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Abstract. This paper describes several methods for solving nonlinear complementarity problems. A general
duality framework for pairs of monotone operators is developed and then applied to the monotone comple-
mentarity problem, obtaining primal, dual, and primal-dual formulations. We derive Bregman-function-based
generalized proximal algorithms for each of these formulations, generating three classes of complementarity
algorithms. The primal class is well-known. The dual class is new and constitutes a general collection of
methods of multipliers, or augmented Lagrangian methods, for complementarity problems. In a special case,
it corresponds to a class of variational inequality algorithms proposed by Gabay. By appropriate choice of
Bregman function, the augmented Lagrangian subproblem in these methods can be made continuously dif-
ferentiable. The primal-dual class of methods is entirely new and combines the best theoretical features of
the primal and dual methods. Some preliminary computation shows that this class of algorithms is effective
at solving many of the standard complementarity test problems.
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1. Introduction

This paper concerns the solution of thenonlinear complementarity problem(NCP). Let
l ∈ [−∞,∞)n andu ∈ (−∞,∞]n, with l ≤ u. Suppose{x ∈ <n | l ≤ x ≤ u} ⊆
D ⊆ <n, and letF : D → <n be continuous. Then, the NCP is to find somex ∈ <n

satisfying the conditions

l ≤ x ≤ u mid(l, x− F(x),u) = x, (1)

where mid(a,b, c) denotes the componentwise median of the vectorsa, b, andc. This
problem is a special case of the standardvariational inequalityproblem: givenF and
a setC ⊆ <n, find somex such that

x ∈ C
〈
F(x), y− x

〉 ≥ 0 ∀ y ∈ C . (2)

If we takeC = {x ∈ <n | l ≤ x ≤ u}, then (2) is identical to (1).
The special case ofl = 0 andu = ∞ reduces (1) to

x ≥ 0 max(x− F(x),0) = x,
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or equivalently

x ≥ 0 F(x) ≥ 0
〈
x, F(x)

〉 = 0. (3)

If the mappingF is affine, then (3) is the classicallinear complementarity problem, or
LCP.

In the theoretical portion of this paper, we will restrict our attention to themonotone
case in whichF satisfies〈

F(x)− F(y), x− y
〉 ≥ 0 ∀ x, y ∈ <n. (4)

This assumption will allow us to model (1) as the problem of finding a root of the sum
of two monotone operators (seee.g.[3]), as will be explained in Section 2. To find such
a root, we then apply generalized proximal algorithms based on Bregman functions [6,
7,9,12,17,18,33].

A number of recent papers [5,6,8] have stressed the ability of proximal terms arising
from appropriately-formulated Bregman functions to act like barrier functions, giving
rise to “interior point” proximal methods for variational inequality problems. Such
methods are derived by applying Bregman proximal methods to a primal formulation
of (1) or (2).

In contrast, we emphasize dual and primal-dual formulations. Applying Bregman
proximal methods to such formulations yields augmented-Lagrangian-like algorithms,
or “methods of multipliers.” In the dual case, we obtain a class of methods generaliz-
ing [21, “ALG1”]. By careful choice of Bregman function, we generate methods which
involve solving (provided thatF is differentiable) a once-differentiable system of equa-
tions at each iteration, as opposed to a nonsmooth system, as in [21]. Therefore, we can
use a standard algorithm such as Newton’s method to solve these subproblems. A similar
phenomenon has already been pointed out for smooth convex programming problems
in [24]. That paper notes that one of the augmented Lagrangian methods proposed
in [17] yields a twice-differentiable augmented Lagrangian, as opposed to the classical
once-differentiable augmented Lagrangian for inequality constraints (e.g.[30]).

In producing sequences of subproblems consisting of differentiable nonlinear equa-
tions, our algorithms bear some resemblance to recently proposed smoothing methods
for the LCP and NCP [10,11,22]. However, such methods are akin to pure penalty
methods in constrained optimization — they have a penalty parameter that must be
driven to infinity to obtain convergence. By contrast, our algorithms are generalized
versions of augmented Lagrangian methods: there is a Lagrange multiplier adjustment
at the end of each iteration, and we obtain convergence even if the penalty parameter
does not approach infinity.

In the course of our derivation, Section 2 develops a simple duality framework
for pairs of set-valued operators. The framework resembles [1], but allows the two
mappings in the pair to operate on different spaces. A similar duality structure for pairs
of monotone operators appears in [20]. The main distinction of our approach, as opposed
to [1,20], is to introduce a primal-dual, “saddle-point” formulation, in addition to the
standard primal and dual formulations. Towards the end of Section 2, we show how to
apply the duality framework to variational inequalities and complementarity problems,
refining the framework for variational inequalities that appears in [21,27].
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Section 3 combines the duality framework of Section 2 with Bregman function
proximal algorithms and shows how to produce new, smooth methods of multipliers
for (1). The primal-dual formulation yields a newproximalmethod of multipliers for (1),
along the lines of the proximal method of multipliers for convex programming (e.g.[30]).
This primal-dual method combines the best theoretical features of primal methods in
the spirit of [5,6,8] with the best features of the new dual method. Some preliminary
computational results on the MCPLIB [14] suite of test problems are given in Section 4.
These results show that proximal method of multipliers is effective even when the
underlying problem is not monotone.

2. A simple duality framework for pairs of monotone operators

In this paper, anoperatorT on a real Hilbert spaceX is a subset ofX × Y, whereY is
also a Hilbert space. We callY therange spaceof T; typically, but not always, we will
haveX = Y.

For every suchT ⊆ X×Y andx ∈ X, T(x)
.= {y ∈ Y | (x, y) ∈ T } defines a point-

to-set mapping fromX to Y; in fact, we make no distinction between this point-to-set
mapping and its graphT. Thus, the statementsy ∈ T(x) and(x, y) ∈ T are completely
equivalent. Theinverseof any operatorT is T−1 = {(y, x) ∈ Y× X | (x, y) ∈ T },
which will always exist. Trivially,(T−1)−1 = T. We define

domT
.= {x | T(x) 6= ∅} = {x ∈ X | ∃ y ∈ Y : (x, y) ∈ T } ,

and similarly imT
.= dom(T−1) = {y ∈ Y | ∃ x ∈ X : (x, y) ∈ T }. When T(x) is

a singleton set{y} for all x, that is,T is the graph of some function domT → Y,
we say thatT is single-valued, and we may write, in a slight abuse of notation,T(x) = y
instead ofT(x) = {y}.

Given two operatorsT andU on X with the same range spaceY, their sumT +U
is defined via(T + U)(x) = T(x)+ U(x) = {t + u | t ∈ T(x),u ∈ U(x)}. If T is any
operator onX andU an operator onZ, we define theirdirect productT ⊗U on X× Z
via (T ⊗U)(x, z) = T(x)×U(z).

An operatorT on X is said to bemonotoneif its range space isX and〈
x− x′, y− y′

〉 ≥ 0 ∀ (x, y), (x′, y′) ∈ T. (5)

Note that (5) is a natural generalization of (4): if one takesX = <n andT to be the
graph of the functionF, (5) reduces to (4). Note also that monotonicity ofT andT−1

are equivalent, and that it is straightforward to show that if two operatorsT andU are
both monotone, then so isT +U.

A monotone operatorT is maximalif no strict superset ofT is monotone, that is,

(x, y) ∈ X × X,
〈
x− x′, y− y′

〉 ≥ 0 ∀ (x′, y′) ∈ T ⇒ (x, y) ∈ T.

Maximality of an operator and maximality of its inverse are equivalent.
The fundamental problem customarily associated with a monotone operatorT is

that of finding azeroor root, that is, somex ∈ X such that 0∈ T(x) (seee.g.[3,31]).
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2.1. The duality framework

Suppose we are given an operatorA on a Hilbert spaceX, an operatorB on a Hilbert
spaceY, and a linear mappingM : X→ Y. We will denote such a triple byP(A, B,M).
For the development in Section 3, we will require only the special caseX = Y = <n and
M = I , but we consider the generalP(A, B,M) in order to make connections to [16,
20] and other previous work.

We associate withP(A, B,M) a primal formulationof finding x ∈ X such that

0 ∈ A(x)+ M>B(Mx), (6)

or equivalently 0∈ TP(x)
.= [A+ M>BM

]
(x), whereM> denotes the adjoint ofM.

