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Abstract

Radiation therapy is extensively used to treat a wide range of can-
cers. Due to the increasing complexities of delivery mechanisms, and
the improved imaging devices that allow more accurate determination
of cancer location, determination of high quality treatment plans via
trial-and-error methods is impractical and computer optimization ap-
proaches to planning are becoming more critical and more difficult.

We outline three examples of the types of treatment planning prob-
lem that can arise in practice and strive to understand the commonal-
ities and differences in these problems. We highlight optimization ap-
proaches to the problems, and particularly consider approaches based
on mixed integer programming. Details of the mathematical formula-
tions and algorithmic approaches are developed and pointers are given
to supporting literature that shows the efficacy of the approaches in
practical situations.

1 Introduction

Approximately 1.2 million new cases of cancer are reported each year in the
United States, with many times that number occurring worldwide. About
40% of people diagnosed with cancer in the U.S will undergo treatment
with radiation therapy. This form of therapy has undergone tremendous
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improvement from a treatment planning standpoint over the last decade,
having benefited significantly from advances in imaging technology for com-
puted tomography (CT), magnetic resonance imaging (MRI) and ultrasound
(US). As aresult of these advances, there has been an increased trend toward
image-based radiation therapy treatment planning.

In treatment planning problems, the objective is to deliver a homoge-
neous (uniform) dose of radiation to the tumor (typically called the target)
area while avoiding unnecessary damage to the surrounding tissue and or-
gans. In many cases, near the target there are several structures (typically
called organs at risk (OAR)) for which the dose must be severely constrained
due to the probability of damage that will lead to medical complications.
Since the target and OAR structures can be more accurately identified, the
delivery of radiation that accurately conforms to these tissues becomes an
achievable goal.

The planning process is determined, not only by the target and the prox-
imal organs at risk, but also by the physical characteristics of the mechanism
that will be used to deliver the dose. Teletherapy [5] is the common collective
name for the various kinds of external beam radiation treatment, whereas
brachytherapy (“brachy” is a Greek prefix implying a short distance) in-
volves the placement of radioactive source configurations near or within the
tumor. The availability of additional data and levels of control of radiation
delivery procedures adds great complexity to the problem of determining
high quality treatment plans.

Classical radiation therapy treatment planning (sometimes called for-
ward planning) was generally a trial and error process in which improved
plans were generated by iteratively experimenting with different incident
high-energy beam configurations for teletherapy and with alternative place-
ments of sources for brachytherapy. In recent years, there has been a
move toward computer generated plans (sometimes termed inverse plan-
ning). These planning procedures increase the allowable complexities when
the dose is delivered by radioactive implants (brachytherapy), or when the
radiation is fired from a number of angles (external beam therapy). Some
further extensions include the use of scans in conjunction with the planning
procedure, the use of intensity modulation of portions of the beam (termed
pencil beams or beamlets), and the use of stereotactic devices to greatly
improve the accuracy of the delivered doses of radiation. There are many
techniques available to generate treatment plans for each type of radiation
delivery system. However, there are definite commonalities arising in all
these problems that we shall endeavour to highlight here.

A unified and automated treatment process has several potential benefits



relative to the classical trial-and-error approach. Among these the most
important ones are the reduction in planning time and the improvement
and uniformity of treatment quality that can be accomplished.

It is usual for the treatment goals to vary from one planner to the next, so
a planning tool must be able to accommodate several different goals. Among
these goals, the following are typical, although the level of treatment and
importance of each may vary.

1. A “homogeneity” goal: An isodose curve is delineated around the vol-
ume to ensure delivery of a certain fraction of the maximum delivered
dose. A typical homogeneity goal requires that the 2% isodose line
encompasses the target volume. Such requirements can be enforced
using lower and upper bounds on the dose, or approximated via pe-
nalization. (Upper bounds are of lesser importance in brachytherapy
since tissues adjacent to the radioactive sources automatically receive
high doses.)

2. A “conformity” goal: The overall dosage to the patient is typically
limited, and this goal specifies a lower bound on the fraction of that
dose to be delivered to the target itself.

3. “Avoidance” goals: These limit the dose delivered to certain sensitive
structures (OAR) close to the target.

4. “Simplicity” goals: it is preferable to use as simple a procedure as
possible since this reduces “implementation” errors (and frequently
reduces treatment time) and allows more patients to be treated with
the available resources.

There are often standards established by various professional and advisory
groups that specify acceptable homogeneity and conformity requirements.

In all formulations, we need to determine the dose delivered (Dose at a
voxel (i,7,k)) from a particular source (e.g. a pencil beam or a radioactive
source). A critical feature of all these problem areas is that a functional form
for such dose is either highly nonlinear, or is described by a large amount of
data that specifies the dose delivered to each voxel of the region of interest.
We outline techniques based on both of these approaches.

