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Abstract
We describe the application of a Bayesian variable-number sample-path
(VNSP) optimization algorithm to yield a robust design for a floating sleeve
antenna for hepatic microwave ablation. Finite element models are used
to generate the electromagnetic (EM) field and thermal distribution in liver
given a particular design. Dielectric properties of the tissue are assumed to
vary within ± 10% of average properties to simulate the variation among
individuals. The Bayesian VNSP algorithm yields an optimal design that is
a 14.3% improvement over the original design and is more robust in terms of
lesion size, shape and efficiency. Moreover, the Bayesian VNSP algorithm
finds an optimal solution saving 68.2% simulation of the evaluations compared
to the standard sample-path optimization method.

1. Introduction

Microwave ablation for the treatment of hepatic and metastatic tumors is a promising alternative
when surgical resection—the gold standard—is not practical. In this procedure, a thin, coaxial
antenna (probe) is inserted into the tumor (either percutaneously or during open surgery) and
microwaves are radiated into the tissue. The alternating fields cause rapid rotation of the polar
water molecules resulting in heating of tissue and ultimately leading to cell death. This cell
death is a function of both temperature and time, where higher temperatures lead to cell death
in a shorter period of time. Since studies indicate that coagulated necrosis of tissue can be
achieved within a few seconds at 60 ◦C, a common metric to predict cell death and ultimately
lesion size is the 60 ◦C contour. Since 60 ◦C is lethal to both cancerous and normal tissue, the
design of the antenna radiation pattern is critical to achieve a heating pattern affecting only
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cancerous tissue. To meet these design needs, several types of coaxial antennas have been
proposed and optimized for this application and are reviewed in Bertram et al (2006).

When optimizing a design or studying performance, most studies use average dielectric
properties for liver tissue that have been measured previously and are readily available in
the literature (Gabriel et al 1996). However, due to the natural variation in tissue among
individuals, measured dielectric properties of healthy and tumorous liver tissue may differ by
as much as ±10% from the average value (Stauffer et al 2003). This variation means that a
given patient’s tissue may not have the same dielectric properties as those used in the design
of an antenna, leading to suboptimal performance. Therefore, it is important to ensure that
antennas to be used for hepatic microwave ablation are robust, i.e. relatively insensitive to
changes in physical properties of the tissue.

We present a method for optimizing a coaxial antenna for microwave ablation of hepatic
and metastatic tumors that takes into account the variability in liver dielectric properties
among individuals. This adds additional complexity to the optimization problem since the
performance of a particular design is now a function of its dimensions (the design variables),
as well as some unknown variation in tissue properties. To design an antenna with robust
performance, we apply a sample-path optimization method (or sample average approximation
method) (Kleywegt et al 2001, Plambeck et al 1996, Robinson 1996), which averages repeated
evaluations of a design to reduce variation. Since we use a common random number (CRN),
it can be shown that under mild conditions the limit points of solutions of the sampled
problem lie almost surely in the solution set of the underlying problem. The sample-path
method has been applied to a number of optimization problems including option pricing
(Gürkan et al 1996), scheduling (Plambeck et al 1993) and network design (Gürkan et al
1999). In the optimization process, the task of determining the number of replicated samples
is handled by the Bayesian variable-number sample-path (VNSP) scheme (Deng and Ferris
2007). Compared to the standard sample-path method with a fixed number of samples, the
VNSP scheme uses fewer objective function evaluations and is therefore more economical
since these are computationally expensive to evaluate. We embed the VNSP scheme in Powell’s
UOBYQA (Unconstrained Optimization BY Quadratic Approximation) optimization method
Powell (2002), an efficient derivative-free algorithm.

