39) are

F(X*M) + P(x*h) =0 (40)
yk+l — Pk(xk+l) (41)

or
dist(x<%, F71( = P(x 1)) < o (42)
yk+l — Pk(xk+l) (43)

or
dist(X*1, Bi(— F(x1)) ) = 5 (44)
yk+l — —F(Xk+l), (45)

whereBX and P are defined as in (29) and (31), respectively. If one of these alternatives
holds at eactk > 0, all limit points of {x} solve the complementarity problem (1). If

F is continuously differentiabléy?h;(y;) exists and is positive for alfj # 0, while

limy, o V2h; (Yi) = +o0o, then the functiorF + P on the left-hand side of (40) is
continuously differentiable.

Proof. Firstconsider the exactiteration (40)-(41). Then we car§ét= x5t = x+1,
and (38)-(39) will hold for angyk > 0. The continuous differentiability dF + P follows
from the discussion above.

Now consider (42)-(43). In this case, we kﬁ]” = xk+1, SinceF and henceé—1

constitute maximal monotone operators, the Bet(y) must be closed and convex
for everyy € %" (seee.q.[3]). Thus, (42) guarantees the existence of soa{fj“]e1L €

F~1(—P(xkt1)) such thaﬂlx{‘ﬁl — x{‘2+]1|| < 8. Thus, (38)-(39) can be satisfied.
The analysis of (44)-(45) is similar, except that we ha@l = xkt1 and (44)
guarantees the existence; ]1.
Since eithexk = xh] orxk = XFZ] for everyk, the assertion about limit points of
{x} follows from the limit point properties ofixf;, } and{x%}
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(40)-(41) constitute a generalized method of multipliers iteration for the comple-
mentarity problem (1), and by appropriate choicéahe subproblem functioR + P
of (40) can be made differentiable,kfis differentiable. Of course, such an exact pro-
cedure may not be practical. (44)-(45) is implementable in the general case and is likely
to be the most useful inexact version of (40)-(41). However, in special cases Where
may be easily computed, (42)-(43) might also find application. To attempt to meet either
set of approximate conditions, one would apply a standard iterative numerical method
to (40) until (42) or (44) holds.

The dual method set forth in Theorems 2 and 3 has several advantages over the
primal method of Section 3.1. Most crucially, the supplementary requirements P1 or
P2 imposed orf in Theorem 1 may be dropped in place of the far weaker hypotheses
of Proposition 4. Furthermore, the stepsize limit and ill-conditioning issues associated
with the primal subproblerfF(x¥+1) + c,~1(Vh(x**1) — Vh(xK)) ~ 0 do not arise in
the dual subproblerf(x**1) + P(xkt1) ~ 0.

On the other hand, the dual method also has some disadvantages. First, the Jacobian
of the primal subproblem takes the fofiF +cx~1V2h, and can be forced to be positive
definite by requiring tha¥?h be everywhere positive definite. The Jacobvah -+ V Py
of the dual subproblem, however, is only guaranteed to be posgivéefinite, unless
one requiresvF to be positive definite. Second, the primal method has the simple,
residual-based approximation rule (32), whereas the dual method requires formulas
such as (42) or (44). Depending on the problem, these conditions might be difficult to
verify. Finally, the dual method’s theory does not guarantee convergence of the primal
iterates|x}, {Xﬁ]}v or {XFZ]}, but only makes assertions about limit points.

3.3. Primal-dual application to complementarity

The primal-dual method obtained by applying Proposition®te Tpp = K[F, Nc, 1]
combines and improves upon the besttheoretical features of the primal and dual methods.
We now consider the basic recursion (20), as applied te- Tpp. First, we need

a Bregman functioh on %" x %", which we construct via

n
hex, y) =h0oo + > hi(y), (46)
i=1

where theéh; are as in the dual method, aini$ a Bregman function with zoi%> dom F.
We partition the error vecta of (20), which in this case lies 1" x %", into subvectors
ey € € N Then the fundamental recursion (20), with iterags= (x*, y),

Bregman functiom, and operatofipp, takes the form

F(xH) 4 y<+t 4 C—lk (VA - VR(E) ) = ey (“7)
kL chl(yk+l) 4 C_lk (Vh(yk+l) _ Vh(yk)) 5 eFZ]’ (48)

whereh(x) = Y[ hi(x), as before. If we seﬁ%‘z] = 0, then (48) is equivalent to
Br(y*™1) 5 xk+1, whereBy is defined as in (29) for the dual method. Using the prior
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definition of P, this condition is in turn equivalent tg*1 = P (xkt1), with Py as
in (31). Substituting this simple formula into (47), we obtain

P + P + 2 (VAR - V() = oy,

At this point, application of Proposition 6 is straightforward.