In a practical setting, many constraints on dose (measured in units called
Gray, abbreviated as Gy) are phrased as dose-volume histogram (DVH)
constraints of the form:

no more than 30% of volume X should exceed 10 Gy



or
at least 80% of volume Y should exceed 30 Gy

These constraints are hard to enforce due to the fact that the model needs
to determine on a per-voxel basis whether the threshold value is exceeded or
not. For example, in the first case, the following constraints could be used

Dose(i, 7, k)

Z Exceed(i, j, k)
(i,5,k)eX

10 + M x Exceed(i,j, k) V(i 7, k) € X

<
< 0.3 card(X),

where Exceed(i,j, k) is a binary variable. Standard integer programming
issues relating to the choice of the constant M ensue. More generally, when
the threshold value is U and the percentage limit on overdose in region R
is Br we have

Dose(i, j, k)

Z Exceed(i, j, k)
(i,5,k)eER

Ur + M * Exceed(i,j, k) V(i,j,k) € R

<
< Br*card(R). (1)

These formulations can become quickly impractical due to large numbers of
voxels in the regions of interest. In practice, many modelers use approximate
techniques to enforce these constraints. Alternatively, subproblems corre-
sponding to subsets of the region of interest may be sequentially solved.

The conformity of the plan presents even more computational difficulties
to a modeler since it involves all voxels receiving radiation. The conformity
index C' is an estimate of the ratio of the dose delivered to the target,
divided by the total dose delivered to the patient. These indices can be used
to enforce a conformity requirement using;:

C Z Dose(i, j, k) < Z Dose(i, j, k). (2)
(i.5,k) (i.5,k)ET

If conformity is part of the model constraint set, then an appropriate value
for C' needs to be ascertained beforehand. A reasonable conformity index
for a given patient plan is very hard to estimate a priori since it depends
critically on how complicated the delivery mechanism is allowed to be by
the planner and how the volume of the target interacts with the volumes of
the allowed delivery.

This paper is not intended to be a complete survey of the use of opti-
mization techniques within treatment planning problems (see [29, 36, 38, 50]



for more complete overviews of conformal radiation therapy, for example).
In addition to these survey articles, there are a variety of other approaches
(for which we cite representative papers) including those based on optimal
control primitives [1], or simulated annealing [27, 32, 43, 44], iterative (re-
laxation) techniques [10], approaches using biological objectives [7, 24, 33]
techniques of multi-objective [22] and neuro-dynamic programming [20]. In
this paper we specifically outline three particular problem areas that arise
in treatment planning and highlight the discrete nature of some of the de-
cisions that need to be made. Some detail of the underlying applications
are given, along with an overview of several solution approaches we feel are
promising. This survey is organized as follows: the following two sections
describe successful optimization applications to Gamma Knife teletherapy
and to brachytherapy for prostate cancer. We then consider extensions of
these and related approaches to other teletherapy mechanisms such as IMRT
(intensity modulated radiation therapy), and conclude with an assessment
of future research directions in radiation treatment planning.

2 Gamma Knife Radiosurgery

The Gamma Knife is a highly specialized treatment unit that provides an
advanced stereotactic approach to the treatment of tumor and vascular mal-
formations within the head [21]. The Gamma Knife (see Figure 1(a)) delivers
a single, high dose of radiation emanating from 201 Cobalt-60 unit sources.
All 201 beams simultaneously intersect at the same location in space to
form an approximately spherical dose region that is typically termed a shot
of radiation. A typical treatment consists of a number of shots, of possibly
different sizes and different intensities, centered at different locations in the
tumor, whose cumulative effect is to deliver a certain dose to the treatment
volume while minimizing the effect on surrounding tissue.

Gamma Knife radiosurgery begins (after administering local anesthesia)
by fixing a stereotactic coordinate head frame to the patient’s head using
adjustable posts and fixation screws. This frame establishes a coordinate
system within which the target location is known precisely and also serves
to immobilize the patient’s head within an attached focusing helmet during
the treatment (see Figure 1(b)). An MRI or CT scan is used to determine
the position of the treatment volume in relation to the coordinates deter-
mined by the head frame. Once the location and the volume of the tumor
are identified, a neurosurgeon, a radiation oncologist, and a physicist work
together in order to develop the patient’s treatment plan.
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(a) The couch and treatment area (b) The head-frame and helmet

Figure 1: The Gamma Knife Treatment Unit. A focusing helmet is attached
to the frame on the patient’s head. The patient lies on the couch and is
moved back into the shielded treatment area.

The determination of plans varies substantially in difficulty. For exam-
ple, some tumors are small enough to require only one shot of radiation.
On the other hand, when the shape of the tumor is large or has an irreg-
ular shape or is close to a sensitive structure, many shots of different sizes
could be needed to achieve a high dose of radiation to the intracranial tar-
get volume while sparing the surrounding tissue. Further description of the
treatment process, along with some more explanatory figures can be found
in [19].

