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Electricity Markets 3

Principle
- Independence between the grid manager (RTO) and the market
participants (companies producing power, retailers, . . . )

- One regulator Federal Energy Regulatory Commission (FERC)

Regional Transmission Organization (RTO)
- Manages the network (transmission lines)
- Ensures that the demand is met
- Organise the auction processes
- an RTO has greater responsibility than an Independent System
Operator (ISO)



Electricity Markets: Timeline 4
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Figure 1: Representative decision-making timescales in electric power systems

environment presents. As an example of coupling of decisions across time scales, consider decisions
related to the siting of major interstate transmission lines. One of the goals in the expansion of
national-scale transmission infrastructure is that of enhancing grid reliability, to lessen our nation’s
exposure to the major blackouts typified by the eastern U.S. outage of 2003, and Western Area
outages of 1996. Characterizing the sequence of events that determines whether or not a particular
individual equipment failure cascades to a major blackout is an extremely challenging analysis.
Current practice is to use large numbers of simulations of power grid dynamics on millisecond to
minutes time scales, and is influenced by such decisions as settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded. As described below, we
intend to build on our previous work to cast this as a phase transition problem, where optimization
tools can be applied to characterize resilience in a meaningful way.

In addition to this coupling across time scales, one has the challenge of structural differences
amongst classes of decision makers and their goals. At the longest time frame, it is often the
Independent System Operator, in collaboration with Regional Transmission Organizations and
regulatory agencies, that are charged with the transmission design and siting decisions. These
decisions are in the hands of regulated monopolies and their regulator. From the next longest
time frame through the middle time frame, the decisions are dominated by capital investment and
market decisions made by for-profit, competitive generation owners. At the shortest time frames,
key decisions fall back into the hands of the Independent System Operator, the entity typically
charged with balancing markets at the shortest time scale (e.g., day-ahead to 5-minute ahead), and
with making any out-of-market corrections to maintain reliable operation in real time. In short,
there is clearly a need for optimization tools that effectively inform and integrate decisions across
widely separated time scales and who have differing individual objectives.

The purpose of the electric power industry is to generate and transport electric energy to
consumers. At time frames beyond those of electromechanical transients (i.e. beyond perhaps, 10’s
of seconds), the core of almost all power system representations is a set of equilibrium equations
known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages
to the flow of active and reactive power through the network and to power injections into the
network. With specified load (consumer) active and reactive powers, generator (supplier) active
power injections and voltage magnitude, the power flow equations may be solved to determine
network power flows, load bus voltages, and generator reactive powers. A solution may be screened
to identify voltages and power flows that exceed specified limits in the steady state. A power flow
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Current limitation: limited investments 5

Capacity shortage
- Few incentives to invest in new facilities or expand/maintain capacity
- Cannot force generators to invest
- There is a high initial investment cost
- Trivia: cannot produce more power than the available capacity

Main issues
- High electricity prices
- Volatility of prices
- Loss of reliability (increased risk of blackout)
- Inability to meet the (future) demand



ISONE’s response: Forward capacity 6

Forward Capacity Market (FCM)
- “Ensures that the New England power system will have sufficient
resources to meet the future demand for electricity”

- provides an incentive for companies to make investments
- the cost is supported by the consumers

Forward Capacity Auction (FCA)
- held annually 3 years in advance
- supply capacity in exchange for market-priced capacity payment
- formulated as an optimization problem



Benefits from an increase in capacity? 7

ISO’s perspective: ICR
- (N)ICR: (Net) Installed Capacity Requirement
- ≈ lower bound on the required capacity to meet reliability standards
- criterion for ISONE: “interrupting non-interruptible load, on average,
no more than once every 10 years”

Consumer’s perspective: EENS minimization
- EENS: Expected Energy Not Served (MWh/year)
- estimate of the demand not met
- depends on the total capacity installed
- computed via Monte-Carlo simulation of scenarios of line and generator
failures