To perform this optimization, we rely upon computer models. Computer models are a
widely used tool in the design of antennas for microwave ablation as they provide a quick,
convenient and accurate method of estimating antenna performance. Given the physical
properties of liver tissue and tumors, such models can be used to predict the thermal profile
induced in tissue due to a particular antenna design. A quantitative assessment of a particular
antenna design may then be obtained by extracting appropriate metrics from solutions provided
by the computer model. Suitable metrics may be the efficiency of the antenna (fraction of the
power supplied that is deposited into the liver), size and shape of the predicted lesion compared
to the tumor, and diameter of the antenna. An optimization problem may then be formulated
where the design variables are the dimensions of the antenna, and the objective function is
obtained by combining the metrics in some fashion (Iskander and Tumeh 1989). The floating
sleeve antenna presented in Yang et al (2006) was chosen to be optimized in this study due to
its ability to create large, constrained lesions. A schematic of the antenna is shown in figure 1.
We have identified dimensions of this antenna that may be optimized to yield desirable lesion
size, shape and efficiency, and we minimize the overall diameter of the probe.

The rest of this paper is organized as follows. The next section describes the computer
model and formulation of the optimization problem at hand. Section 3 briefly explains the
UOBYQA optimization algorithm with the integration of the VNSP scheme. Section 4
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Figure 1. Structure of the floating sleeve antenna. Wall thicknesses of fixed dimensions are labeled
in the figure.

presents and discusses the results of applying this procedure to the optimization problem.
Finally, a conclusion and discussion of future work is presented in section 5.

2. Methods

2.1. Floating sleeve antenna

Yang et al (2006) presented a floating sleeve antenna consisting of a coaxial dipole antenna
with a floating sleeve used to constrain power deposition to the distal end. The structure of
the antenna is shown in figure 1. For a particular operating frequency (usually 915 MHz or
2.45 GHz), dimensions of the antenna that affect the radiation pattern and efficiency of the
antenna are (a) length of the dipole tip, (b) slot size, (c) sleeve position, (d) thickness of Teflon
isolation layer, (e) thickness of Teflon coating and (f) sleeve length. Throughout this paper,
an individual design, x ∈ R

6, may be expressed as the vector of the design variables (a)–(f),
in mm. For example, using this notation, Yang et al’s (2006) design can be expressed as x =
(9.00 2.00 20.00 0.15 0.15 19.00) where the units of all dimensions are mm. As explained
in Yang et al (2006), the floating sleeve is effective in constraining the lesion longitudinally
when it is approximately a half wavelength long. Note that this is not half the wavelength
of a plane wave propagating through either liver or the Teflon catheter. Rather, this is half
a wavelength in the layered Teflon/liver medium (outside the metal sleeve) whose effective
properties are somewhere between those of liver and Teflon and is a function of the Teflon
thickness. Therefore, since we are varying the thickness of the Teflon layers, we expect the
optimal sleeve length to change as well. Table 1 shows the range over which the dimensions
(a)–(f) are varied.

2.2. Finite element model of coaxial sleeve antenna

For this study we used the commercial finite element (FE) package, COMSOL Multiphysics
v3.2 (COMSOL Inc. Burlington, MA), to simulate antenna performance and determine the
objective function for a given antenna design. This software allows us to specify the geometry
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Table 1. Design metrics in the sleeve antenna.

Parameter Range of values

Length of dipole tip 1–60 mm
Slot size 1–50 mm
Sleeve position 1–60 mm
Thickness of Teflon coating 0.1–1 mm
Thickness of Teflon isolation layer 0.1–1 mm
Length of sleeve 5–50 mm

of an antenna design and then solves Maxwell’s equations and the heat equations in the
surrounding tissue. We coupled this software with MATLAB (Mathworks Inc., Natick, MA),
to perform the optimization of the antenna.

The model involves the antenna inserted into an infinitely large piece of liver. Dimensions
of the antenna as well as design variables are illustrated in figure 1. Note that figure 1 is just
an illustration of an example design, and that some dimensions will vary for other possible
designs. The input power was set to 120 W at an operating frequency of 2.45 GHz. Due to
the cylindrical symmetry of the geometry, we were able to reduce computational burden by
implementing an axially symmetric model.