Similarly, we associate with eachP(A, B,M) a dual formulationof finding y ∈ Y
such that

0 ∈ −MA−1(−M>y)+ B−1(y), (7)

or equivalently 0∈ TD(y)
.= [−MA−1(−M>)+ B−1

]
(y). Note that (7) is the primal

formulation ofP(B−1, A−1,−M>), and that twice applying the transformation

P(A, B,M) 7→ P(B−1, A−1,−M>)

produces the original tripleP(A, B,M); that is, the dual ofP(B−1, A−1,−M>) is the
original primal formulation (6). The duality scheme of [1] is similar, with the restrictions
X = Y andM = I .

We also associate withP(A, B,M) a primal-dual formulation, which is to find
(x, y) ∈ X× Y such that

0 ∈ A(x)+ M>y 0 ∈ −Mx+ B−1(y), (8)

or equivalently 0∈ TPD(x, y)
.= K [A, B,M](x, y), whereK [A, B,M] is defined by

K [A, B,M]
(

x
y

)
=
(

A(x)× B−1(y)
)
+
[

0 M>

−M 0

](
x
y

)
. (9)

In the special case of convex optimization, we can takeA = ∂ f , the subdifferential
map of some closed proper convex functionf : X→ (−∞,+∞], andB = ∂g for some
closed proper convexg : Y→ (−∞,+∞]. Then the primal formulation is equivalent
to the optimization problem

min
x∈X

f(x)+ g(Mx). (10)

Similarly, the dual formulation is equivalent to

min
y∈Y

f ∗(−M>y)+ g∗(y), (11)

where “∗” denotes the convex conjugacy operation [28, Section 12]. Furthermore, the
subdifferential of the generalized LagrangianL : X × Y→ [−∞,+∞] defined by

L(x, y) = f(x)+ 〈y,Mx〉 − g∗(y)
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is preciselyK [A, B,M] = K [∂ f , ∂g,M]. Therefore, the primal-dual formulation is
equivalent to finding a saddle point ofL, that is, to the problem

min
x∈X

max
y∈Y

f(x)+ y>Mx − g∗(y). (12)

The standard convex programming duality relations between (10), (11), and (12) may
be viewed as a consequence of the higher-level, more abstract duality embodied in the
following elementary proposition, whose proof is omitted.

Proposition 1. The following statements are equivalent:

(i) (x, y) solves the primal-dual formulation (8).
(ii) x ∈ X, y ∈ Y, (x,−M>y) ∈ A, (Mx, y) ∈ B.

Furthermore,x solves the primal formulation (6) if and only if there existsy ∈ Y such
that (i)-(ii) hold, andy solves the dual formulation (7) if and only if there existsx ∈ X
such that (i)-(ii) hold.

Note that for general choices ofA, B, and M, this duality framework is slightly
weaker than, for example, linear programming, in thatx being a primal solution andy
being a dual solution arenot sufficient for(x, y) to be an solution of the primal-dual
(“saddle point”) formulation, even ifA andB are maximal monotone. For an example
of this phenomenon, consider the caseX = Y = <2, M = I , A(x1, x2) = {(−x2, x1)},
andB(x1, x2) = {(x2,−x1)}.

We now turn to the issue of solving (6), (7) or (8), under the assumption thatA andB
are maximal monotone.

Consider first the primal formulation (6). Given thatB is monotone, it is straight-
forward to show thatM>BM is also monotone. The monotonicity ofA then gives the
monotonicity ofTP = A+ M>BM. Therefore, the primal formulation is a problem of
locating a root of the monotone operatorTP on X. The convergence analyses of root-
finding methods for monotone operators typically require that the operator be not only
monotone, but also maximal. WhileTP will typically be maximal if A andB are, such
maximality cannot be guaranteed without imposing additional regularity conditions.
Some typical sufficient conditions forTPto be maximal are thatAandBbe maximal, that
MM> be an isomorphism ofY, thus guaranteeing maximality ofM>BM (see [21, Propo-
sition 4.1] or [20, Proposition 3.2]), and a condition such as domA ∩ int dom(BM) 6= ∅,
in order to ensure maximality of the sumTP = A+ M>BM [29]. This last condition
can be weakened somewhat ifX is finite-dimensional.

The analysis of the dual formulation is similar. The formulation involves locating the
root of the operatorTD = −MA−1(−M>)+B−1 onY, which is necessarily monotone by
the monotonicity ofA andB, but is not guaranteed to be maximal solely by maximality
of A andB. One must impose similar conditions to the primal case, such asM>M being
an isomorphism ofX, and dom(A−1(−M>)) ∩ int im B 6= ∅.

The primal-dual formulation also involves finding the root of a monotone operator:
we establish in Proposition 2 below that the operatorTPD = K [A, B,M] on X × Y
(with the canonical inner product induced byX andY) is monotone ifA and B are.
The proposition also shows that the primal-dual is in some sense the “best behaved” of
our three formulations, in the sense thatK [A, B,M] is maximal wheneverA andB are
both maximal.
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Proposition 2. If A and B are monotone operators on the Hilbert spacesX and Y,
respectively, andM is any linear mapX→ Y, then the operatorK [A, B,M] on X×Y
defined by (9) is monotone. Furthermore, ifA and B are both maximal,K [A, B,M] is
maximal.

Proof. Set

T1 = A⊗ B−1 T2(x, y) =
[

0 M>

−M 0

](
x
y

)
.

Note thatT1 andT2 are both monotone, andK [A, B,M] = T1 + T2. If A and B are
maximal,T1 is also maximal. The linear mapT2 is also maximal [26], and maximality
of T1+ T2 then follows from [29, Theorem 1(a)].

We remark that it is also straightforward (but more lengthy) to prove Proposition 2
from first principles, without invoking the deep analytical machinery of [26,29].

In summary, given a linearM and monotoneA andB, we can formulate the same
problem in three essentially equivalent ways: finding a root of the primal monotone
operatorTP = A+ M>BM on X, finding a root of the dual monotone operatorTD =
−MA−1(−M>) + B−1 on Y, or finding a root of the primal-dual monotone operator
TPD = K [A, B,M] on X×Y. Of these operators,TPD is the only oneguaranteedto be
maximal, given the maximality ofA andB.

2.2. Dual and primal-dual formulations of variational inequality
and complementarity problems

We now return to the variational inequality problem (2), whereF : D→<n satisfies the
monotonicity condition (4),D ⊇ C, andC is a closed convex set. Define the operator
NC ⊆ C×<n ⊆ <n ×<n via

NC(x) =
{{

d ∈ <n
∣∣ 〈d, y− x

〉 ≤ 0 ∀ y ∈ C
}
, x ∈ C

∅, x 6∈ C.
(13)

It is well-known thatNC is maximal monotone on<n. Furthermore, the variational
inequality (2) is equivalent to the problem

0 ∈ F(x)+ NC(x). (14)

We take (14) as our primal formulation in the duality framework of (6), (7), and (8).
Consequently, we letA = F, B = NC, X = Y = <n, andM = I , whenceTP = F+NC.
We then haveTD = −F−1(−I )+ NC

−1, and the problem dual to (14) is thus

0 ∈ −F−1(−y)+ NC
−1(y), (15)

where “−1” denotes the operator-theoretic inverse.F−1 andNC
−1 may both be general

set-valued operators on<n, in the sense of Section 2. Although the notation is different,
this dual problem is essentially the same dual proposed in [21,27]. The formulation (15)
may appear somewhat awkward, but we will not have to work with it directly in
a computational setting. It will, however, prove very useful in deriving algorithms.
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It is a simple consequence of Proposition 1 thatysolves (15) if and only ify= −F(x)
for some solutionx of (14), or equivalently of the variational inequality (2).

The primal-dual formulation, in this setting, is to find a zero of the operatorTPD =
K [F, NC, I ] defined via

TPD(x, y) =
(

F(x)× NC
−1(y)

)
+
(

y
−x

)
.