A number of researchers have studied techniques for automating the
Gamma Knife treatment planning process. One approach incorporates the
assumption that each shot of radiation can be modeled as a sphere. The
problem is then reduced to one of geometric coverage, and a ball packing
approach [42, 41, 49, 48, 47] can be used to determine the shot locations and
sizes. The use of a modified Powell’s method in conjunction with simulated
annealing has also been proposed [31, 52]. A mixed integer programming
(MIP) and a nonlinear programming approach for the problem are presented
in [17, 18, 19, 37, 39].

In the model we propose, there are three types of decision variables:

1. A set of coordinates (xs,ys, zs): the position of each shot’s center is a
continuous variable to be chosen. We assume that S = {1,2,---,m}
denotes the set of m shots to be considered in the optimization. Nor-
mally, we have to choose n < m of these shots to be used.

2. A discrete set of collimator sizes: There are four focusing helmets



available that generate different width shots.
W = {dmm, 8mm, 14mm, 18mm}
denotes the choices of discrete widths that are available.

3. Radiation exposure time: t,, is the time each shot (s, w) is exposed.
It is known that the total dose delivered is a linear function of the
exposure time.

The dose delivered at a voxel (7, j, k) in unit time from a shot centered
at (xs,ys,2s) can be modeled by a nonlinear function D, (s, ys, 2s, 1, j, k)
[11, 25, 43]. The total dose delivered to a voxel (i, 7, k) from a given set of
shots can then be calculated as

DOS@(i,j, k’) = Z ts,wa(xsay&Z&ivja k) (3)
(s,w)eSXW

For each value of w € W, we use the following functional form

Dw(x&ys; 2551y k) =

2 V=22 43 = ya)? + ik — 202 =1
Ap | 1 —erf
£ 1o )

Op

to fit the ten parameters A,, p3, ps, 7, and o, to observed data via least-
squares. The notation erf (z) represents the integral of the standard normal
distribution from —oo to z.

In many cases, the planner wishes to limit the use of certain resources.
In the Gamma Knife case, there is a bound of n shots, and each shot must
have a specified width. If we introduce a binary variable 1, ,, that indicates
whether shot s uses width w or not, the following constraints implement the

above requirement:
0 < ts,w < %,wf (4)
Z(s,w)GSXW 7/’5,11; <n.
Note that the planner needs to specify an upper bound ¢ on the exposure
time of any shot. The typical range of values for n is 1 — 15.

It is easy to specify homogeneity in models simply by imposing lower
and upper bounds on the dose delivered to voxels in the target 7. Similar
bounding techniques can be used for avoidance requirements. The imposi-
tion of rigid bounds typically leads to plans that are too homogeneous and



not conformal enough, that is, they provide too much dose outside the tar-
get. To overcome this problem, the notion of “underdose” was suggested in
[18]:

Underdose(i, j, k) := max{0,0 — Dose(i,j,k)}.

Informally, underdose measures how much the delivered dose is below the
prescribed dose, 6, on the target voxels. Provided we minimize Underdose
we can implement this construct using linear constraints:

0 < Underdose(i, j, k) + Dose(i, j, k) (5)
0 < Underdose(i, j, k).

The basic model attempts to minimize the underdose subject to the
aforementioned constraints on conformity, homogeneity and avoidance.

min Z Underdose(i, j, k)
(4,9,k)ET

subject to  (3) dose definition
(5) underdose enforcement constraints
(2) conformity constraints
(1) dose volume histogram constraints
(4) resource use constraints
TsyYss Zs, ts,w €ER
0 < Dose(i,j, k) <U, V(i,j,k)eT
Vs w, Erxceed(i, j, k) € {0,1}

This model is a nonlinear, mixed integer programming problem. If we
choose a fixed set of shot locations (zs, ys, z5) then the model becomes a lin-
ear mixed integer programming problem with a collection (4m) of large data
matrices D (i, j, k) replacing the nonlinear functions D, (2, s, 2s, %, J, k) in
(3). Our investigations found such approaches to be impractical and not
as accurate as the scheme outlined below. For realistic instances, the data
and number of binary variables becomes very large and the models are un-
solvable within the available time limit. Furthermore, the solution quality
requires the shot centers to be determined accurately. We therefore resort to
methods that include the shot center locations as variables. Similar issues
arise in the brachytherapy application we describe later, and we outline a
different approach for the solution of that problem:.