Theorem 4. LetF be a continuous monotone function that is maximal when considered
as a monotone operator, with maximal open dontaiaa )%". SupposéF, |, u) describes

a complementarity problem of the form (1), and that this problem has some solution.
Leth be a Bregman function with (open) zdd@ D, and let theh;,i = 1,... ,n be
Bregman functions with zoné Let{ck}2 C (0, oo) be a sequence of positive scalars
bounded away from zero, and suppose that the sequérlgs, c S, {Y<}e—g C R",
and{d"},-,  ®i" conform to the recursion formulae

() + = (TR(EH) — TR + Prfxr?) = o (49)

yk+l — Pk (Xk+l) (50)

forallk > 0, wherePk is defined by (31). Suppose also t@foockndku < oo, while

Y o Ok dk xK) exists and is finite. ThefxX} converges to a solutior® of the the
complementarity problem (1), anf — —F(x*). Ifimh; = 9i for all i andimh = %",
such sequences are guaranteed to exigt.iff continuously differentiable arid?h; (y;)
exists and is positive for alj # O, whilelimyi_,ovzhi (i) = 400, then the function

F 4+ o 1Vh + P in the equation system (49) is continuously differentiable. If, in
addition, V2h is everywhere positive definite, then the Jacobidh+ ¢, 1V2h 4+ V P

of this function is everywhere positive definite.

Proof. Proposition 5 asserts thgtp is maximal monotone. Let = (d¥, 0) € RN x K"
forallk > 1. Then, similarly to the above discussion, (49)-(50)are equivalent to the Breg-
man proximal recursion (20) with iterate$ = (xK, k) and the Bregman functio,
which has zonSx RO, Now Z oCklld¥|l < oo 'is equwalent 0o k|l < oo,
and(d¥, x¢) = (&, (XX, y ev1< ), SOY 22, o (€X, Z¥) exists and is finite.

We can then apply Proposmon 6 to give that} = {(xk y9)} converges to a root
Z* = (xX*, y*) of

Teo+ Ng 0 = TpD.

So,x* solves (1) ang* = —F(x*) by the analysis of Section 2.2. The claim of existence
follows directly from Proposition 7. The remaining statements follow from arguments
like those of Section 3.2.

Note that the primal-dual method given as (49)-(50) requires neither the primal
method’s restrictions P1 or P2 of Theorem 1, nor the dual method’s regularity conditions
of Proposition 4. The stepsize limit and ill-conditioning issues of the primal approach
are also absent, because we choose the primal-space Bregman fumdtionave
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zone containing the domain &f, as opposed to having zone @it At the same time,

the approximation criterion of (49) is based on simple measurement of a residual,
as in the primal method. The Jacobi&tF + ¢, 1V2h + VP of the primal-dual
subproblem functioifr + ok~ 1Vh + B, combines the desirable existence/continuity and
positive definiteness features of the primal and dual methods. Unlike the dual method,
convergence of the primal iteratps} is fully guaranteed.

Thus, the iteration (49)-(50) has all the theoretical advantages of the primal and
dual approaches, and the disadvantages of neither. The three methods bear much the
same relationship as the proximal minimization algorithms, methods of multipliers,
and proximal methods of multipliers presented for convex optimization in [30] (for the
special cas@(x) = (1/2)[x||?) and later in [17] (for general). We therefore refer to
the dual method as a “method of multipliers,” and the primal-dual method as a “proximal
method of multipliers.”

4. Computational results on the MCPLIB test suite

We conclude with some preliminary computational results for the proximal method of
multipliers. We coded a version of the algorithm (49)-(50) in MATLAB, and used it to
solve the problems in the MCPLIB collection [14], exploiting the interface developed
in [19]. We note that most of the problems in the collection do not satisfy the mono-
tonicity condition (5) postulated in our theory. In fact, only the probleyde and
optcont31 are definitely known to be monotone. However, for the method to be
practical, we believe it must robustly solve a large number of the problems from this
standard test suite.

In our initial implementation, we sed¥|| < 10~ for all k, that is, we solved (49)
essentially exactly at all iterations. With later work, we intend to refine this approach,
starting from a larger tolerance and gradually decreasing it. We ¢hasén (36) with
q = 3/2, and seh(x) = (1/2)x" Dx, D being a diagonal matrix determined via

B 1.0
— max(0.1] VFi (x9)]

Dii

,10.0)°

This choice corresponds to standard problem scaling mechanisms that have proven
successful in [10,15]. In the interest of further improving scaling, we also define the
function Py slightly differently from (31). Instead, we ug&(x) = P(x, y¥; ck) where

Vh(y) +cD 1(x — )
P(x, y; ¢) = (Vh)~ [ mid vh(0) , (51)
Vh(y) + cD (x — u)

D being the diagonal matrix defined above. This change corresponds to a simple rescal-
ing of the overall Bregman functiomof (46).