Equivalently,x andy solve the system

F(x) = −y NC
−1(y) 3 x, (16)

that is,x solves the variational inequality (2), andy = −F(x).
We now investigate the structure ofNC andNC

−1 in the case of the NCP (1), where
C = {x ∈ <n | l ≤ x ≤ u}. In this case,NC is the direct product ofn simple operators
on< of the form

Ni =
[ ( {l i } × (−∞,0)

) ∪ ([l i ,ui ] × {0}
) ∪ ( {ui } × (0,+∞)

)] ∩ <2,

as depicted on the left side of Figure 1. It then follows thatNC
−1 is the direct product

of then operators

Ni
−1 =

[ (
(−∞,0)× {l i }

) ∪ ( {0} × [l i ,ui ]
) ∪ ((0,+∞)× {ui }

)] ∩ <2, (17)

as depicted on the right side of Figure 1.

li ui

li

ui

Fig. 1. The operatorNi on< (left), and its inverseNi
−1 (right)

Since maximality is needed to prove convergence of the solution methods we propose
in Section 3, we now address the question of maximality ofF, TP = F + NC, TD =
−F−1(−I )+ NC

−1, andTPD= K [F, NC, I ].
Proposition 3. Let F be a continuous monotone function on<n with open domain
D ⊃ C = {x ∈ <n | l ≤ x ≤ u}. ThenTP = F + NC is maximal monotone.
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Proof. Let F̂ be some maximal extension ofF into a monotone operator [32, Proposi-
tion 12.6]. Then we have dom̂F ⊇ D ⊃ C = domNC 6= ∅, and therefore ri dom̂F ∩
ri domNC 6= ∅, where “ri” denotes relative interior [28, Section 6]. From [29] we have
that F̂ + NC must be maximal. Now, the openness ofD and the analysis of [26, The-
orem 4] imply that̂F agrees in value withF on D ⊃ C = domNC = domTP, so it
follows thatF̂ + NC = TP.

Proposition 4. SupposeF is a continuous monotone function on<n that is maximal
as a monotone operator (some sufficient conditions areim(I + F) = <n or that F has
maximal open domain). Supposeri im F contains some pointy ∈ <n with the property
that

yi = 0 ∀ i : l i = −∞, ui = +∞
yi < 0 ∀ i : l i = −∞, ui < +∞
yi > 0 ∀ i : l i > −∞, ui = +∞ .

(18)

ThenTD = −F−1(−I )+ NC
−1 is maximal, whereC = {x ∈ <n | l ≤ x ≤ u}.

Proof. Given thatF constitutes a maximal monotone operator, it is straightforward to
show that−F−1(−I ) is also maximal. Now, dom(−F−1(−I )) = −im F. By appealing
to (17), it is clear that the conditions (18) ony are equivalent to−y ∈ ri dom(NC

−1).
Therefore, we have ri dom(−F−1(−I )) ∩ ri dom(NC

−1) 6= ∅. The maximality ofNC

and [29] then imply the maximality ofTD = −F−1(−I )+ NC
−1.

Note that if l > −∞ andu < +∞, the conditions (18) are void, and Proposition 4
requires only maximality ofF. Finally, we address the maximality ofTPD with the fol-
lowing proposition, which follows immediately from Proposition 2 and the maximality
of F andNC.

Proposition 5. SupposeF is a monotone function on<n that is maximal as a monotone
operator. Then, for any closed convex setC ⊇ <n, the operatorTPD = K [F, NC, I ] is
maximal.

3. Bregman proximal algorithms for complementarity problems

For the remainder of this paper, we letC = {x ∈ <n | l ≤ x ≤ u }. We now have
three formulations of the monotone complementarity problem (1): finding a root of the
primal monotone operatorTP = F + NC, finding a root of the dual monotone operator
TD = −F−1(−I ) + NC

−1, and finding a root of the primal-dual monotone operator
TPD = K [F, NC, I ]. We can attempt to solve (1) by applying any method for finding the
root of a monotone operator to eitherTP, TD, or TPD. In this paper, we employ only the
Bregman-function-based proximal algorithm of [18], and study the algorithms for (1)
that result when it is applied toTP, TD, andTPD.

We now describe the algorithm of [18] for solving the inclusion 0∈ T(x), whereT
is a maximal monotone operator on<n. Earlier treatments of closely related algorithms
may be found in [6,7,9,12,17,23,33]
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The algorithm in [18] requires two auxiliary constructs, a functionh and a setS.
Given two pointsx, y ∈ <n and a functionh differentiable aty, we define

Dh(x, y)
.= h(x)− h(y)− 〈∇h(y), x− y

〉
. (19)

We then say thath is aBregman function with zoneS if the following conditions hold:

B1. S⊆ <n is a convex open set.

B2. h : <n→<∪ {+∞} is finite and continuous onS.
B3. h is strictly convex onS.
B4. h is continuously differentiable onS.
B5. Given anyx ∈ Sand scalarα, theright partial level set

L(x, α)
.= {y | Dh(x, y) ≤ α }

is bounded.
B6. If {yk} ⊂ Sis a convergent sequence with limity∞, thenDh(y∞, yk)→ 0.

B7. If {vk} ⊂ S, {wk} ⊂ Sare sequences such thatwk→ w∞ and{vk} is
bounded, and furthermoreDh(v

k, wk)→ 0, then one hasvk→ w∞.

Examples of pairs(h, S) meeting these conditions may be found in [9,13,17,33], and
many references therein. In particular, [13] gives some general sufficient conditions for
(h, S) to satisfy B1-B7. We now state the main result of [18].

Proposition 6. Let T be a maximal monotone operator on<n, and leth be a Bregman
function with zoneS, whereS∩ ri domT 6= ∅. Let anyoneof the following assumptions
A1-A3 hold:

A1. S⊇ domT.
A2. T = ∂ f , the subdifferential mapping of some closed proper convex

function f : <n→ <∪ {+∞}.
A3. T has the following two properties (see,e.g.[6–8]):

(i) If {(xk, yk)} ⊂ T, {xk} ⊂ S, and{xk} is convergent, then{yk}
has a limit point;

(ii) T is paramonotone[4,8], that is, (x, y), (x′, y′) ∈ T and〈
x− x′, y− y′

〉 = 0

collectively imply that(x, y′) ∈ T.

Suppose the sequences{zk}∞k=0 ⊂ Sand{ek}∞k=0 ⊂ <n conform to the recursion

T
(
zk+1)+ 1

ck

(
∇h
(
zk+1)−∇h

(
zk)) 3 ek, (20)

where{ck}∞k=0 is a sequence of positive scalars bounded away from zero. Further suppose
that

∞∑
k=0

ck
∥∥ek
∥∥ <∞ (21)
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and

∞∑
k=1

ck
〈
ek, zk〉 exists and is finite. (22)

Then ifT̂
.= T + NS has any roots,{zk} converges to somez∞ with T̂(z∞) 3 0.

Proof. By minor reformulation of [18, Theorem 1].

Similar forms for the error sequence can be found for example in [25]. Note that the
condition (22) is implied by the more easily-verified condition

∞∑
k=0

ck
∥∥ek
∥∥ ∥∥zk

∥∥ <∞. (23)

Furthermore, whenS or domT is bounded,{zk} is necessarily bounded, and (21)
implies (23) and (22).

One question not addressed in Proposition 6 is whether sequences{zk}∞k=0 ⊂ Sand
{ek}∞k=1 ⊂ <n conforming to (20) are guaranteed to exist. The following proposition
gives sufficient conditions for the purposes of this paper.

Proposition 7. LetT be a maximal monotone operator on<n, let{ck}∞k=0 be a sequence
of positive scalars, and leth be a Bregman function with zoneS ⊇ domT. Then if
im∇h = <n, sequences{zk}∞k=0 ⊂ S and {ek}∞k=0 ⊂ <n jointly conforming to (20)
exist.

Proof. Setek = 0 for all k, and consult case (i) of [17, Theorem 4].

We now consider applying Proposition 6 with eitherT = TP, T = TD, orT = TPD. Each
choice will yield a different algorithm for solving the complementarity problem (1).