To avoid the combinatorial issues associated with 1), ,, we use a smooth
nonlinear approximation H, to the step function:

Ha(t) — 2arctan(o¢t)'

™



For increasing values of «, H, becomes a closer approximation to the step
function for ¢ > 0. We replace (4) with

n= Y Ha(tsw) (7)

(s,w)eSxW

To reduce the number of voxels considered we use a coarse grid G of voxels
in the critical regions and refine the grid appropriately as the calculations
progress. To avoid the problems associated with calculating the dose at
every voxel in the volume, we approximate the total dose to the volume
using

(s,w)eESXW

where D,, is the (measured) dose delivered by a shot of size w to a “phan-
tom”. The quantities can be determined once, and used to generate a very
good estimate of the total dose delivered to the volume without performing
any dose calculations outside the target and the critical organ regions. This
leads to the following approximation to the conformity constraint (2):

C Z Dytsw < N Z Dose(i, j, k), (8)
(s,w)ESXW 90T (i j k)eGnT

where N. represents the number of voxels in the given volume.
Thus, the nonlinear programming model that we use to approximate the
solution of (6) has the following form:

min Z Underdose(i, j, k)
(3,9,k)eGNT
subject to  (3) dose definition
(5) underdose enforcement constraints
(8) approximated conformity constraints 9)
(7) approximated resource use constraints
T, Ysy Zsy ts,w € R
0 < Dose(i,j, k) < U, ¥Y(i,j,k) e GNT
0<tsw<t

A series of five optimization problems are solved to determine the treat-
ment plan. The model is solved iteratively (steps 2, 3, and 4 below) to reduce
the total time to find the solution. Our experience shows that combining
those three steps into one takes at least three times longer to converge, which
is often not clinically acceptable.



. Conformity estimation. In order to avoid calculating dose outside of
the target, we first solve an optimization problem on the target to
estimate an “ideal” conformity for the particular patient for a given
number of shots. The conformity estimate C' is passed to the basic
model as an input parameter. Details can be found in [17].

. Coarse grid estimate. Given the estimate of conformity C, we then
specify a series of optimization problems whose purpose is to minimize
the total underdose on the target for the given conformity. In order to
reduce the computational time required to determine the plan, we first
solve (9) on a coarse grid subset of the target voxels. We have found
it beneficial to use one or two more shot locations in the model than
the number requested by the user, that is S := {1,...,n + 2}, to allow
the optimization to choose not only useful sizes but also to discard the
extraneous shot locations.

. Refined grid estimate. To keep the number of voxels in the optimiza-
tion as small as possible, we only add to the coarse grid those voxels
on a finer grid for which the homogeneity (bound) constraints are vio-
lated. This procedure improves the quality of the plan without greatly
increasing the execution time.

. Shot reduction problem. In the solution steps given above, we use
a small value of «a, typically 6 to impose the constraint (7) in an
approximate manner. In the fourth solve, we increase the value of
« to 100 in an attempt to force the planning system to choose which
size/location pairs to use. At the end of this solve, there may still exist
some size/location pairs that have very small exposure times ¢. Also
note that our solution technique does not guarantee that the shots are
centered at locations within the target.

. Fixed location model. The computed solution may have more shots
used than the user requested and furthermore may not be imple-
mentable on the Gamma Knife since the coordinate locations cannot
be keyed into the machine. Our approach to adjust the optimization
solution to generate implementable coordinates for the shot locations
is to round the shot location values and then fix them. Once these
locations are fixed, the problem becomes linear in the intensity values
t. We reoptimize using (6) and force the user requested number of
size/location pairs precisely using a mixed integer program solver.

10



Note that the starting point for each of the models is the solution point
of the previous model. Details on how to generate an effective starting point
for the first model are given in [17]. All the optimization models are written
using the General Algebraic Modeling System (GAMS) [9] and solved using
CONOPT [12] or CPLEX [23].

A subset of the large number of holes in the focusing helmet can be
blocked in order to (locally) reduce the amount of radiation delivered or to
change the shape of the shot. By determining the amount of radiation that
each blocked hole removes and updating D,, appropriately, an extension of
the mixed integer model above can be used to further enhance the treatment
plan, and spare sensitive structures even more. The “block or not” decision
can be modeled using the approach outlined in (4), but this has yet to
be implemented in practice due to concerns from clinicians regarding the
chances of errors in the physical delivery process.

3 Brachytherapy Treatment Planning

Brachytherapy involves the use of radioactive sources such as catheters or
pellets (the latter are referred to as “seeds” below) that are placed within or
close to the tumor. A disease site that has been receiving a great deal of at-
tention for conformal treatment planning in brachytherapy is the prostate.
The number of diagnosed prostate cancer cases has increased due to the
widespread use of the PSA (prostate specific antigen) test. An option for
treating prostate cancer is permanent radioactive implant brachytherapy
under ultrasound guidance (that is, using needles for injection, the radioac-
tive seeds are permanently implanted in the prostate). While image-guided
3-D conformal treatment planning in brachytherapy is still in its infancy,
ultrasound-guided implantation of the prostate is one of the fastest growing
medical procedures in the country. The number of such implants is projected
to increase to over 100,000 by the year 2005 [2].