The first step in determining the temperature profile due to a particular design is to solve
Maxwell’s equations to determine the EM fields and resistive heating in the tissue. A steady
state nonlinear solver was used to compute the resistive heating (Q(r)), which is proportional
to the square of the local electric field. Typically, constant values of dielectric properties are
assumed when designing an antenna. Often these properties are obtained from average values
reported in the literature for healthy human liver (Duck 1990, Gabriel et al 1996, Stauffer
et al 2003). However, there is a natural variation in tissue among individuals. Stauffer
et al (2003) have measured dielectric properties of healthy and tumorous ex vivo human liver
at room temperature in the 0.3–3 GHz range. Their results show standard deviations of ±
10% in samples taken from different individuals. As such, it is important to ensure that
antennas used for microwave ablation are robust, i.e. relatively insensitive to changes in the
physical properties of tissue. In this study, we used average values of dielectric constant
(43.03) and conductivity (1.69), as in Yang et al (2006), and assumed that these dielectric
properties vary randomly as a Gaussian distribution with standard deviation ± 10% about this
mean. Thus, the dielectric constant and conductivity may be expressed as N (43.03, 4.3032)

and N (1.69, 0.1692). Note that while we do not account for changes in dielectric properties
during the course of ablation, because the antenna is more robust to variations in tissue
properties, it should lead to a better performance with respect to dielectric property changes
during the course of ablation. Moreover, it may be possible to utilize this noisy optimization
algorithm to take into account these changes in future studies.

The resistive heating Q(r) profiles calculated by the first step are used as input to a
thermal model, which predicts temperature profiles from which an estimate of lesion size is
obtained. We have chosen to use the classical Pennes bioheat equation:

ρc
dT (r)

dt
= ∇ · k∇T (r) + Q(r) − ρblcblwbl(T (r) − Tbl), (1)

where ρ (1060 kg m−3) is the density of liver, c (3600 J (kg K)−1) is the specific heat capacity
of liver, T (K) is the temperature profile in liver, k (0.512 W (m k)−1) is the thermal conductivity
of liver, Q(r) (W m−3) is the resistive heating in liver, cbl (4180 J (kg K)−1) is the specific heat
capacity of blood, wbl (6.4 × 10−3 s−1) is the blood perfusion and Tbl (K) is the temperature
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Figure 2. Objective metrics for assessing the size and shape of a T (r) profile

of the blood. The lesion size and shape metrics are calculated using the 60 ◦C contour after
180 s with an input power of 120 W.

If tissue physical properties are adjusted as a function of temperature and moisture content,
temperatures observed from the solution of the Pennes bioheat equation are more consistent
with those measured experimentally (Yang et al 2007). However, such a simulation requires an
accurate model of tissue water movement during the course of ablation, as well as knowledge
of tissue physical properties at elevated temperatures (above 90 ◦C), neither of which are
currently available. Using such an advanced thermal model of high power microwave ablation
(Yang et al 2007) which extrapolates water vapor movement and high temperature tissue
properties, the solution of a single 3 min microwave ablation takes ∼5 h of computation time
using the resources available to us, compared to 52 s for the model used here. Clearly, such
large computation times are impractical for an optimization procedure which requires repeated
evaluation of the objective function.

2.3. Objective metrics for assessing antenna performance

In this study we are optimizing for lesion size and shape, antenna efficiency and antenna size.
In practice, design variables may be selected to fit the heating pattern of an antenna to the
tumor at hand. Since most tumors are approximately spherical in shape (Yang et al 2006),
our goal in this study was to optimize an antenna to yield the lesion with the largest radius
and having a shape that is as close to a sphere as possible. We identified two metrics to assess
the size and shape of the lesion: lesion radius and axial ratio. These metrics are illustrated
with an example T (r) profile in figure 2. Note that an axial ratio (as annotated in figure 2)
of 0.5 would yield a spherical lesion shape. The efficiency of an antenna may be measured
by computing the reflection coefficient S11—the ratio of power reflected to power input. The
more negative the S11, the more power is coupled into the liver. Reflected power was calculated
from the FE model by sampling the net time-averaged power flow at the antenna feedpoint
and subtracting from the input power (120 W). Since S11 is typically measured on a decibel
scale, the value of S11 decreases by large amounts for very small changes in reflected power,
when the reflected power is less than 1 W. In order to ensure that the combined objective is
not biased by these large values of S11, we set the value of S11 to −20 dB for values of S11

less than −20 dB. Finally, the antenna being optimized may be used in a minimally invasive
procedure (i.e. percutaneously); thus, it is desirable to yield a design with the smallest radius.
These objective metrics are summarized in table 2.