3.1. Primal application to complementarity

The most straightforward application of Proposition 6 to the complementarity prob-
lem (1) is to setT = TP = F + NC. SubstitutingT = F + NC andzk = xk into the
fundamental recursion (20) and rearranging, we obtain the recursion:[

F
(
xk+1)+ 1

ck

(
∇h
(
xk+1)−∇h

(
xk))]+ NC

(
xk+1) 3 ek. (24)

In other words,xk+1 is an‖ek‖-accurate approximate solution of the complementarity
problem

l ≤ x ≤ u mid
(
l, x− F̃k(x),u

)
= x,

whereF̃k(x) = F(x)+ ck
−1(∇h(x)−∇h(xk)). For general choices ofh, there appears

to be little point to such a procedure: to solve a single nonlinear complementarity
problem, we must now (approximately) solve an infinite sequence of similar nonlinear
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complementarity problems. However, the situation is more promising in the special case
thatl < u, the zoneSof h is intC, and‖∇h(x)‖ → ∞ asx approaches anyx ∈ bdC. In
this case, we must havexk+1 ∈ int C for all k ≥ 0. SinceNC(x) = {0} for all x ∈ int C,
we can drop theNC(xk+1) term from the recursion (24), reducing it to the equation

F
(
xk+1)+ 1

ck

(
∇h
(
xk+1)−∇h

(
xk)) = ek. (25)

So, each iteration must solveF(x) + c−1
k ∇h(x) = c−1

k ∇h(xk) for x within accu-
racy‖ek‖. If F is differentiable, thenF + ck

−1∇h is differentiable on intC. Thus, we
can solve a nonlinear complementarity problem by approximately solving a sequence
of differentiable nonlinear systems of equations. Since∇h approaches infinity on the
boundary ofC, it acts as a barrier function that simplifies the subproblems by removing
boundary effects. This phenomenon has already been noted in numerous prior works,
including [5,8].

However, settingS= int C also has drawbacks. First, in attempting to apply Propo-
sition 6,S= int C rules out invoking Assumption A1, forcing one to appeal to Assump-
tions A2 or A3, each of which places restrictions on the maximal monotone operatorT.
In applying Proposition 6 to the primal formulation, these restrictions onT imply re-
strictions on the monotone functionF. The following result summarizes what we can
say about the convergence of method (25) for complementarity problems:

Theorem 1. Suppose the complementarity problem (1) has some solution, and also that
l < u, F is monotone and continuous on some open setD ⊃ C = {x ∈ <n | l ≤ x ≤ u},
and F satisfies at least one of the following restrictions:

P1. F(x) = ∇ f(x) for all x ∈ C, where f is convex and continuously
differentiable onC.

P2. For all x, x′ ∈ C,
〈
x− x′, F(x)− F(x′)

〉 = 0 impliesF(x) = F(x′).

Let h be a Bregman function with zoneS = int C, with limw→w ‖∇h(w)‖ = ∞ for
any w ∈ bdS = bdC. Suppose the sequences{xk}∞k=0 ⊂ S, {ek}∞k=0 ⊂ <n, and
{ck}∞k=0 ⊂ [c,∞) ⊂ (0,∞) satisfy the recursion (25) and that

∑∞
k=0 ck‖ek‖ < ∞,

while
∑∞

k=0 ck〈ek, xk〉 exists and is finite. Then{xk} converges to a solution of the
NCP (1).

Proof. (25) is equivalent to the fundamental recursion (20) of Proposition 6 with
T = TP = F + NC and zk = xk. The conditions on{ek} are identical to the error
conditions (21) and (22) of Proposition 6. The condition thatF be continuous onD en-
sures thatTP will be maximal, via Proposition 3. Therefore, we may invoke Proposition 6
if we can show at least one of its alternative Assumptions A1-A3 hold.

Now consider Assumption P1. In this case, we haveTP = ∇ f + NC = ∇ f +
∂δ( · |C) = ∂( f + δ( · |C)), where the last equality follows from [28, Theorem 23.8]
and domf ⊇ C = domδ( · |C) 6= ∅. Therefore, Assumption A2 of Proposition 6 is
satisfied.

Alternatively, assume that P2 holds. SinceF is continuous onD ⊃ C = S and
NC(x) = {0} for all x ∈ S = int C, Assumption A3(i) holds forT = F + NC.
P2 implies that A3(ii) holds forT = F. It is also easily confirmed that A3(ii) holds for
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T = NC. Finally, it is straightforward to show that paramonotonicity is preserved under
the addition of operators, so A3(ii) also holds forT = F + NC.

We may therefore invoke Proposition 6 and conclude that{xk} must converge to
a root ofTP+ NS= TP+ NC = TP, that is, a solution of (1).

This result represents a minor advance in the theory of primal complementarity
methods, in that most prior results have required exact computation of each iteration,
that is,ek ≡ 0, the exception being [7]. The approximation condition (25) is much more
practical to check than the corresponding condition in [7].

We cannot apply Proposition 7 to show existence of{xk} in this setting, because
S 6⊇ domT. However, suitable existence results may be found in [5–8].

Note that in the casel > −∞ andu < +∞, the condition on
∑∞

k=0 ck〈ek, xk〉 is an
immediate consequence of

∑∞
k=0 ck‖ek‖ <∞, and becomes redundant. It only comes

into play when there is a possibility of{xk} being unbounded.
While the restriction thatF be continuous onD ⊃ C seems reasonable, the alter-

native Hypotheses P1 and P2 impose extra restrictions onF. Furthermore, while it is
not necessary to driveck to infinity to obtain convergence, as in a true barrier method,
the procedure does inherit some numerical difficulties typical of barrier algorithms. The
nonlinear system to be approximately solved in (25) becomes progressively more ill-
conditioned asxapproaches bdC, where the solution is likely to lie. This ill-conditioning
constrains the numerical methods that may be used. Furthermore, the function on the
left-hand side of (25) is not defined forx outside intC; to apply a standard numerical
procedure such as Newton’s method, one needs to install appropriate safeguards to avoid
stepping to or evaluating points outside intC.

3.2. Dual application to complementarity

In situations where the above drawbacks of the primal method are significant, we
suggest dual or primal-dual algorithms, as described below. In these approaches, the
Bregman function acts through the duality framework to provide a smooth, augmented-
Lagrangian-like penalty function, rather than the barrier function one obtains from
a primal approach. We first consider a purely dual approach, applying Proposition 6 to
T = TD.

The fundamental Bregman proximal recursion (20) forT = TD and iterateszk = yk

takes the form

−F−1(yk+1)+ NC
−1(yk+1)+ 1

ck

(
∇h
(
yk+1)−∇h

(
yk)) 3 ek. (26)

Since the domain ofTD will in general be unknown, we will choose the Bregman-
function/zone pair(h, S) so thatS = <n. This choice ensures that̂T = T + NS =
TD + N<n = TD, and thus that the recursion will locate roots ofTD.

In general, it will not be possible to express the inverse operatorF−1 in a manner
convenient for computation, so we cannot work directly with the formula (26). Instead,
we “dualize” the recursion using Proposition 1. For simplicity, temporarily assume that
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ek ≡ 0, so that (26) becomes

−F−1(yk+1)+ NC
−1(yk+1)+ 1

ck

(
∇h
(
yk+1)− ∇h

(
yk)) 3 0 (27)

We now take (27) to be the primal problem in the framework of Section 2.1, setting
X = Y = <n andM = I . We takeA = Ak andB = Bk, whereAk andBk are defined
by

Ak(y) = −F−1(−y) (28)

Bk(y) = NC
−1(y)+ 1

ck

(
∇h(y)−∇h

(
yk)) . (29)

Note that if F constitutes a maximal monotone operator,A = Ak will be maximal,
and NC

−1 is maximal by the maximality ofNC. ∇h is maximal monotone since it is
the subgradient map of the functionh, continuous on<n. The operations of subtract-
ing the constant∇h(yk) and scaling by 1/ck preserve this maximality. Finally, since
dom∇h = <n, we also have maximality ofB = Bk from [29].

Invoking Proposition 1, the problem dual to (27), or equivalentlyAk(y)+Bk(y) 3 0,
is of the form−Ak

−1(−x)+ Bk
−1(x) 3 0, where we are interchanging the notational

roles of “x” and “y”. It is immediate that−Ak
−1(−x) = −[−F−1(−I )]−1(−x) =

−(−F(−(−x))) = F(x), so−Ak
−1(−I ) = F.