In contrast to the Gamma Knife model of the preceding section, the
radiation delivery variables for the brachytherapy model consist of only bi-
nary variables Seed(r, s, t) that take the value 1 if a seed is placed in voxel
(r,s,t) and 0 otherwise (note that seeds may only be placed within the tar-
get 7). For each possible seed position (r,s,t), a nonlinear dose function
(essentially modeling an inverse square law) may then be used to compute a
matrix D, s, of corresponding radiation doses for all voxels in the region of
interest. (Note that the entries of this matrix need only be computed once
from the nonlinear radiation function, since translations of this matrix will

11



yield dose matrices for other seed positions.) The total dose at voxel (i, 7, k)
is then given as the weighted sum of dose contributions to (i, j, k) from all
seeds:

Dose(i, 5, k) = Z D, s+(i,7,k) * Seed(r, s,t). (10)
(r,s,t)eT
The brachytherapy model also includes non-negative continuous under-
dose variables as defined in (5) for the target, as well as bounded non-
negative overdose variables for each voxel in each organ at risk (OAR):

Dose(i, j, k) — Overdose(i, j, k) < Uoar

0 < Overdose(i,j, k) < M —Uopar a

These relations place both soft and hard constraints on the doses to the
urethra and rectum. For [-125 implants the urethral and rectal threshold
doses Upapr are set to 217.5 Gy and 101.5 Gy respectively. For 1-125 the
upper dose limits M are set at 275 Gy and 145 Gy for the urethra and rec-
tum respectively by imposing the appropriate upper bounds on the overdose
variables.

Finally, the model contains binary variables Needle(i, j) that are forced
to have value 1 if a seed is placed at position (i, 7) in any plane k:

Seed(i,j, k) < Needle(i,j). (12)

These needle constraints model the mechanics of the implantation pro-
cess in which a template is used to position the seed-carrying needles and a
needle in position (4,7j) in the template can then implant seeds in position
(1,7) in several different planes k. Since it is undesirable to use a large num-
ber of needles, a resource use term representing a weighted sum of Needle
variables is used in the objective.

The overall model that we would like to solve then becomes:

min ok Z Underdose(i, j, k) + 3 * Z Overdose(i, j, k)
(i,5,k)ET (4,5,k)EOAR
+y % Z Needle(i, j)

(3,7)Etemplate
subject to (10) dose definition (13)
(5) underdose constraints, (11) overdose constraints
(12) needle use constraints
Seed(i, j, k), Needle(i,j) € {0,1}

12



where «, 3,7 are appropriately chosen weights.

Since this model involves so many variables, it is impractical to solve it
as a single MIP. Thus, we consider a collection of problems instead, each of
which focuses on a subset of variables and constraints that essentially reflects
seed implant decisions for a single plane k, assuming that some radiation is
already delivered to the voxels in plane k from seeds in the other planes. We
use the term “sequential optimization” for this process of cycling through
the planes one at a time, adjusting seed placement to optimize incremental
doses only in the plane currently under consideration (see [16] for details,
and for an alternative MIP based on coarse grids see [30]). For a fixed value
of the plane index k we thus need only the pair (4, j) to represent a voxel, and
incremental dose within a plane is modeled by replacing the dose equation
(10) by

Dose(i, j) = InterplaneDose(i, j)+ Z D, s 1(1, 7, k)xSeed(r, s, k), (14)
(r,s)E€Ty

where InterplaneDose(i, j) represents the dose contributed to voxel (i, 7, k)
from seeds in the other planes (as seed positions are changed, these dose
contributions are updated) and 7 is the subset of the target in plane k.
Another change needed in the overall model during application of the se-
quential approach is to update the needle constraints to account for needle
positions already in use in the other planes (so that no constraint or corre-
sponding objective function penalty is imposed for those template positions
already used in other planes). This simply requires a change in index sets.
Since the optimization is performed in sequential plane-by-plane manner, it
cannot accurately account for inter-plane variations in the location of the
urethra. The urethra is 3-dimensional and shows significant curvature. Poor
placement of the seeds in one plane may adversely affect the urethra in other
planes. To circumvent this problem, it is possible to add a small number of
additional constraints to a 2-D problem to reflect critical structures in nearby
planes. Details of this process may be found in [13]. These constraints are
termed positioning constraints. The net effect of these constraints is that
seeds are less likely to be placed in close proximity to the urethra thereby
also reducing the risk of significant impact on the dose distribution to the
critical structures in the event that the seeds are misplaced.

Sequential optimization for brachytherapy at the initial pre-plan stage
using mixed-integer programming and branch-and-bound has been previ-
ously discussed [16]. In that research, the initial values of InterplaneDose(i, j)
were based on estimated contributions from other planes, whereas here we

13



describe the method as modified for operating room (OR) based treatment
planning, in which the initial values of InterplaneDose(i,j) are based on
seed placements from the pre-plan. Our approach is also based on the
premise that the volume of the prostate (target) does not change signifi-
cantly (more than 5%) between the initial volume study performed weeks
before and the actual implant, and this is generally the case for early stage
(T1-T2) patients. This allows us to “hot start” the solution process not
only by starting with seed placements from the pre-plan, but also provides
for faster solutions by limiting seed placement deviations relative to that
pre-plan.