We employ an algorithm that only handles a single objective function and so the above
four objectives need to be combined. A simple way to do this is to assign weights to each
metric, based on their relative importance, and then sum up the weighted objectives. Since the
range over which these objectives vary is not the same, we normalized each objective by its
largest possible value so that the weighted sum is not skewed by the scale of each individual
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Table 2. Objective metrics in the sleeve antenna design.

Metric Measure of Goal

Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5 (see figure 2)
S11 Efficiency of antenna Minimize
Probe radius Radial size Minimize

metric. Each metric was deemed to be equally important and so identical weights of 0.25 were
assigned to each normalized objective. The optimization problem thus formulated is written
as

min
x∈R

n
F (x) := Eω[f (x, ω)] = Eω

[
−p1

Lesion(ω)

H1
+ p2

|AR(ω) − 0.5|
H2

+ p3
max(S11(ω),−20)

H3
+ p4

ProbeRad(ω)

H4

]
, (2)

where the weights p1 = p2 = p3 = p4 = 0.25 and Hi represent normalization values. The
function f (x, ω) is often called the sample response function. The optimization formulation
(2) aims to maximize the expected performance among different individuals, whose specific
physical parameters ω are extracted from predefined distributions. (In our case ω, indicates the
dielectric properties.) Besides (2), other robust formulations such as minx∈R

n maxN
i=1 f (x, ωi)

and minx∈R
n minN

i=1 f (x, ωi) are possible, but these are not discussed here.

3. Bayesian variable-number sample-path (VNSP) optimization

3.1. Introduction to VNSP optimization

Consider the generalized formulation for the robust antenna design problem:

min
x∈R

n
F (x) = Eω[f (x, ω)]. (3)

The sample-path method (Robinson 1996, Shapiro 2003) is an important method for solving
such stochastic optimization problems. The basic idea of the method is to approximate the
mean-value function F(x) in (3) by averaging sample response functions

F(x) ≈ f̄ N (x) := 1

N

N∑
i=1

f (x, ωi), (4)

where N is an integer representing the number of samples. (The explicit value of the underlying
function F(x) can be determined by letting the number of samples N → ∞, but such
computation is typically impractical.) By fixing a sequence of i.i.d. (independent identically
distributed) random samples ωi, i = 1, 2, . . . , N , a variety of deterministic algorithms can be
applied to solve the averaged sample-path problem:

min
x∈R

n
f̄ N (x), (5)

which serves as a substitute for (3). The solution x∗,N to the problem (5) is then treated
as an approximation of x∗, the solution of (3), and x∗,N converges to x∗ under appropriate
conditions (Robinson 1996). Deng and Ferris (2007) propose a VNSP scheme, an extension
of sample-path optimization. The classical sample-path method is criticized for its excessive
simulation evaluations: in order to obtain a solution point x∗,N , one has to solve an individual
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Figure 3. Illustration of variable-number sample-path optimization.

optimization problem (5) and at each iterate xk of the algorithm, f̄ N (xk) is required (with N
typically large). The VNSP scheme is designed to generate different numbers of sample paths
(N) at each iteration. Denoting Nk as the number of sample paths at iteration k, Bayesian
techniques are applied to establish satisfactory criteria for Nk , which accordingly ensure the
accuracy of the approximation of f̄ N (x) to F(x). The numbers {Nk} form a nondecreasing
sequence, with possible convergence to infinity. Figure 3 provides an illustration of the
approach. The algorithm generates its iterates across different averaged sample functions. At
iteration k, it first computes a satisfactory Nk which guarantees a certain level of accuracy.
Then, a single optimization step is taken for problem (5) with N = Nk . The algorithm has a
globally convergent solution x∗,N∞ , where N∞ := limk→∞ Nk , and the solution is proven to
match the solution x∗,∞ = x∗ (Deng and Ferris 2007).