We now considerBk
−1. We know thatNC

−1 has the separable structureNC
−1 =

N1
−1⊗. . .⊗Nn

−1, whereNi
−1 is given by (17). Further assume thath has the separable

structureh(y) =∑n
i=1 hi (yi ), whence (as an operator)∇h = ∇h1⊗. . .⊗∇hn. Assume

temporarily thatl > −∞ andu < +∞. ThenBk = Bk1 ⊗ . . .⊗ Bkn, where eachBki
is an operator on< given by

Bki (γ) =



{
l i + 1

ck

(
∇hi (γ)−∇hi

(
yk

i

))}
γ < 0[

l i + 1

ck

(
∇hi (0)−∇hi

(
yk

i

))
,ui + 1

ck

(
∇hi (0)−∇hi

(
yk

i

))]
γ = 0{

ui + 1

ck

(
∇hi (γ)− ∇hi

(
yk

i

))}
γ > 0.

SinceBk
−1 = Bk1

−1⊗ . . .⊗Bkn
−1, it suffices to invertBki , k = 1, . . . ,n. For eachBki ,

we haveBki = B−ki ∪ B0
ki ∪ B+ki , where

B−ki =
{(
γ, l i + 1

ck

(
∇hi (γ)−∇hi

(
yk

i

))) ∣∣∣∣ γ < 0
}

B0
ki = {0} ×

[
l i + 1

ck

(
∇hi (0)−∇hi

(
yk

i

))
,ui + 1

ck

(
∇hi (0)−∇hi

(
yk

i

))]
B+ki =

{(
γ,ui + 1

ck

(
∇hi (γ)−∇hi

(
yk

i

))) ∣∣∣∣ γ > 0
}
.
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It follows directly from the definition of the operator-theoretic inverse thatBki
−1 =

(B−ki )
−1 ∪ (B0

ki )
−1 ∪ (B+ki )

−1. Now,

(
B−ki

)−1 =
{(

l i + 1

ck

(
∇hi (γ)−∇hi

(
yk

i

))
, γ

) ∣∣∣∣ γ < 0
}

=
{(
ξ, (∇hi )

−1
(
∇hi

(
yk

i

)+ ck (ξ − l i )
))∣∣∣ (∇hi )

−1
(
∇hi

(
yk

i

)+ ck (ξ − l i )
)
< 0

}
=
{(
ξ, (∇hi )

−1
(
∇hi

(
yk

i

)+ ck (ξ − l i )
)) ∣∣∣ ξ < l i + 1

ck

(
∇hi (0)− ∇hi

(
yk

i

))}
,

where the first equality is obtained by solving forγ in terms ofξ in

ξ = l i + 1

ck

(
∇hi (γ)−∇hi

(
yk

i

))
,

and the second by solving(∇hi )
−1(∇hi

(
yk

i

)+ ck (ξ − l i )) < 0 for ξ.
Similarly, we obtain(
B+ki

)−1 ={(
ξ, (∇hi )

−1
(
∇hi

(
yk

i

)+ ck (ξ − ui )
)) ∣∣∣∣ ξ > ui + 1

ck

(
∇hi (0)−∇hi

(
yk

i

))}
.

(B0
ki)
−1 is simply the function that yields 0 on the interval

8ki
.=
[
l i + 1

ck

(
∇hi (0)−∇hi

(
yk

i

))
,ui + 1

ck

(
∇hi (0)− ∇hi

(
yk

i

))]
. (30)

Combining these three results and using the monotonicity of∇h and(∇h)−1, we obtain

Bki
−1(ξ) =


(∇hi )

−1(∇hi
(
yk

i

)+ ck (ξ − l i )
)
ξ < l i + 1

ck

(
∇hi (0)−∇hi

(
yk

i

))
(∇hi )

−1(∇hi
(
yk

i

)+ ck (ξ − ui )
)
ξ > ui + 1

ck

(
∇hi (0)−∇hi

(
yk

i

))
0 otherwise

= (∇hi )
−1
(

mid
(
∇hi

(
yk

i

)+ ck (ξ − l i ),∇hi (0),∇hi
(
yk

i

)+ ck (ξ − ui )
))
.

Note that this operator is single-valued, so we have dropped extraneous braces.
We have not considered the possibility thatl i = −∞ and/orui = +∞. In these

cases,B−ki and/orB+ki , respectively, are absent from the calculations. In all cases, however,
it may be seen that the above relationship continues to hold.

Combining our results fori = 1, . . . ,n, we obtain thatBk
−1 = Pk, wherePk :

<n→ <n is given by

Pk(x) = (∇h)−1
(

mid
(
∇h(yk)+ ck(x− l),∇h(0),∇h(yk)+ ck(x− u)

))
. (31)
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The dual problem−Ak
−1(−x)+ Bk

−1(x) 3 0 of the exact recursion formula (27)
then simplifies to the equation

F(x)+ Pk(x) = 0. (32)

Let xk+1 be a solution to this equation. Invoking part (ii) of Proposition 1, the solution
yk+1 of the original recursion (27) is simply given by

yk+1 = Pk
(
xk+1). (33)

Now, solving (32) forx is a considerably more familiar and tractable computation
than its dual, the inclusion (27). We now address a number of issues relating to this
computation: first, we would likeF + Pk to be differentiable, so that we can employ
standard smooth numerical methods; second, we would like to solve (32) approximately,
rather than exactly. We address differentiability ofF + Pk first.

For a start, it seems reasonable to require thatF be differentiable. Therefore, the
question reduces to that of the differentiability ofPk. Let us further suppose that(∇h)−1

is everywhere differentiable. In this case, non-differentiabilities inPk can only occur at
“breakpoints” satisfying any of the equations

∇hi
(
yk

i

) + ck (xi − l i ) = ∇hi (0) i = 1, . . . ,n
∇hi

(
yk

i

) + ck (xi − ui ) = ∇hi (0) i = 1, . . . ,n

that is, atx ∈ <n that have componentsxi at the endpoints of any of the intervals8ki ,
i = 1, . . . ,n. Now, Pk(x) is constant asxi moves within any of these intervals, all other
coordinates being constant, that is,[∇Pk(x)]i = 0 for xi ∈ int8ki . Thus, to havePk
be continuously differentiable, it must have zero derivative asxi approaches8ki from
either above or below. Appealing to (31), this requirement is equivalent to the condition
that (∇hi )

−1 must have zero derivative at∇hi (0) for all i . Compactly, but somewhat
opaquely, we require

∇
(
(∇h)−1

)
(∇h(0)) = 0. (34)

To clarify this condition, we invoke the standard chain-rule based formula for the
gradient of an inverse function, which in this case gives

∇
(
(∇hi )

−1
)
(xi ) = 1

∇2h((∇hi )
−1(xi ))

for all i . Therefore, we can restate the requirements that(∇h)−1 be differentiable and
that (34) hold as

∇2hi (yi ) > 0 ∀ yi 6= 0 i = 1, . . . ,n

lim
yi→0
∇2hi (yi ) = +∞ i = 1, . . . ,n .

(35)

One possible choice of a Bregman function meeting these conditions [17, Example 2] is

h(y) = 1

q

n∑
i=1

|yi |q , 1< q< 2. (36)
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In this case,∇hi (yi ) = (sgnyi )|yi |q−1, and∇2hi (yi ) = (q− 1)|yi |q−2 has the desired
properties. We then obtain

Pk(x) = mid
((

yk)〈q−1〉 + ck(x− l),0,
(
yk)〈q−1〉 + ck(x− u)

)〈 1
q−1

〉
,

wherew〈p〉 .= ((sgnw1)|w1|p . . . (sgnwn)|wn|p). The caseq = 3/2 leads to an
expression resembling the convex programming cubic augmented Lagrangian discussed
in [24].

+
=

Πk  :NC
–1 :NC

 :

Bk
 :Pk

 :

Invert

Invert

Fig. 2. Taking the inverse ofNC, adding a perturbation with an infinite slope at 0, and then inverting once
again produces the smoothed exterior functionPk

Figure 2 illustrates, in the one-dimensional casen = 1, how dual application of
the Bregman proximal method smoothes the set-valued, nonsmoothNC term in the
original problemF(x) + NC(x) 3 0 into the differentiable termPk of the subproblem
computation. First, we takeNC, and “dualize” it to obtain its inverseNC

−1. To NC
−1,

we add the proximal perturbation function5k : y 7→ (1/ck)(∇h(y)− ∇h(yk)), which
has infinite slope at 0, and finite positive slope elsewhere. This operation yields the
operatorBk; because of the infinite slope of the perturbation5k at zero, the “corners”
in the graph ofNC

−1 are now smoothly “rounded off.” We now dualize once more by
taking the inverse ofBk, obtaining the functionPk. Because of the rounded corners
of Bk, Pk is a differentiable function. Note that the smoothing is applied to the exterior
of C, whereas in the primal approach it is applied to the interior.

