
Optimization and Applications 89

Breast Cancer Epidemiology:
Calibrating Simulations via Optimization

Michael C. Ferris

(joint work with Geng Deng, Dennis G. Fryback, Vipat Kuruchittham)

We investigate the use of optimization and data mining techniques for calibrating
the input parameters to a discrete event simulation code. In the context of a
breast-cancer epidemiology model we show how a hierarchical classifier can accu-
rately predict those parameters that ensure the simulation replicates benchmark
data within 95% confidence intervals. We formulate an optimization model that
evaluates solutions based on an integer valued score function. The scores are deter-
mined from a simulation run (and are therefore subject to stochastic variations),
and are expensive to calculate.

The Wisconsin Breast Cancer Epidemiology Simulation uses detailed individual-
woman-level discrete event simulation of four processes (breast cancer natural his-
tory, detection, treatment and nonbreast cancer mortality among U.S. women) to
replicate breast cancer incidence rates according to the Surveillance, Epidemiol-
ogy, and End Results (SEER) Program data from 1975 to 2000. Incidence rates
are calculated for four different stages of tumor growth, namely, in situ, local-
ized, regional, and distant; these correspond to increasing size and/or progression
of the disease. Each run involves the simulation of 3 million women and takes
approximately 8 minutes to execute on a 1 GHz Pentium machine with 1 GB of
RAM.

The four simulated processes overlap in complex ways, and thus it is very dif-
ficult to formulate analytical models of their interactions. However, each can be
modeled by simulation; these models need to take into account the increase in
efficiency of screening processes that has occurred since 1975, the changes in non-
screen detection as a result of increased awareness of the disease, and a variety of
other changes during that time. The simulations are grounded in mathematical
and statistical models that are formulated by using a parameterization. For ex-
ample, the natural history process in the simulation can be modeled by using a
Gompertzian growth model that is parameterized by a mean and variance typically
unknown exactly but for which a range of reasonable values can be estimated. The
overall simulation facilitates interaction between the various components, but it is
extremely difficult to determine values for the parameters that ensure the simula-
tion replicates known data patterns across the time period studied. In all, there
are 37 parameters, most of which interact with each other and are constrained by
linear relationships. Further details can be found in [1, 3].

A score is calculated that measures how well the simulation output replicates an
estimate of the incidence curves in each of the four growth stages. Using SEER and
Wisconsin Cancer Reporting System (WCRS) data, we generate an envelope that
captures the variation in the data that might naturally be expected in a population
of the size we simulated. For the 26 years considered, the four growth stages give
a total of 104 points, each of which is tested to see whether it lies in the envelope.

90 Oberwolfach Report 2/2005

The number of points outside the envelope is summed to give the score (0 is ideal).
While one could argue that distance to the envelope might be a better measure,
such calculations are scale dependent and were not investigated. Unfortunately,
the score function also depends on the “history” of breast cancer incidence and
mortality that is generated in the simulation based on a random seed value ω. We
will adopt the notation fω(v), where v represents the vector of parameters and
ω indexes the replication. While we are interested in the distribution (over ω) of
fω(v), we will focus here on the problem

min
v

max
ω

fω(v).

The purpose of this study is to determine parameter values v that generate
small values for the scoring function. Prior to the work described here, acceptance
sampling had been used to fit the parameters. Essentially, the simulation was run
tens of thousands of times with randomly chosen inputs to determine a set of good
values. With over 450,000 simulations, only 363 were found that had a score no
more than 10. That is, for a single replication ω, 363 vectors v had fω(v) ≤ 10.

Our first goal was to generate many more vectors v with scores no more than
10. To do this, we attempted to use the given scoring function data to generate a
classifier that quickly predicts whether a given vector v is in

L(λ) = {v|fω(v) ≤ λ} , for a fixed replication ω.

We typically use λ = 5 to indicate good fit and λ = 10 for acceptable parameter
choices. Our approach is as follows:

– Split the data into a training (90%) and testing (10%) set.

– Given the training set, generate a (hierarchical) classifier that predicts member-
ship of L(λ). Validate this classifier on the testing set.

– Generate 100,000 potential values for v, uniformly at random.

– For those vectors v that the classifier predicts are in L(λ), evaluate fω(v) via
simulation.