Prior to the start of the optimization process, the locations of seeds
obtained from the pre-treatment plan are reproduced in the new ultrasound
image data set. During optimization, we consider the dose contribution
from seeds in other planes up to a distance of 4 cm from the current plane
under consideration. Contributions from seeds at a distance greater than
4 cm is negligible [16]. Optimization starts with the outermost planes on
each side of the central plane, and proceeding toward the center planes from
alternating directions. We found this ordering to be desirable because the
small size of the outermost planes implies that there are few possible seed
positions, and in some cases it was difficult to deal with these planes once
the seed positions in the other slices had been fixed. We also inhibit the
introduction of extra needles by increasing the weight v on the number of
needles in the objective function as additional planes are optimized.

The optimization process itself is carried out using GAMS [9] and the
commercial mixed-integer programming branch-and-bound solver CPLEX
[23]. Using this software, solutions with a relative gap (the gap between the
best feasible solution generated and the lower bound of the relaxed mixed-
integer programming problem) of < 1% were obtained in all of the 2-D
problems.

In this research, data from 10 patients was used to test this re-optimization
framework. Below we consider only those 7 patients receiving radioactive io-
dine implants (see [13] for data on the additional patients, who received pal-
ladium implants, for whom a slightly different analysis is needed). The dose
distributions from the pre-treatment (both optimized and manual) plans for
the original contours were applied to the new set of contours. These dose
distributions were then compared with the dose distribution obtained from
the re-optimized plans.

The sequential re-optimization process in the OR can be executed in
a single iteration (sweep through all 2-D planar sections) with very good
results. Since the pre-treatment optimized plans generally result in loss
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Patient Pre-man. Pre-opt. OR re-opt. seeds needles

# (%) (%) (%) (av.)  (av)
1 97.4 94.5 95.3 101 24
2 92.5 95.5 97.2 104 24
3 90.4 93.3 94.8 102 24
4 95.2 93.6 97.0 100 22
5 96.1 93.8 94.7 79 18
6 91.7 92.7 93.3 102 27
7 93.7 95.2 95.2 102 26

Table 1: Target coverage of manual pre-plan vs optimized pre-plan vs OR
re-optimized plan

of target coverage when applied to the OR contours, one of the goals of re-
optimizing the pre-treatment optimized plan is increasing (recovering) target
coverage. At the same time, it is imperative that while achieving this end, no
unnecessary deterioration in the dose distribution to the critical structures
should occur. Although no undesirable dose increases were observed for the
urethra and rectum from the application of the pre-treatment plan to the
simulated OR contours, a significant improvement in the dose distribution
to the critical structures is achieved by re-optimizing. When compared with
the pre-treatment optimized plan, the volume of the rectum exceeding the
threshold of 101.5 Gy is reduced in most patients. In the other patients, the
increase in this volume is < 4% and the overdose fraction remains under 20%.
In cases in which the dose to the critical structures increases by re-optimizing
the pre-treatment optimized plan, this increase is counter-balanced by the
increase in target coverage.

The table below provides a partial comparison between pre-plan and
re-optimization results. Note that the OR plan always achieves at least
93% target coverage, and in those cases in which this does not represent an
improvement relative to both pre-plan results, the re-optimization provides
a significant improvement to the OAR dose (see [13] for additional tables
of results and DVH plots that give data for the urethra and rectum). For
example, for patient 1, the urethra overdose volume fraction is 15% for the
both pre-plans and 0% for the re-optimized plan. Note also the average
(over all three plans) counts for seeds and needles for each patient, which
provide insights into the complexity of treatment planning (seed and needle
counts do not vary significantly in the three plans).
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Figure 3 shows the difference between the target underdoses for the pre-
treatment optimized and re-optimized OR plans for the base and apex planes
in the prostate for a representative patient (patient 3). The difference be-
tween the plans is most pronounced in these planes. The underdoses (cold
spots) would be significant if the pre-treatment plan was used on the day of
the procedure. It can be seen from the figure that the re-optimized plan is
highly conformal and that significant cold spots are eliminated.
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Figure 2: Underdose of target regions for (a), (c) the pre-treatment plan

and (b), (d) the re-optimized plan. (a) and (b) show the base plane, while
(c) and (d) show the apex plane

In summary, treatment planning time in the OR is of great importance.
The mixed-integer sequential optimization framework allows the pre-plan
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to be used to provide initial estimates of seed positions and hence allows
the OR-based plan to be performed in about 1/3 of the pre-plan time (i.e.,
approximately 4 to 8 minutes using a 440 MHz processor).