3.2. The extended UOBYQA algorithm

The VNSP scheme is implemented within the UOBYQA algorithm (Powell 2002). UOBYQA
is a derivative-free method; thus, it is a good fit for the objective function derived from
the antenna simulation model. The general structure of UOBYQA follows a model-based
approach (Conn and Toint 1996), which constructs a chain of local quadratic models to
approximate the objective function within certain trust regions (Nocedal and Wright 2006).

Starting the algorithm requires an initial point x0 and an initial trust region radius �0.
At each iteration k, the correct sample path number Nk is determined by the Bayesian VNSP
scheme of section 3.3, resulting in an averaged sample-path function f̄ Nk (an approximation
to f̄ ∞ = F(x) in (4)). The derivative estimate of f̄ Nk is contained in a quadratic model

Q
Nk

k (xk + s) = c
Nk

k +
(
g

Nk

k

)T
s + 1

2 sT G
Nk

k s, (6)

which is constructed by interpolating a set of well-positioned points I = {y1, y2, . . . , yL}.
To ensure a unique quadratic interpolator, the number of points in I should satisfy
L = 1

2 (n + 1)(n + 2). Note that deriving the model does not require evaluations of the
gradient or the Hessian.

As in a classical trust region method, a new promising point is determined from a
subproblem:

min
s∈R

n
Q

Nk

k (xk + s), subject to ‖s‖ � �k. (7)
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The new solution s∗,Nk is accepted (or not) by evaluating the ‘degree of agreement’ between
f̄ Nk and Q

Nk

k :

ρ
Nk

k = f̄ Nk (xk) − f̄ Nk (xk + s∗,Nk )

Q
Nk

k (xk) − Q
Nk

k (xk + s∗,Nk )
. (8)

If the ratio ρ
Nk

k is large enough, the point xk + s∗,Nk is accepted into the set I; otherwise, the
geometry of I should be improved when necessary. Details can be found in Deng and Ferris
(2007). The trust region radius is then updated following standard trust region rules. Whenever
a new point x+ enters (the point x+ may be the solution point xk + s∗,Nk or a replacement point
to improve the geometry), the best point in I must be determined.

We now present the outline of the extended UOBYQA algorithm, implementing the VNSP
scheme.

Algorithm 1. Choose a starting point x0 and an initial trust region radius �0.

(i) Generate initial trial points in the interpolation set I. Determine the first iterate x1 ∈ I
as the best point in I.

(ii) For iterations k = 1, 2, . . .

(a) Determine Nk via the VNSP scheme in section 3.3.
(b) Construct a quadratic model Q

Nk

k which interpolates points in I.
(c) Solve the trust region subproblem (7). Evaluate f̄ Nk at the new point xk + s∗,Nk and

compute the agreement ratio ρ
Nk

k .
(d) Test whether the point is acceptable in the set I and update the trust region radius

�k .
(e) Check whether any of the termination criteria are satisfied, otherwise repeat the loop.

(iii) Evaluate and return the final solution point.

3.3. The Bayesian VNSP scheme

The goal of the VNSP scheme is to determine the suitable sample path number Nk to be
applied at iteration k, such that the accuracy of the algorithm is maintained. While increasing
the number Nk can potentially reduce approximation bias, Nk should be kept as small as
possible to save computational effort.

The VNSP scheme adopts a strategy that sequentially allocates computational resources:
first evaluate and check a satisfactory criterion (often termed as the ‘sufficient reduction’
criterion),

Pr

(
Q

Nk

k (xk) − Q
Nk

k (xk + s∗,Nk ) � κmdc

∥∥g∞
k

∥∥ min

[‖g∞
k ‖

κQh
,�k

] )
� 1 − αk, (9)

where κmdc takes the value 1
2 , κQh is a large value upper-bounding the norm of the Hessian

matrix and αk represents the significance level. If the criterion (9) is rejected, increase Nk to
improve the accuracy. Typically, Nk is updated by

Nk := βNk.