Since the classifier is cheap to evaluate, this process facilitates a more efficient
exploration of the parameter space. Clearly, instead of using a single replication ω,
we could replace fω(v) by maxω∈Ω fω(v) where Ω = {ω1, . . . , ωm} for some m > 1.
In fact this approach was carried out. The difficulty is that we require replication
data (for our experiments we choose m = 10) and we update the definition of L(λ)
appropriately. However, the process we follow is identical to that outlined here.

In our setting, v has dimension 37. Using expert advice, we allowed only 9
dimensions to change; the other 28 values were fixed to the feasible values that
have highest frequency of occurrence over the “positive” samples. For example, if
v37 can take possible values from [φ1, φ2, . . . , φn], then we set the value of v37 to
be argminn

i=1
Pi

Wi
, where Pi and Wi are the number of appearances of φi in the

positive and whole sample set. This is similar to using a naive Bayesian classifier to
determine which value has the highest likelihood to be “positive”. Our experiments
showed this choice of values outperformed even the values that experts deemed
appropriate for these 28 values; a posteriori analysis confirmed their superiority.

Optimization and Applications 91

We generated a hierarchical classifier. The key difficulty in generating a classifier
is the fact that we have a vast majority of “negative” data points (i.e., vectors
v /∈ L(λ)). By successively projecting our training data into two-dimensional slices,
we identified two pairs of planes (meanGamma/varGamma and onsetProp/lag) in
which only “negative” data points in our training set were present outside a small
band of values. The top level of the classifier labels points outside these bands
as “negative”. The remaining points (within the bands, the positive and negative
points are intermingled) are classified by using the following procedure.

Given a particular training set A, a variety of support vector machine classifiers
can be generated by solving an optimization problem for values u and γ, and using
the kernel classifier [7]

K(v′, A′)u − γ ≤ 0

to imply that a new point v is “negative”, where K is a given kernel function. We
used the following kernels: linear, polynomial degree 2, polynomial degree 3, and
Gaussian. We also used the C45 decision tree classifier and k-nearest neighbor
classifier with k = 5. All of these classifiers are publicly available [6, 9].

Furthermore, the one-sided sampling approach [4] was used to generate a num-
ber of different training sets; the sampling approach iteratively removes “negative”
points in a rigorously defined manner, and we stop this process when there are
approximately 500 “negative” points remaining (there are around 300 “positive”
points in each training set). The resulting classifier is evaluated on the testing set
by using the measures

TP =
correctly classified positives

total # of positives
and TN =

correctly classified negatives

total # of negatives
.

(Note that cross-validation accuracy is inappropriate to use in this setting because
it can be made large by classifying all points as “negative” on account of the
imbalanced nature of the data.) Classifiers are discarded if the value of TP is less
than 0.9 (typically TN is around 0.4). This value was chosen to guarantee the
probability of removing positive points in error is small. We also generate training
sets by resampling with replacement.

For a uniform sample of 100,000 potential values of v, the naive banding clas-
sifier removes all but 8 640. Each of the above classifiers was used successively to
determine whether the point v was “negative” (and hence removed from consid-
eration); if not, v was passed onto the next classifier. This process was repeated
until the number of points being removed decreased to zero. At that stage there
were 788 points that were hypothesized to be “positive”. These 788 points were
tested using simulation, and 65% were found to be “positive”. This is a significant
improvement over the random sampling scheme.

A further sequence of classifiers was determined from a training set generated
by using the above sampling schemes, but where we adjusted the number of “neg-
ative” points in the training set so that the resulting values for TP and TN were
approximately 0.6 and 0.7. These additional classifiers have a larger chance of
removing “positive” samples in error, but they reduce the number of remaining
points in our sample much more quickly. For our example set the remaining 788

92 Oberwolfach Report 2/2005

points was reduced to 220 points. Evaluating these remaining points by simula-
tion, 195 were found to be in L(10). Thus, with very high success rate (89%), our
classifier is able to predict values of v that have a low score fω(v).

We employed the classifier technique above to generate a large number of sam-
ples in L(30). Given these samples, we used the DACE toolbox [5] to fit a kriging
model to the data, which we consider a surrogate function [2] for our objective.
We used the Nelder-Mead simplex method [8] to optimize this surrogate and gen-
erated several local minimizers for this function based on different trial starting
points. These local minimizers were evaluated by simulation. To improve our
results further, we updated the surrogate function with the simulation results of
the local minimizers and repeated the optimization. The parameter values found
by using this process outperform all previous values found. Furthermore, expert
analysis of various output curves generated from the simulation results with the
best set of parameter values confirms the quality of this solution.