FCA optimization problem 8

Objective function has 2 terms:

cT q︸︷︷︸
Cost of capacity

+ PF ·EENS(QICZ , QSY S)︸ ︷︷ ︸
Cost of lost load

- PF penalty factor ($/MWh), c cost vector, q capacities, qi = 0 or q̄i
- QSY S =

∑
i∈I

qi, QICZ =
∑
i∈J

qi,J ⊂ I

- solution of the optimization problem minimizes this total cost:
- cost supported by the consumers (cT q)
- reliability cost

- The penalty factor PF is chosen by ISONE so that the generators
have a clear incentive to invest if the capacity is smaller than NICR

- There is a import zone constraint (ICZ)



Price formation 9

Economic motivation: benefit associated with increased reliability

price offered for a fixed QSY S : − PF · ∂EENS
∂QICZ

Economic motivation: Investment
promotion
- ISONE wants generators to invest
in their infrastructure

- Cost is supported by the consumers
- No need to invest when there is
already enough capacity

NICR

Capacity

Pr
ice



Working hypothesis 10

Assumptions on the EENS function
- EENS(QSY S , QICZ) is a smooth convex function
- Cannot be represented as a quadratic function

- ∂EENS(QSY S , QICZ)
∂QICZ

is a concave function.

Desired properties of the approximate function
- amenable to efficient computation
- preserve the shape of the unknown function
- inherit smoothness property

High-level constraint
- Market participants have to agree on the process beforehand
- Optimization problem has to be solved in a few hours
- Computed price must decrease as the capacity QSY S increases



Stylised problem 11

Main optimization problem: MIQP

min
x,y

f(x) + g(y) s.t. (x, y) ∈ P, xi ∈ {0, 1}, i ∈ I (1)

- f is convex
- P is convex polyhedral
- g is unknown: g(y) is computed by running a long simulation
- y is in a low dimensional space

This problem has to be solved to optimality and in a few hours

Outputs from MIQP (1)
- minimizer pair (x∗, y∗)
- continuous gradient ∇g(y∗)



Proposed procedure 12

Construct the approximate function ĝ (offline part)
- Convex function ĝ(y) := max

i
ĝi(y) with ĝi(y) := aTi y + bi

- Easy to work with (computationally) but no smoothness
- Find ĝ via its epigraph by computing an inner approximation of epi g

Solve optimization problem (FCA) (online part)
Compute (x∗, y∗) solution to the MIQP

min
x,y

f(x) + ĝ(y) s.t. (x, y) ∈ P, xi ∈ {0, 1}, i ∈ I (2)

Moreau-Yosida regularisation (online part)
- The subdifferential ∇ĝ is multivalued
- Compute a regularised gradient of ĝ at the solution y∗ of (2)



Piecewise-Linear (PL) ĝ: Procedure 13

Function construction: ĝ := maxi ĝi
1 Compute g(yi) for some yi ∈ Y
2 Check the convexity assumption (via LP) on vi := (yi, g(yi))
3 Get the H-representation (Hx ≤ b) from the V -representation (conv vi)
4 Extract epi ĝ by removing the hyperplanes forming the “lid” of conv vi
5 Recover the linear functions ĝi from H and b.

Hyperplane separation LP (Fukuda’s online FAQ)

max
h∈Rm+1

, h0∈R
hT vk − h0

s.t. hT vi − h0 ≤ 0 ∀i 6= k

hT vk − h0 ≤ 1 (boundedness of the objective value)
hT ṽk − h0 ≤ 0 ṽk := (yk, 2gmax) and gmax := max

i
g(yi)
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PL ĝ construction: Vertices 14
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PL ĝ construction: conv vi 15



PL ĝ construction: epi ĝ 16



Moreau-Yosida approximation: Basics 17

Function “level”
With ĝ a convex function, its Moreau-Yosida approximation is defined as

g̃(y) := min
z
ĝ(z) + 1

2λ‖z − y‖
2
2 (3)