Summarizing, if we choose a separableh with zone<n and having the proper-
ties (35), then the system of nonlinear equations (32) to be solved at each iteration will
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be differentiable. Note that the domain of definition of this system will be the same
asF’s, sincePk is finite and defined everywhere. Therefore, unlike the primal method,
there is no need for stepsize guards, except for those required forF.

To make our dual procedure practical, we need only allow for approximate solution
of (32). In the following two theorems, we summarize the above development, incor-
porating analysis of approximate forms of the iteration; however, the approximation
criteria take a somewhat strange form due to the subtleties of working in the dual. We
let dist(x,Y)

.= inf y∈Y ‖x− y‖.
Theorem 2. Let F, l , andu describe a monotone NCP of the form (1), conforming to the
hypothesis of Proposition 4, and possessing some solution. Fori = 1, . . . ,n, let hi be
a Bregman function with zone<, and let{ck}∞k=0 ⊂ (0,∞) be bounded away from zero.

Suppose that the sequences{yk}∞k=0,{xk
[1]}
∞
k=1

, {xk
[2]}
∞
k=1
⊂ <n and {δk}∞k=0 ⊂ [0,∞)

meet the conditions

∞∑
k=0

ckδk max
(
1,
∥∥yk

∥∥) <∞ (37)∥∥xk+1
[1] − xk+1

[2]

∥∥ ≤ δk ∀ k ≥ 0 (38)

− F
(
xk+1

[1]

) = yk+1 = Pk
(
xk+1

[2]

) ∀ k ≥ 0, (39)

wherePk is defined as in (31). Thenyk → y∗ = −F(x∗), wherex∗ is some solution
to (1). All limit pointsx∞ of {xk

[1]} and {xk
[2]} are also solutions of (1), withF(x∞) =

−y∗ = F(x∗). If im∇hi = < for all i , then such sequences are guaranteed to exist.

Proof. Invoking Proposition 4,TD = −F(−I ) + NC
−1 is maximal monotone. Also

h(x)
.=∑n

i=0 hi (xi ) is a Bregman function with zone<n. We claim that{yk} confirms
to the recursion (26), where{ek}∞k=0 ⊂ <n is such that‖ek‖ ≤ δk for all k ≥ 0. The
recursion can be rewrittenAk(yk+1) + Bk(yk+1) 3 ek, whereAk and Bk are defined
by (28)-(29). From (39), we have(xk+1

[1] ,−yk+1) ∈ F and(xk+1
[2] , yk+1) ∈ Pk, which

yield (yk+1,−xk+1
[1] ) ∈ Ak and(yk+1, xk+1

[2] ) ∈ Bk, courtesy of (28) andPk = Bk
−1, as

established above. Settingek .= xk+1
[1] − xk+1

[2] for all k ≥ 1, whence‖ek‖ ≤ δk by (38),

we haveAk(yk+1)+ Bk(yk+1) 3 ek, and the claim is established.
Appealing to (37), (21) must hold with our choice of{ek}, and also (23). All the

hypotheses of Proposition 6 are thus satisfied, and so{yk} converges to a root of
TD + N<n = TD. The final statement follows from Proposition 7, even if we were to
requireδk ≡ 0, so it only remains to show that all limit points of{xk

[1]} and{xk
[2]} are

primal solutions.
From (37) and{ck} being bounded away from zero,δk→ 0 andek→ 0. Therefore,

{xk
[1]} and{xk

[2]} have the same limit points. Letx∞ be such that

xk
[1], x

k
[2] →k∈K

x∞

for some infinite setK ⊆ {0,1,2, . . . }. SinceF is continuous andyk = −F(xk
[1]) for

all k ≥ 1, taking limits overk ∈ K yields y∗ = −F(x∞). From yk+1 = Pk(x
k+1
[2] ), we



82 Jonathan Eckstein, Michael C. Ferris

also havexk+1
[2] ∈ Bk(yk+1), and hence(

xk
[2] +

1

ck

(
∇h
(
yk)− ∇h

(
yk+1)) , yk+1

)
∈ NC

for all k ≥ 0. NC, being maximal monotone, is a closed set in<n×<n, while∇h must
be continuous aty∗, and{ck} is bounded away from zero. So, taking limits overk ∈ K
yields(x∞, y∗) ∈ NC. Proposition 1 then gives thatx∞ must solve the primal problem
F(x)+ NC(x) 3 0.

Theorem 3. In Theorem 2, sufficient conditions assuring (38)-(39) are

F
(
xk+1)+ Pk

(
xk+1) = 0 (40)

yk+1 = Pk
(
xk+1) (41)

or

dist
(

xk+1, F−1(− Pk
(
xk+1))) ≤ δk (42)

yk+1 = Pk
(
xk+1) (43)

or

dist
(

xk+1, Bk
(− F

(
xk+1))) ≤ δk (44)

yk+1 = −F
(
xk+1), (45)

whereBk andPk are defined as in (29) and (31), respectively. If one of these alternatives
holds at eachk ≥ 0, all limit points of{xk} solve the complementarity problem (1). If
F is continuously differentiable,∇2hi (yi ) exists and is positive for allyi 6= 0, while
limyi→0∇2hi (yi ) = +∞, then the functionF + Pk on the left-hand side of (40) is
continuously differentiable.

Proof. First consider the exact iteration (40)-(41). Then we can setxk+1
[1] = xk+1

[2] = xk+1,
and (38)-(39) will hold for anyδk ≥ 0. The continuous differentiability ofF+Pk follows
from the discussion above.

Now consider (42)-(43). In this case, we letxk+1
[2] = xk+1. SinceF and henceF−1

constitute maximal monotone operators, the setF−1(y) must be closed and convex
for every y ∈ <n (seee.g. [3]). Thus, (42) guarantees the existence of somexk+1

[1] ∈
F−1(−Pk(xk+1)) such that‖xk+1

[1] − xk+1
[2] ‖ ≤ δk. Thus, (38)-(39) can be satisfied.

The analysis of (44)-(45) is similar, except that we havexk+1
[1] = xk+1, and (44)

guarantees the existence ofxk+1
[2] .

Since eitherxk = xk
[1] or xk = xk

[2] for everyk, the assertion about limit points of

{xk} follows from the limit point properties of{xk
[1]} and{xk

[2]}
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(40)-(41) constitute a generalized method of multipliers iteration for the comple-
mentarity problem (1), and by appropriate choice ofh, the subproblem functionF+ Pk

of (40) can be made differentiable, ifF is differentiable. Of course, such an exact pro-
cedure may not be practical. (44)-(45) is implementable in the general case and is likely
to be the most useful inexact version of (40)-(41). However, in special cases whereF−1

may be easily computed, (42)-(43) might also find application. To attempt to meet either
set of approximate conditions, one would apply a standard iterative numerical method
to (40) until (42) or (44) holds.

The dual method set forth in Theorems 2 and 3 has several advantages over the
primal method of Section 3.1. Most crucially, the supplementary requirements P1 or
P2 imposed onF in Theorem 1 may be dropped in place of the far weaker hypotheses
of Proposition 4. Furthermore, the stepsize limit and ill-conditioning issues associated
with the primal subproblemF(xk+1)+ ck

−1(∇h(xk+1)− ∇h(xk)) ≈ 0 do not arise in
the dual subproblemF(xk+1)+ Pk(xk+1) ≈ 0.

On the other hand, the dual method also has some disadvantages. First, the Jacobian
of the primal subproblem takes the form∇F+ck

−1∇2h, and can be forced to be positive
definite by requiring that∇2h be everywhere positive definite. The Jacobian∇F+∇Pk
of the dual subproblem, however, is only guaranteed to be positivesemidefinite, unless
one requires∇F to be positive definite. Second, the primal method has the simple,
residual-based approximation rule (32), whereas the dual method requires formulas
such as (42) or (44). Depending on the problem, these conditions might be difficult to
verify. Finally, the dual method’s theory does not guarantee convergence of the primal
iterates{xk}, {xk

[1]}, or {xk
[2]}, but only makes assertions about limit points.