The difficulty of validating (9) lies in that the probability value is taken over the sample-
path space and the explicit form of Q∞

k is unknown. To cope with these problems, the VNSP
scheme uses Bayesian probability to approximate the real probability in (9). More specifically,
the Bayesian probability is computed using estimated Bayesian posterior distributions for the
parameters

(
g∞

k ,G∞
k

)
of the model Q∞

k ; see details in Deng and Ferris (2007).
We summarize the outline of the Bayesian VNSP scheme as follows.
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Algorithm 2 (The VNSP scheme). At the kth iteration of the algorithm, start with Nk = Nk−1.
Loop:

(i) Evaluate Nk replications at each point yj in the interpolation set I to construct the data
for the Bayesian estimation.

(ii) Construct the quadratic model Q
Nk

k and solve the subproblem for xk + s∗,Nk .
(iii) Derive the Bayesian posterior distributions for the parameters of Q∞

k , and estimate the
probability of ‘sufficient reduction’ in criterion (9).

(iv) If the probability value is greater than 1−αk , then stop; otherwise increase Nk and repeat
the loop.

4. Results

4.1. Application of the VNSP optimization

In this section, we apply the new algorithm to optimize an antenna to yield robust performance
against uncertainties in tissue parameters.

As a general setting for the algorithm, we set the initial number of samples N0 = 3,
which was used to estimate the initial sample mean and sample covariance matrix, and set a
predefined sequence in (9):

αk = 0.1 × (0.90)k. (10)

This sequence satisfies the assumptions required in the convergence theory (Deng and Ferris
2007). Other choices (instead of 0.1 and 0.90) are clearly possible, but we found these values
to work well in this application setting. Future work will determine an automatic scheme to set
these values. As our proposed method is a local optimization method, the starting point can be
significant. The starting point was chosen to be x0 = (9.00 2.00 20.00 0.15 0.15 19.00), which
are the design variables proposed by Yang et al (2006). We limited the maximum number
of function evaluations to 3500; therefore, it took roughly 11 h for the entire optimization
process. We chose the initial trust region radius �0 to be 2, which corresponded to a 2 mm
local search region centered around the initial design x0. The normalization values in (2) were
H1 = 3,H2 = 0.5,H3 = 20 and H4 = 0.5, which correspond to maximum values expected
for each of the individual metrics.

Table 3 presents the results for the robust antenna design search. In iterations 1 to 110,
Nk changed from 3 to 81. We recorded the iteration number k when there was a change in Nk .
For example, Nk remained at 3 in iterations 1 to 79 and Nk changed to 4 at iteration 80. Since
in the first 79 iterations the objective function was f̄ 3, it was observed that the iterates xk

moved toward the solution x∗,3 of the averaged sample-path problem (5) with N = 3. Table 4
records the corresponding sample-path solutions of the optimization problem (5). For example,
x∗,3 = (4.91 7.87 13.61 0.27 0.14 18.04). As shown in table 4, solutions x∗,N have variations,
but tend to converge as N increases. The convergence of the solutions x∗,N , as well as the
optimal objective values f̄ (x∗,N ), are proven facts in the sample-path optimization literature
(Robinson 1996). The variation of x∗,N also implies that the optimal designs are sensitive
to the uncertain input parameters. With the change of Nk , the averaged function f̄ Nk might
vary. In table 3, we observe that x82 = x83 = (5.86 6.72 14.74 0.27 0.16 19.25). However, the
value of f̄ N82(x82) is −0.231 283, while the value of f̄ N83(x83) is −0.229 173, proving that
the algorithm actually worked when the objective function changed due to an increase in Nk .

In the earlier iterations, when noisy effects were small compared to the large change
of function values, the basic operation of the method was unchanged, e.g., Nk = 3 for
k = 1 to 79. As the algorithm proceeded, the demand for accuracy increased; therefore,
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Table 3. Optimal design search using the new algorithm.