For our collection of patient data, re-optimization of the treatment plan
using simulated OR contours resulted in an increase in target coverage rel-
ative to the optimized pre-plan in all cases (maximum increase was 3.4%).
Critical structure dose distribution was also improved appreciably. We also
found that the addition of positioning constraints to the basic optimization
model produced treatment plans that are more robust with respect to pos-
sible seed misplacement (simulated by small random displacements) in the
OR.

4 IMRT

Intensity modulated radiation therapy (IMRT) represents a rather sophisti-
cated approach in which each radiation treatment (out of a total of perhaps
10-45 such treatments for a patient) involves the application of intensity-
modulated beams of radiation from 5-9 different angles (relative to the pa-
tient) [4, 6, 8, 35, 44, 45, 46, 51]. The 10X10 centimeter beam cross-section
consists of a grid of 100 or more small beamlets of radiation. Intensity
modulation is usually accomplished via repeated adjustments of a multi-
leaf collimator (a beam blocking mechanism comprising 40 opposing pairs
of tungsten strips or leaves) in which the positions of beam-blocking tung-
sten leaves are set to allow the passage of radiation for a specified amount of
time only in those positions corresponding to the desired beamlets. From an
algebraic viewpoint, these binary radiation patterns are weighted by radia-
tion intensities (determined by the length of time radiation is emitted) and
the resulting weighted patterns are added together to produce the desired
intensity matrix for each angle. This fine level of control of the radiation
yields optimization models involving the choice of beam angles and beamlet
intensities.

At least two types of optimization problems arise in IMRT treatment
planning. The first is the intensity matching problem, and the second is
the overall treatment planning problem described above. In the intensity
matching problem, a desired integer matrix of beamlet intensities is specified
for a given beam angle, and this matrix must be optimally decomposed into
an intensity-weighted sum of binary shape matrices representing beamlet
patterns that are realizable via potential leaf positions in the collimator.
(There are a number of types of IMRT devices currently in clinical use, each
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of which has slightly different physical constraints that determine the leaf
positions that are possible for that device.)
A simple model for an intensity matching problem is

min f(¢,c¢)
subject to Ztk*Sk:I, 0<t< Me (15)
k
Ck € {071}7

where [ is the given integer intensity map matrix, the S are realizable
binary shape matrices, t; is a non-negative variable corresponding to the
radiation intensity (determined by beam-on time and bounded above by M)
associated with shape Si, and ¢ is a binary “shape counter” variable that
is forced to 1 if shape S is used (which is equivalent to ¢t > 0). A variety of
objective functions f (all of which deal with treatment time and complexity)
have been considered for the intensity matching problem, and we describe
some of these alternatives after providing some additional background about
this problem. Although this formulation has the advantage of simplicity, it
is impractical because of the enormous number of shapes Sy.

The intensity matching problem is of critical importance because ex-
isting treatment planning software often produces plans that are clinically
unacceptable because they require too many changes in the leaf positions
at a beam angle. For example, on some equipment the set-up time required
to recycle accelerator power (which must be done at each change in leaf
positions) is about 7 seconds, so a plan involving 50 leaf positions at each
of 9 beam angles (a not uncommon occurrence) would translate into a total
treatment time of about one hour, which is clinically undesirable because of
patient motion/discomfort problems and because of the need to treat large
numbers of patients on a daily basis. (There are other accelerators with
much smaller recycle times for which such a complex treatment plan would
result in a more acceptable 30 minute or less treatment time, but would still
be undesirable since the plan would produce unnecessary wear on the equip-
ment (relative to plans with fewer leaf adjustments) and less accuracy in the
delivery of radiation therapy). Langer [28] develops a different formulation
based on leaf position variables and considers two objectives: beam-on-time
(f(t,c) = >k tx) and cardinality (f(t,c¢) = > j ck). He circumvents the diffi-
culty of enumerating shape matrices by using binary variables I(7, j, k) and
r(i,7, k) corresponding to coverage of bixel (for beam pixel, or position in
the shape matrix) (7, 7) in shape k by portions of left and right leaves respec-
tively. The continuity of the left leaf in row ¢ in shape k is then enforced by
constraints of the form (i, j, k) > (i, j + 1, k) and analogous constraints ap-
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ply to the right leaves. (These binary variables may also be used to enforce
additional constraints known as “tongue and groove” constraints that relate
to adjacent bixels and, for certain types of IMRT machines, “leaf collision”
constraints that disallow overlap of left and right leaves in adjacent rows.)
Finally, the following constraint guarantees that each bixel is either open to
deliver radiation or covered by a leaf: (i, j, k)+7r (3, j, k)+b(i, j, k) = 1, where
b(i,j,k) is a binary variable that assumes value 1 if radiation is delivered
through position (7, j) for a unit time interval. Intensity match corresponds
to the constraints

> (i, g, k) =1(i,5) V(i,j). (16)
k

To deal with the minimum cardinality problem in which the number of
shapes is minimized (f(¢,¢) = > cx), the binary shape change variable ¢y,
is subjected to the constraints —ci < b(4,j, k) — b(4,j,k + 1) < ¢, forcing it
to 1 if any bixel changes from open to covered or vice-versa in the transition
from time period k to time period k£ + 1. Since large system of constraints
must be constructed for every time interval (that is, the range of & is at least
as long as the total treatment time), this approach gives rise to very large
constraint sets, but has been effective for problems in which the intensity
maps are not very complex.