3.3. Primal-dual application to complementarity

The primal-dual method obtained by applying Proposition 6 toT = TPD= K [F, NC, I ]
combines and improves upon the best theoretical features of the primal and dual methods.
We now consider the basic recursion (20), as applied toT = TPD. First, we need
a Bregman function̂h on<n ×<n, which we construct via

ĥ(x, y) = h̃(x)+
n∑

i=1

hi (yi ), (46)

where thehi are as in the dual method, andh̃ is a Bregman function with zoneS̃⊇ dom F.
We partition the error vectorek of (20), which in this case lies in<n×<n, into subvectors
ek

[1],e
k
[2] ∈ <n. Then the fundamental recursion (20), with iterateszk = (xk, yk),

Bregman function̂h, and operatorTPD, takes the form

F
(
xk+1)+ yk+1 + 1

ck

(
∇h̃
(
xk+1)−∇h̃

(
xk)) = ek

[1] (47)

−xk+1 + NC
−1(yk+1)+ 1

ck

(
∇h
(
yk+1)−∇h

(
yk)) 3 ek

[2], (48)

whereh(x) = ∑n
i=1 hi (xi ), as before. If we setek

[2] ≡ 0, then (48) is equivalent to

Bk(yk+1) 3 xk+1, whereBk is defined as in (29) for the dual method. Using the prior
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definition of Pk, this condition is in turn equivalent toyk+1 = Pk(xk+1), with Pk as
in (31). Substituting this simple formula into (47), we obtain

F
(
xk+1)+ Pk

(
xk+1)+ 1

ck

(
∇h̃
(
xk+1)−∇h̃

(
xk)) = ek

[1] .

At this point, application of Proposition 6 is straightforward.

Theorem 4. Let F be a continuous monotone function that is maximal when considered
as a monotone operator, with maximal open domainD⊆ <n. Suppose(F, l,u)describes
a complementarity problem of the form (1), and that this problem has some solution.
Let h̃ be a Bregman function with (open) zoneS̃⊇ D, and let thehi , i = 1, . . . ,n be
Bregman functions with zone<. Let{ck}∞k=0 ⊂ (0,∞) be a sequence of positive scalars
bounded away from zero, and suppose that the sequences{xk}∞k=0 ⊂ S̃, {yk}∞k=0 ⊂ <n,
and{dk}∞k=0 ⊂ <n conform to the recursion formulae

F
(
xk+1)+ 1

ck

(
∇h̃
(
xk+1)−∇h̃

(
xk))+ Pk

(
xk+1) = dk (49)

yk+1 = Pk
(
xk+1) (50)

for all k ≥ 0, wherePk is defined by (31). Suppose also that
∑∞

k=0 ck‖dk‖ <∞, while∑∞
k=0 ck〈dk, xk〉 exists and is finite. Then{xk} converges to a solutionx∗ of the the

complementarity problem (1), andyk→−F(x∗). If im hi = < for all i andim h̃ = <n,
such sequences are guaranteed to exist. IfF is continuously differentiable and∇2hi (yi )

exists and is positive for allyi 6= 0, while limyi→0∇2hi (yi ) = +∞, then the function
F + ck

−1∇h̃ + Pk in the equation system (49) is continuously differentiable. If, in
addition,∇2h̃ is everywhere positive definite, then the Jacobian∇F+ ck

−1∇2h̃+∇Pk

of this function is everywhere positive definite.

Proof. Proposition 5 asserts thatTPD is maximal monotone. Letek = (dk,0) ∈ <n×<n

for all k ≥ 1. Then, similarly to the above discussion, (49)-(50)are equivalent to the Breg-
man proximal recursion (20) with iterateszk = (xk, yk) and the Bregman function̂h,
which has zonẽS× <n. Now,

∑∞
k=0 ck‖dk‖ <∞ is equivalent to

∑∞
k=0 ck‖ek‖ <∞,

and〈dk, xk〉 = 〈ek, (xk, yk)〉 = 〈ek, zk〉, so
∑∞

k=1 ck〈ek, zk〉 exists and is finite.
We can then apply Proposition 6 to give that{zk} = {(xk, yk)} converges to a root

z∗ = (x∗, y∗) of
TPD+ N

S̃×<n = TPD.

So,x∗ solves (1) andy∗ = −F(x∗) by the analysis of Section 2.2. The claim of existence
follows directly from Proposition 7. The remaining statements follow from arguments
like those of Section 3.2.

Note that the primal-dual method given as (49)-(50) requires neither the primal
method’s restrictions P1 or P2 of Theorem 1, nor the dual method’s regularity conditions
of Proposition 4. The stepsize limit and ill-conditioning issues of the primal approach
are also absent, because we choose the primal-space Bregman functionh̃ to have
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zone containing the domain ofF, as opposed to having zone intC. At the same time,
the approximation criterion of (49) is based on simple measurement of a residual,
as in the primal method. The Jacobian∇F + ck

−1∇2h̃ + ∇Pk of the primal-dual
subproblem functionF+ck

−1∇h̃+ Pk combines the desirable existence/continuity and
positive definiteness features of the primal and dual methods. Unlike the dual method,
convergence of the primal iterates{xk} is fully guaranteed.

Thus, the iteration (49)-(50) has all the theoretical advantages of the primal and
dual approaches, and the disadvantages of neither. The three methods bear much the
same relationship as the proximal minimization algorithms, methods of multipliers,
and proximal methods of multipliers presented for convex optimization in [30] (for the
special caseh(x) = (1/2)‖x‖2) and later in [17] (for generalh). We therefore refer to
the dual method as a “method of multipliers,” and the primal-dual method as a “proximal
method of multipliers.”

4. Computational results on the MCPLIB test suite

We conclude with some preliminary computational results for the proximal method of
multipliers. We coded a version of the algorithm (49)-(50) in MATLAB, and used it to
solve the problems in the MCPLIB collection [14], exploiting the interface developed
in [19]. We note that most of the problems in the collection do not satisfy the mono-
tonicity condition (5) postulated in our theory. In fact, only the problemscycle and
optcont31 are definitely known to be monotone. However, for the method to be
practical, we believe it must robustly solve a large number of the problems from this
standard test suite.

In our initial implementation, we set‖dk‖ < 10−6 for all k, that is, we solved (49)
essentially exactly at all iterations. With later work, we intend to refine this approach,
starting from a larger tolerance and gradually decreasing it. We choseh as in (36) with
q = 3/2, and set̃h(x) = (1/2)x>Dx, D being a diagonal matrix determined via

Dii = 1.0

max
(
0.1
∥∥∇Fii (x0)

∥∥,10.0
) .

This choice corresponds to standard problem scaling mechanisms that have proven
successful in [10,15]. In the interest of further improving scaling, we also define the
function Pk slightly differently from (31). Instead, we usePk(x) = P(x, yk; ck) where

P(x, y; c) .= (∇h)−1

mid

 ∇h(y)+ cD−1(x− l)
∇h(0)

∇h(y)+ cD−1(x− u)

 , (51)

D being the diagonal matrix defined above. This change corresponds to a simple rescal-
ing of the overall Bregman function̂h of (46).

By way of illustration, consider the special case of minimization over the nonnegative
orthant, where we haveF = ∇ f for some differentiable convex functionf , l = 0, and
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u = +∞. Then the version of (49)-(50) we implemented would correspond to the
following cubic augmented Lagrangian method, with a quadratic proximal term:

xk+1 = arg min
x∈<n

{
f(x)+ 1

2ck

(
x− xk

)>
D
(
x− xk

)+ 1
3

n∑
j=1

max

{[√
yk

j + ckx j
D j j

]3
,0

}}
yk+1

j = max

(√
yk

j +
ckxk+1

j
D j j

,0

)2

.

The initial valuesx0 of the primal variables are specified in the MCPLIB test
suite [14]. For the initial multipliers, we used the formula

y0 =
{

P
(
x0,−F

(
x0
) ; c0

)
,

∥∥P
(
x0,−F

(
x0
) ; c0

) ∥∥ ≥ 10−6

−F
(
x0
)
, otherwise,

whereP is defined by (51).
The major work involved in each step of the algorithm is in solving the system of

nonlinear equations (49), for which we use a simple backtracking variant of Newton’s
method. We start by computing a “pure” Newton step for (49), withdk replaced by zero.
If this step does not yield a reduction in the residual of (49), we repeatedly halve the
step size until a reduction is obtained, or the step is less than 1/1000th of its original
magnitude. In the former case, we then attempt another Newton step, repeating the
process until the residual of (49) falls below 10−6. We then update the multiplier vector
via (50), and check the global residualrk

.= ‖F(xk)+ yk‖. If rk < 10−6, we successfully
terminate. Otherwise, ifk < 100, we loop, incrementk, and execute another “outer”
iteration. Ifk ≥ 100 we quit and declare failure.