While our procedure is somewhat ad hoc, the following conclusions are evident:

– The classifier technique is cheap to use and predicts good parameter values very
accurately without performing additional simulations.

– A hierarchical classifier significantly improves classification accuracy.

– Imbalanced training data has a detrimental effect on classifier behavior. Ensur-
ing the data is balanced in size is crucial before generating classifiers.

The classifier facilitates easy generation of parameter settings within a given
level set of score values and potentially allows investigation of such level sets and
good parameter settings from a biological perspective. Future work will investigate
characterizing the level set more precisely with the aim of enhancing biological
understanding of the model parameters.

References

[1] CISNET, http://cisnet.cancer.gov/profiles/.
[2] J. E. Dennis, A. Booker, P. Frank, D. Serafini, V. Torczon, and M. Trosset, A rigorous

framework for optimization of expensive functions by surrogates. Structural Optimization,
17(1):1–13, 1999.

[3] D. G. Fryback, N. K. Stout, M. A. Rosenberg, A. Trentham-Dietz, V. Kuruchittham, and
P. L. Remington. The Wisconsin breast cancer epidemiology simulation model. Preprint,
January 2005.

[4] M. Kubat and S. Matwin. Addressing the curse of imbalanced data sets: One sided sampling.
In Proceedings of the Fourteenth International Conference on Machine Learning, 1997, pp.
179–186.

[5] S. N. Lophaven, H. B. Nielsen, and J. Søndergaard. DACE – A Matlab kriging toolbox,

Informatics and Mathematical Modelling. Technical University of Denmark, DTU, 2002.
[6] J. Ma, Y. Zhao, and A. Stanley. OSU SVM classifier Matlab Toolbox. http://www.ece.osu.

edu/∼maj/osu svm/.
[7] O. L. Mangasarian, Generalized support vector machines. In Advances in Large Margin

Classifiers, edited by A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, MIT Press,
Cambridge, MA, 2000, pp. 135–146.

[8] J. A. Nelder and R. Mead, A simplex method for function minimization. Computer Journal,
7:308–313, 1965.

Optimization and Applications 93

[9] J. Weston, A. Elisseeff, G. Bakir, and F. Sinz. The Spider, Matlab Machine Learning Tool-
box. http://www.kyb.tuebingen.mpg.de/bs/people/spider/.

L1-Optimal Boundary Control of a String to Rest in Finite Time

Martin Gugat

Hyperbolic partial differential equations often appear as models in engineering, for
example as systems of conservation laws that model fluid flow.

The control of such systems is usually possible only with boundary controls,
which in the mathematical model corresponds to control via the boundary condi-
tions. To get some insight into the nature of optimal controls for such systems, we
consider the following problem of optimal Dirichlet boundary control for the wave
equation:

(P)





min
u1,u2∈L1(0,T)

∫ T

0

|u1(t)| + |u2(t)| dt suject to

ytt(x, t) = c2yxx(x, t), (x, t) ∈ (0, L) × (0, T)

y(0, t) = u1(t), y(L, t) = u2(t), t ∈ (0, T)
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L)
y(x, T) = 0, yt(x, T) = 0, x ∈ (0, L).

The functions y0 and y1 are given, as well as the real numbers T > 0, L > 0, c > 0.
In general, this problem does not have a unique solution. An explicit represen-

tation of all solutions is given in the following theorem.

Theorem 1. Assume that T ≥ t0 = L/c, that y0 ∈ L1(0, L), and that Y1(x) =∫ x

0 y1(s) ds ∈ L1(0, L). For t ∈ (0, t0), let

α0(t) = y0(ct) + (1/c)

∫ ct

0

y1(s) ds,

β0(t) = y0(L − ct) − (1/c)

∫ L−ct

0

y1(s) ds.

Choose a real number r that minimizes

(1) I(r) =
1

2

∫ t0

0

|α0(t) − r| + |β0(t) + r| dt.

Let k = max{j ∈ N : jt0 ≤ T } and ∆ = T −kt0. For j ∈ {0, . . . , k} and t ∈ (0, ∆),
let λj(t) ≥ 0, νj(t) ≥ 0 almost everywhere be such that λj(α0 − r) ∈ L1(0, ∆),
νj(β0 + r) ∈ L1(0, ∆), and

k∑

j=0

λj(t) = 1 =
k∑

j=0

νj(t) almost everywhere on (0, ∆).