Iteration k Nk FN xk f̄ Nk (xk) �k

1 3 3 (9.00 2.00 20.00 0.15 0.15 19.00) −0.209 566 2
79 3 321 (5.86 6.72 14.74 0.27 0.16 19.25) −0.228 129 0.2
80 4 353 (5.86 6.72 14.74 0.27 0.16 19.25) −0.231 283 0.2
82 4 361 (5.86 6.72 14.74 0.27 0.16 19.25) −0.231 283 0.2
83 5 394 (5.86 6.72 14.74 0.27 0.16 19.25) −0.229 173 0.2
91 5 497 (5.73 6.70 14.62 0.28 0.15 19.26) −0.229 271 0.2
92 7 497 (5.75 6.69 14.52 0.28 0.15 19.09) −0.235 152 0.2
93 9 562 (5.85 6.65 14.50 0.26 0.14 18.99) −0.237 213 0.2
95 9 580 (5.73 6.71 14.40 0.26 0.14 18.84) −0.237 574 0.2
96 12 676 (5.74 6.79 14.44 0.29 0.14 18.72) −0.239 820 0.2
98 12 700 (5.74 6.79 14.44 0.29 0.14 18.72) −0.239 820 0.2
99 81 1829 (5.80 6.88 14.39 0.28 0.14 18.31) −0.238 999 0.2

110 81 3535 (5.79 6.91 14.20 0.28 0.14 18.36) −0.239 488 0.2

Table 4. Averaged sample-path solutions.

N x∗,N f̄ N (xk)

3 (4.91 7.87 13.61 0.27 0.14 18.04) −0.232415
4 (5.70 7.05 13.65 0.26 0.14 18.64) −0.233790
5 (5.66 7.07 13.51 0.26 0.15 18.29) −0.231446
7 (5.24 7.50 13.62 0.26 0.13 18.22) −0.238522
9 (4.99 8.07 12.57 0.27 0.14 18.44) −0.241314

12 (5.42 7.27 14.43 0.26 0.13 17.92) −0.242610
81 (5.58 7.39 14.08 0.26 0.15 18.04) −0.241173

Table 5. A comparison of dimensions of the original and optimized antennas.

Parameter Design by Yang et al Our optimal design

Length of dipole tip 9.00 mm 5.79 mm
Slot size 2.00 mm 6.91 mm
Sleeve position 20.00 mm 14.20 mm
Thickness of Teflon coating 0.15 mm 0.28 mm
Thickness of Teflon isolation layer 0.15 mm 0.14 mm
Length of sleeve 19.00 mm 18.36 mm

Nk increased as well as the total number of function evaluations. We observed a significant
improvement of the solution in iterations 1 to 79, when Nk = 3. At the end of the algorithm,
we generated a solution x110 = (5.79 6.91 14.20 0.28 0.14 18.36) which yielded an objective
value −0.239488 very close to that of x∗,81 = (5.58 7.39 14.08 0.26 0.15 18.04). We did
save significant amounts of computation compared to the standard sample-path method. In a
standard sample-path method, assuming that there are around 107 iterations in the algorithm,
we need (110 + 28) × 81 ≈ 11178 function evaluations for the solution x∗,N=81, where 28
points are used to construct the initial quadratic model, compared to 3535 that our method
used. The optimal objective value did yield a 14.3% improvement over the initial design. This
percentage improvement was calculated after shifting all objective values to be negative.

Table 5 lists the values of the design variables for the optimal design as well as the original
design.
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Figure 4. Variations of individual objective metrics (frequency plot). (a) Lesion radius, (b) |Axial
ratio—0.5|, (c) S11, (d) Probe radius.