An interesting shortest path approach to the intensity matching prob-
lem has been developed recently by Boland, et al. [3]. They consider the
easier (from an optimization viewpoint) objective of minimizing total beam-
on time (f(t,c) = > tx) and show that optimal solutions can be obtained
very quickly by solving a problem in a graph with certain side constraints.
Boland, et al. avoid the replication of constraint systems by constructing a
layered graph whose nodes represents possible pairs of left/right leaf posi-
tions for each successive row, and whose arcs represent allowable transitions
to the leaf pairs in the next row (leaf collision constraints are enforced by ex-
cluding certain arcs). They then observe that a path from the top row to the
bottom row in this graph corresponds to an allowable shape. The variables
are the flows on these paths, which correspond to intensity variables for the
left /right row segments. Side constraints are used to ensure intensity match.
By considering conformal decomposition of the flows into paths, it is easy
to see that minimizing total flow from sources to sinks is equivalent to min-
imizing beam-on time. The resulting problem is a linear program that can
usually be solved in under a minute with good LP software. However, this
approach does not extend readily to the minimum cardinality case, because
the graph model is based on flows and the cardinality problem would require
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a count of the number of paths used. Thus, there are clearly opportunities
for further research in this area, since Langer observes from his numerical
results that minimal beam-on time solutions may have relatively large car-
dinality. Column generation approaches that approximate the problem [34]
may be promising in this regard.

The IMRT treatment planning problem at the bixel level may be defined
in terms of intensity variables I(r,s,a) where (r,s) are bixel indices and a
is a beam angle index and D, ; (1, j, k) is the dose at (i, j, k) resulting from
a unit value of the integer variable I(r, s,a). The resulting model is similar
to the brachytherapy model in that the dose definition is given by:

DOS@(i,j, k) = Z Dns,a(iij k) * I(T7 S, CL). (17)

(r,s,a)

The optimization model may now be stated as:

min  ax Z Underdose(i, j, k) + [ * Z Overdose(i, j, k)
(i,5,k)€T (4,5,k)EOAR
17) dose definition

subject to (
(5) underdose constraints (18)
(

11) overdose constraints

I(r,s,a) integer.

Key difficulties with this model in addition to its overall size and number
of integer variables include choosing promising beam angles. Note that a
solution of this model will result in bixel intensity maps (for each shot an-
gle), and these must then be decomposed via solutions of intensity matching
problems in order to obtain the final treatment plan. New techniques for
the full IMRT treatment planning problem have been proposed in [40] (using
simulated annealing) and [34] (using column generation). Possibilities for
future research include slicing approaches analogous to those that we have
previously successfully employed for brachytherapy [14, 15]. In the slicing
approach, radiation delivery would be optimized for a selected beam angle,
assuming a certain total amount of radiation to tissues from the remain-
ing beam angles, and then this optimization procedure would be repeated
one beam angle at a time for a promising list of beam angles. The slicing
approach has the advantage of significantly reducing the size of the opti-
mization problems considered, but requires the construction of a good set
of initial conditions, including a good priority list for beam angles. Ongoing
work is focusing on methodology to rank beam angle suitability for a given
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treatment. Nested partitions [26] may also be useful in this context in terms
of providing a structured approach for stochastically sampling the space of
beam angles and shape matrices.

5 Conclusions and Directions for Future Research

The large-scale combinatorial problems arising from radiation treatment
planning offer significant challenges to the optimization community because
they contain large numbers of variables and constraints as well as large
amounts of data. We have shown here that carefully tailored optimiza-
tion approaches that approach the “ideal” version of treatment planning
problems through a series of simpler problems and “hot starts” can yield
high-quality treatment plans in areas of both teletherapy and brachyther-
apy. However, there remain many open problems because of the diversity
and ever increasing complexity of radiation delivery mechanisms. In partic-
ular, treatment planning problems arising in intensity modulated radiation
therapy represent an extremely complex class of optimization problems for
which fast techniques that provide results of guaranteed quality are currently
needed. Given the critical importance of utilizing radiation technology in a
manner that maximizes tumor control and minimizes harmful radiation to
the patient, and the impracticality of dealing with this complex technology
by trial-and-error, we are confident that researchers in optimization will be
able to develop the effective new software tools that are needed.
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