When the Newton line search fails, that is, a reduction of the step by a factor of
1/1024 fails to yield any improvement in the residual of (49), we update the proximal
stepsize parameterck. In fact, we separately maintain a primalck (“pck”) and a dualck
(“dck”), corresponding to the usage ofck in the equations (49) and (31)/(51), respectively.
Allowing for additional rescaling of̃h, the convergence theory above stipulates that pck
and dck be held in a fixed ratio to one another throughout the algorithm. In practice, we
allow a limited number of independent adjustments of these two parameters. Assuming
monotonicity of F, our convergence theory applies after the last such independent
adjustment.

We start by setting pc0 = max{10, ‖x0‖} and dc0 = 10. Upon failure of the
line search, pck is reduced by a factor of 10 and dck is set to 1. After successful
solution of (49) to the tolerance of 10−6, both pck and dck are multiplied by 1.05;
this adjustment is consistent with our theory and also with standard techniques for
accelerating convergence of proximal methods. We then calculateyk+1, and if∥∥xk+1 − xk

∥∥ > 100
∥∥yk+1 − yk

∥∥,
dck is doubled, whereas if

100
∥∥xk+1 − xk

∥∥ < ∥∥yk+1 − yk
∥∥,

then dck = ‖yk‖.
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Table 1.Primal-dual smooth multiplier method applied to MCPLIB problems (part 1)

Problem Newton Updates Updates Primal
(Starting Point) Iterations Steps of pck of dck Residual

bertsekas (1) 15 40 0 0 5.4× 10−7

bertsekas (2) 15 47 0 0 6.3× 10−7

bertsekas (3) 6 59 0 0 1.2× 10−8

billups (1) 47 350 3 21 4.9× 10−7

choi (1) 5 8 0 1 9.3× 10−7

colvdual (1) 9 29 1 1 7.2× 10−8

colvdual (2) 7 36 0 0 2.4× 10−7

colvnlp (1) 9 28 1 1 7.4× 10−8

colvnlp (2) 7 25 0 0 2.3× 10−7

cycle (1) 4 11 0 0 8.3× 10−7

ehl_kost (1) 4 15 0 0 5.5× 10−7

ehl_kost (2) 4 15 0 0 5.5× 10−7

ehl_kost (3) 4 15 0 0 5.5× 10−7

explcp (1) 6 21 0 0 5.6× 10−7

freebert (1) 15 39 0 0 4.0× 10−7

freebert (2) 9 24 0 0 8.4× 10−7

freebert (3) 15 39 0 0 3.7× 10−7

freebert (4) 15 40 0 0 5.4× 10−7

freebert (5) 9 24 0 0 8.4× 10−7

freebert (6) 15 40 0 0 5.0× 10−7

gafni (1) 9 23 0 0 2.7× 10−7

gafni (2) 9 26 0 0 3.0× 10−7

gafni (3) 9 28 0 0 3.3× 10−7

hanskoop (1) 5 30 0 0 1.4× 10−7

hanskoop (2) 11 108 1 1 8.0× 10−7

hanskoop (3) 5 17 0 0 1.1× 10−7

hanskoop (4) 5 26 0 0 1.4× 10−7

hanskoop (5) 11 78 1 1 7.0× 10−7

hydroc06 (1) 5 9 0 0 5.8× 10−7

hydroc20 (1) failed

josephy (1) 13 105 2 2 6.3× 10−7

josephy (2) 8 90 1 1 5.6× 10−8

josephy (3) 7 138 1 1 8.7× 10−7

josephy (4) 5 14 0 0 8.9× 10−9

josephy (5) 4 10 0 0 4.4× 10−7

josephy (6) 8 166 1 1 1.9× 10−7

kojshin (1) 56 248 3 3 5.3× 10−7

kojshin (2) 9 151 1 1 8.4× 10−8

kojshin (3) 43 357 4 4 8.6× 10−7

kojshin (4) 19 214 2 2 8.4× 10−7

kojshin (5) 20 227 2 2 5.5× 10−7

kojshin (6) 52 391 3 3 7.6× 10−7

mathinum (1) 5 9 0 0 4.1× 10−8

mathinum (2) 5 8 0 0 1.3× 10−8

mathinum (3) 5 13 0 0 2.4× 10−8

mathinum (4) 5 9 0 0 4.5× 10−8



88 Jonathan Eckstein, Michael C. Ferris

Table 2.Primal-dual smooth multiplier method applied to MCPLIB problems (part 2)

Problem Newton Updates Updates Primal
(Starting Point) Iterations Steps of pck of dck Residual

mathisum (1) 4 9 0 0 2.5× 10−7

mathisum (2) 5 11 0 0 1.9× 10−8

mathisum (3) 5 19 0 0 3.9× 10−8

mathisum (4) 4 8 0 0 9.8× 10−7

methan08 (1) 4 7 0 1 2.9× 10−7

nash (1) 5 10 0 0 1.2× 10−8

nash (2) 4 9 0 0 5.2× 10−8

opt_cont31 (1) 6 85 0 0 4.7× 10−7

pies (1) 7 29 1 1 6.5× 10−7

pgvon105 (1) failed
pgvon106 (1) failed

powell (1) 4 12 0 0 4.2× 10−7

powell (2) 6 21 0 0 1.0× 10−7

powell (3) 14 176 2 2 2.8× 10−7

powell (4) 6 21 0 0 8.2× 10−8

powell_mcp (1) 5 10 0 0 2.2× 10−7

powell_mcp (2) 5 10 0 0 3.8× 10−7

powell_mcp (3) 5 14 0 1 1.6× 10−7

powell_mcp (4) 5 13 0 0 6.7× 10−7

scarfanum (1) 6 24 0 0 3.0× 10−7

scarfanum (2) 6 28 0 0 3.0× 10−7

scarfanum (3) 7 28 0 0 1.5× 10−7

scarfasum (1) 6 25 0 0 1.4× 10−7

scarfasum (2) 6 21 0 0 1.4× 10−7

scarfasum (3) 10 36 0 0 2.9× 10−7

scarfbnum (1) 43 133 0 0 5.9× 10−7

scarfbnum (2) 89 393 0 21 9.0× 10−7

scarfbsum (1) 18 81 0 0 5.7× 10−7

scarfbsum (2) 18 66 0 0 5.8× 10−7

sppe (1) 6 21 0 0 5.8× 10−8

sppe (2) 5 22 0 0 6.9× 10−9

tobin (1) 6 30 0 0 3.5× 10−8

tobin (2) 6 47 0 0 3.3× 10−8

Tables 1 and 2 summarize our computational results. “Iterations” is the total number
of “outer” iterations, that is, the value ofk necessary to obtainrk < 10−6. “Newton
steps” is the total number of Newton steps taken, accumulated over all outer iterations.
We also report the number of times that pck and dck are updated independently of one
another; these counts do not include the simultaneous multiplications by 1.05. Note that
there were no independent updates required for the two guaranteed monotone problems,
as our convergence theory would suggest. For the remaining problems, independent
updates were infrequent. Since our implementation is preliminary and MATLAB is an
interpreted language, we do not list run times. The “primal residual” column gives the
final value of‖xk −mid

(
l, xk − F(xk),u

) ‖.
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As can be seen from the tables, and by comparison with the results in [2], the
algorithm is fairly robust. For all but 3 of the 79 instance/starting point combinations
attempted, it terminates within 100 iterations with a primal residual of 10−6 or less,
indicating convergence to a solution. Two of the failures were for thepgvon10*
problems; since these problems are known to be poorly defined at the solution, we do
not consider these failures to be a serious liability. The other failure, onhydroc20 ,
seems to be due to convergence difficulties in the multiplier space.Hydroc20 contains
a large number of nonlinear equations, and we speculate that (36) withq = 3/2 may
not be an ideal penalty kernel to use in such cases.
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some of the analysis.
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