4.2. Discussion

While a comparison of the compound objective function shows that the optimization procedure
helped yield an improved design x∗ = (5.79 6.91 14.20 0.28 18.36), it is important to confirm
that improved performance was achieved in terms of the individual metrics. The goal of the
optimization process was twofold: (a) improve robustness of the design so that each individual
metric is less sensitive to variations in tissue dielectric parameters among individuals and (b)
improve the values of each of the individual metrics. Figure 4 shows the distribution for
each of the individual metrics of the optimal design and the design in Yang et al (2006) for a
common random sample of 100 different values for the dielectric properties within the ±10%
specified range. Also included are the distributions of design presented in Yang et al (2006).

The antenna presented by Yang et al (2006) has the following objective metrics: lesion
radius = 1.80 cm, axial ratio = 0.34, S11 = −19.78 dB and probe radius = 0.175 cm. In
comparison, the optimal design presented in this work has objective metrics: lesion radius =
1.80 cm, axial ratio = 0.36, S11 = −32.21 dB and probe radius = 0.187 cm. Table 6 provides
the mean and standard deviation for each of the individual metrics.

These results indicate the Bayesian VNSP algorithm yields a design which has improved
values for the compound objective and three of the four individual objective metrics when
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Figure 5. Comparing simulated T (r) profiles using the average dielectric properties (43.03,1.69).
(a) antenna design presented by Yang et al (b) optimal design derived by our algorithm

Table 6. A comparison of the objective metrics of the original and optimized antennas.

Design by Yang et al Our optimal design

Mean Std Mean Std

Lesion radius (cm) 1.7982 0.0246 1.8049 0.0245
|Axial ratio—0.5| 0.1760 0.0162 0.1355 0.0162
S11 (dB) −19.78 0.0724 −32.21 5.07
Probe radius (cm) 0.1750 0 0.1870 0

compared to the original design of the sleeve antenna. There is little difference in the variation
of the individual objectives between the original design and the optimized design, except for
the S11 metric. However, this variation can be attributed to the fact that even slight changes
in reflected power below 1 W will yield large changes in S11 for an input power of 120 W.
Note that the probe radius is a function of the physical dimensions of the antenna and is thus
independent of any variations in tissue properties, which explains its variance of 0 in table 6.

Figure 5 shows T (r) heating profiles of Yang et al’s (2006) design compared to the optimal
design presented here when simulating using the average values for dielectric parameters. The
optimal design not only creates a larger lesion, but also does better in constraining the lesion
to the distal end of the antenna. The antenna designed in Yang et al (2006) has a T (r) profile
with a ‘tail’ along the axis of the antenna, as is clear from figure 5(a).

The probe radius of the optimal design is slightly larger than that in Yang et al (2006),
although both designs are well within the range of probes typically used in percutaneous
applications.

The optimized antenna has a T (r) profile with an axial ratio closer to 0.5 (which is the
axial ratio a perfectly spherical lesion would yield) than Yang et al’s design. Note that the
shape of the T (r) profile is not perfectly spherical. This is because the metric employed
only considers the extents of the lesion in the longitudinal and radial directions. An improved
metric that analyzes the shape of the lesion along its entire boundary may help yield even
better designs.

5. Conclusions

We have optimized the design of a floating sleeve antenna for microwave ablation of hepatic
tumors using finite element models and the Bayesian VNSP algorithm. This was done by
identifying desirable features for a coaxial antenna for this application and formulating a
mathematical optimization problem to select the dimensions of the floating sleeve antenna
that optimize these features. We accounted for the natural variation in physical properties
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of liver tumors/tissue among individuals by incorporating a stochastic component into the
optimization problem and we used a Bayesian VNSP method to solve the optimization problem
which decreased the total optimization time significantly. We achieved improvement in the
mean values of three of the four objective metrics. The probe radius of the optimal design is
slightly larger than that of the original design; however, both are within the range of diameters
suitable for percutaneous use. There was little change in variation of the objectives in the
original design and the optimal design.

While our method yields an improved design, several aspects of the procedure may be
enhanced to yield even better performance. The metric we have used for assessing lesion
shape only utilizes knowledge of the maximal extents in the radial and longitudinal directions.
An improved metric would analyze features along the entire lesion boundary. Additionally,
availability of more measurements of dielectric properties of human liver tumors would allow
for better modelling in the variation of these properties.
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