- z∗ unique solution to (3) is the proximal point
- g̃ is at least C1

- g̃ is also convex
- Proximal point algorithm: xk+1 is the proximal point

Operator (subgradient) “level”
The subdifferential ∂ĝ : Rn ⇒ Rn is maximal monotone (ĝ is convex)

- The regularised gradient ∇g̃ is single-valued maximal monotone
- ∇g̃ := (λI + (∂ĝ)−1)−1

- ∇g̃(y) = 1
λ(y − z∗)



Moreau-Yosida approximation: Illustration 18

PL function ĝ
ĝλ with λ = 0.1
ĝλ with λ = 0.5
ĝλ with λ = 1

Gradients evolution

λ controls the
“smoothness”



Moreau-Yosida approximation: influence of λ 19

A few observations
- The parameter λ “controls” how far the proximal point will be from
the point of interest.

- The gradient ∇g̃ is Lipschitz: ‖∇g̃(y1)− g̃(y2)‖ ≤ λ−1‖y1 − y2‖.
Hence the smoothing effect grows with λ.

- g̃ ≡ min
y
ĝ(y) when λ→∞

- With large λ, the shape of g̃ is close to a quadratic

- Too much information is lost with a large value of λ

Capacity

Pr
ice



Normalised price evolution for different λ 20
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Moreau-Yosida approximation: Bregman distance 21

- 1
2λ‖z − y‖

2
2 can be seen as a penalisation term

- Use a different distance, which may change with y

Bregman distance
- h : D → R, strictly convex and C2

- Dh(z, y) := h(z)− h(y)−∇h(y)T (z − y) is a distance
- Example: if h = 1

2‖ · ‖
2
2, then Dh(z, y) = 1

2‖z − y‖
2
2

- With additional assumptions on Dh, the function defined as

g̃(y) := min
z
ĝ(z) + 1

λDh(z, y)

- For proximal point algorithm with Bregman distances, see [Censor &
Zenios, 1992], [Eckstein 90’s], [Eckstein & Silva], . . .

− Give more flexibility, may better capture the shape of the function
− Quite adhoc and the problem is usually nonlinear



Moreau-Yosida approximation: proximal average 22

Proximal average: Homotopy between epigraphs
- Proximal average P(f0, f1, µ) is a continuous transformation between
2 convex functions f0 and f1

- P(f0, f1, µ)(x) := −minz −µf̃0(z)− (1− µ)f̃1(z) + 1
2λ‖z − x‖

2
2

- With f̃0(z) and f̃1(z) the Moreau envelopes with parameter λ

Averages of f0(x) = x+ 2 and the quadratic function f1(x) = x2:
Arithmetic (left) and proximal (right). [Bauschke, Lucet, Trienis, 2007]



Moreau-Yosida approximation: proximal average 23

Motivations
- If we have an under estimator ĝ and over estimator ḡ, the function g is
“in between”.

- Also use this information in the regularisation

Procedure
- ĝ computed as before as a subset of epi g
- Compute ḡ via an outer approximation of epi g: supporting
hyperplanes at vertices

- Compute proximal average instead of the Moreau-Yosida approximation



Perspectives 24

Noisy evaluation of g
- Function values g(yi) may be noisy but are completely trusted
- May loose convexity, gives back wrong gradients
- Noise effects are mostly local, except for points on the boundaries of Y
- Idea: smoothing via local convex quadratic fit

Couple the MIQP and the Moreau-Yosida approximation
- Currently an MIQP is solved and then the regularised gradient is
computed

- The two could be merged (with classical Moreau-Yosida approximation)

Extension to other instances
- Apply this approach to other types of problem
- Use this penalty based method to get an approximated solution vs
solving exact problem



Conclusion 25

Context
- “Nice” (convex) optimization problem but with partially known
objective function

- Computationally effective and retain lots of features (convexity, shape)

Approach presented
- Use a convex piecewise-linear function ĝ because it is convex and the
fitting is easy

- The differentiability property is obtained afterward via the
Moreau-Yosida approximation
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