By way of illustration, consider the special case of minimization over the nonnegative
orthant, where we haveé = V f for some differentiable convex functioin | = 0, and
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u = +o0. Then the version of (49)-(50) we implemented would correspond to the
following cubic augmented Lagrangian method, with a quadratic proximal term:

_ n 73
X1 = arg mm{ f(X) + 52 (x —x¥)" D (x —x¥) + 3 jglmax{ [\/yT‘ - CS%] 0}}

XeRn
k1 2
k+1 _ [k o %
yi = max< yj + bj; ,0) .
The initial valuesx® of the primal variables are specified in the MCPLIB test
suite [14]. For the initial multipliers, we used the formula

o_[P(%-F(x9:c). [P’ ~F(x:co)| =10"°
y'= —F (x9), otherwise,

whereP is defined by (51).

The major work involved in each step of the algorithm is in solving the system of
nonlinear equations (49), for which we use a simple backtracking variant of Newton’s
method. We start by computing a “pure” Newton step for (49), witheplaced by zero.

If this step does not yield a reduction in the residual of (49), we repeatedly halve the
step size until a reduction is obtained, or the step is less thad0Dth of its original
magnitude. In the former case, we then attempt another Newton step, repeating the
process until the residual of (49) falls below f0We then update the multiplier vector

via (50), and check the global residugk= || F(x*) + y¥||. If re < 1078, we successfully
terminate. Otherwise, Kk < 100, we loop, incremerk, and execute another “outer”
iteration. Ifk > 100 we quit and declare failure.

When the Newton line search fails, that is, a reduction of the step by a factor of
1/1024 fails to yield any improvement in the residual of (49), we update the proximal
stepsize parameteg. In fact, we separately maintain a pringal(“pcy”) and a dualky
(“dcy™), corresponding to the usageafin the equations (49) and (31)/(51), respectively.
Allowing for additional rescaling ofi, the convergence theory above stipulates toat p
and d be held in a fixed ratio to one another throughout the algorithm. In practice, we
allow a limited number of independent adjustments of these two parameters. Assuming
monotonicity of F, our convergence theory applies after the last such independent
adjustment.

We start by setting @ = max10, ||x°||} and & = 10. Upon failure of the
line search, p« is reduced by a factor of 10 andydis set to 1. After successful
solution of (49) to the tolerance of 18, both px and dy are multiplied by 1.05;
this adjustment is consistent with our theory and also with standard techniques for
accelerating convergence of proximal methods. We then calcolfateand if

’

||Xk+1 _ XkH - 100||yk+1 _ yk|

dck is doubled, whereas if

100||Xk+1 _ Xk” - ” yk+1 _ yk|

’

then db = [[y¥|..
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Table 1. Primal-dual smooth multiplier method applied to MCPLIB problems (part 1)

Problem Newton | Updates| Updates Primal

(Starting Point) | Iterations | Steps of pck of dek Residual
bertsekas (1) 15 40 0 0| 54x10°7
bertsekas  (2) 15 47 0 0| 63x107
bertsekas  (3) 6 59 0 0| 12x108
billups (1) 47 350 3 21| 49x 1077
choi (1) 5 8 0 1| 93x1077
colvdual (1) 9 29 1 1| 72x10°8
colvdual  (2) 7 36 0 0| 24x107
colvnlp (1) 9 28 1 1| 74x10°8
colvnlp  (2) 7 25 0 0| 23x10°7
cycle (1) 4 11 0 0| 83x1077
ehl_kost (1) 4 15 0 0| 55x1077
ehl_kost (2) 4 15 0 0| 55x10°7
ehl_kost (3) 4 15 0 0| 55x1077
explep (1) 6 21 0 0| 56x1077
freebert (1) 15 39 0 0| 40x10°7
freebert  (2) 9 24 0 0| 84x1077
freebert  (3) 15 39 0 0| 37x10°7
freebert  (4) 15 40 0 0| 54x10°7
freebert  (5) 9 24 0 0| 84x107
freebert  (6) 15 40 0 0| 50x10°7
gafni (1) 9 23 0 0| 27x1077
gafni  (2) 9 26 0 0|30x1077
gafni  (3) 9 28 0 0|33x1077
hanskoop (1) 5 30 0 0| 14x107
hanskoop (2) 11 108 1 1|80x1077
hanskoop (3) 5 17 0 0| 11x1077
hanskoop (4) 5 26 0 0| 14x10°7
hanskoop (5) 11 78 1 1| 70x1077
hydroc06 (1) 5 9 0 0| 58x10°7
hydroc20 (1) failed

josephy (1) 13 105 2 2| 63x10°7
josephy (2) 8 90 1 1| 56x108
josephy (3) 7 138 1 1|87x1077
josephy (4) 5 14 0 0| 89x10°
josephy (5) 4 10 0 0| 44x107
josephy (6) 8 166 1 1| 19x1077
kojshin (1) 56 248 3 3| 53x1077
kojshin  (2) 9 151 1 1| 84x10°8
kojshin  (3) 43 357 4 4| 86x1077
kojshin  (4) 19 214 2 2| 84x1077
kojshin  (5) 20 227 2 2 | 55x1077
kojshin  (6) 52 391 3 3| 76x1077
mathinum (1) 5 9 0 0| 41x108
mathinum (2) 5 8 0 0| 13x108
mathinum (3) 5 13 0 0| 24x108
mathinum (4) 5 9 0 0| 45x10°8
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Table 2. Primal-dual smooth multiplier method applied to MCPLIB problems (part 2)

Problem Newton | Updates| Updates Primal

(Starting Point) | lterations | Steps of pc of dey Residual
mathisum (1) 4 9 0 0] 25%x1077
mathisum (2) 5 11 0 0| 19x10°8
mathisum (3) 5 19 0 0| 39x10°8
mathisum (4) 4 8 0 0] 98x1077
methan08 (1) 4 7 0 1| 29x1077
nash (1) 5 10 0 0| 12x108
nash (2) 4 9 0 0| 52x10°8
opt_cont31 (1) 6 85 0 0| 47x1077
pies (1) 7 29 1 1|65%x1077
pgvonl05 (1) failed
pgvonl06 (1) failed
powell (1) 4 12 0 0] 42x1077
powell (2) 6 21 0 0| 10x1077
powell (3) 14 176 2 2| 28x1077
powell (4) 6 21 0 0|82x108
powell_mcp (1) 5 10 0 0] 22x1077
powell_mcp (2) 5 10 0 0] 38x1077
powell_mcp (3) 5 14 0 1| 16x10°7
powell_mcp  (4) 5 13 0 0| 67x1077
scarfanum (1) 6 24 0 0] 30x1077
scarfanum  (2) 6 28 0 0] 30x1077
scarfanum  (3) 7 28 0 0] 15%x1077
scarfasum (1) 6 25 0 0| 14x1077
scarfasum  (2) 6 21 0 0| 14x1077
scarfasum  (3) 10 36 0 0] 29%x1077
scarfonum (1) 43 133 0 0] 59%x1077
scarfbonum  (2) 89 393 0 21 | 9.0x 1077
scarfbsum (1) 18 81 0 0| 57x1077
scarfbsum  (2) 18 66 0 0| 58x1077
sppe (1) 6 21 0 0| 58x10°8
sppe (2) 5 22 0 0| 69x10°
tobin (1) 6 30 0 0| 35x10°8
tobin  (2) 6 47 0 0| 33x10°8

Tables 1 and 2 summarize our computational results. “Iterations” is the total number
of “outer” iterations, that is, the value é&fnecessary to obtairy < 1078. “Newton
steps” is the total number of Newton steps taken, accumulated over all outer iterations.
We also report the number of times thak @and dx are updated independently of one
another; these counts do not include the simultaneous multiplications by 1.05. Note that
there were no independent updates required for the two guaranteed monotone problems,
as our convergence theory would suggest. For the remaining problems, independent
updates were infrequent. Since our implementation is preliminary and MATLAB is an
interpreted language, we do not list run times. The “primal residual” column gives the
final value of|[x — mid(l, X< — F(x¥), u) .
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As can be seen from the tables, and by comparison with the results in [2], the
algorithm is fairly robust. For all but 3 of the 79 instance/starting point combinations
attempted, it terminates within 100 iterations with a primal residual off1dr less,
indicating convergence to a solution. Two of the failures were forptpeon10*
problems; since these problems are known to be poorly defined at the solution, we do
not consider these failures to be a serious liability. The other failurdyydnoc20
seems to be due to convergence difficulties in the multiplier sphedroc20 contains
a large number of nonlinear equations, and we speculate that (36} witl3/2 may
not be an ideal penalty kernel to use in such cases.

AcknowledgementsThe authors also wish to thank an anonymous referee for suggestions on streamlining
some of the analysis.
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