Optimization of the sum of a convex surrogate and quadratic objective: Example from Electricity Markets

Olivier Huber

WID – University of Wisconsin–Madison

Joint work with: Michael Ferris and Lisa Tang

Collaboration: ISO New England
Outline

1. Forward Capacity Market
2. MIQP with partially known (closed-loop form) objective function
3. Piecewise-linear approximation
4. Moreau-Yosida approximation to recover differentiability
Electricity Markets

Principle

- Independence between the grid manager (RTO) and the market participants (companies producing power, retailers, . . .)
- One regulator Federal Energy Regulatory Commission (FERC)

Regional Transmission Organization (RTO)

- Manages the network (transmission lines)
- Ensures that the demand is met
- Organise the auction processes
- an RTO has greater responsibility than an Independent System Operator (ISO)
The purpose of the electric power industry is to generate and transport electric energy to consumers. At time frames beyond those of electromechanical transients (i.e., beyond perhaps, 10's of seconds), the core of almost all power system representations is a set of equilibrium equations known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages to the flow of active and reactive power through the network and to power injections into the network. With specified load (consumer) active and reactive powers, generator (supplier) active power injections and voltage magnitude, the power flow equations may be solved to determine network power flows, load bus voltages, and generator reactive powers. A solution may be screened to identify voltages and power flows that exceed specified limits in the steady state. A power flow...
Current limitation: limited investments

Capacity shortage
- Few incentives to invest in new facilities or expand/maintain capacity
- Cannot force generators to invest
- There is a high initial investment cost
- Trivia: cannot produce more power than the available capacity

Main issues
- High electricity prices
- Volatility of prices
- Loss of reliability (increased risk of blackout)
- Inability to meet the (future) demand
Forward Capacity Market (FCM)
- “Ensures that the New England power system will have sufficient resources to meet the future demand for electricity”
- provides an incentive for companies to make investments
- the cost is supported by the consumers

Forward Capacity Auction (FCA)
- held annually 3 years in advance
- supply capacity in exchange for market-priced capacity payment
- formulated as an optimization problem
ISO’s perspective: ICR
- **(N)ICR**: (Net) Installed Capacity Requirement
- \(\approx \) lower bound on the required capacity to meet reliability standards
- Criterion for ISONE: “interrupting non-interruptible load, on average, no more than once every 10 years”

Consumer’s perspective: EENS minimization
- **EENS**: Expected Energy Not Served (MWh/year)
- estimate of the demand not met
- depends on the total capacity installed
- computed via Monte-Carlo simulation of scenarios of line and generator failures
FCA optimization problem

Objective function has 2 terms:

$$c^T q + PF \cdot EENS(Q_{ICZ}, Q_{SYS})$$

- Cost of capacity
- Cost of lost load

- PF penalty factor ($$/MWh), c$ cost vector, q capacities, $q_i = 0$ or \overline{q}_i

- $Q_{SYS} = \sum_{i \in I} q_i$, $Q_{ICZ} = \sum_{i \in J} q_i$, $J \subset I$

- solution of the optimization problem minimizes this total cost:
 - cost supported by the consumers ($c^T q$)
 - reliability cost

- The penalty factor PF is chosen by ISONE so that the generators have a clear incentive to invest if the capacity is smaller than NICR

- There is a import zone constraint (ICZ)
Economic motivation: benefit associated with increased reliability

Price offered for a fixed Q_{SYS}:

$$-PF \cdot \frac{\partial EENS}{\partial Q_{ICZ}}$$

Economic motivation: Investment promotion

- ISONE wants generators to invest in their infrastructure
- Cost is supported by the consumers
- No need to invest when there is already enough capacity
Working hypothesis

Assumptions on the EENS function

- \(EENS(Q_{SYS}, Q_{ICZ}) \) is a smooth convex function
- Cannot be represented as a quadratic function
- \(\frac{\partial EENS(Q_{SYS}, Q_{ICZ})}{\partial Q_{ICZ}} \) is a concave function.

Desired properties of the approximate function

- amenable to efficient computation
- preserve the shape of the unknown function
- inherit smoothness property

High-level constraint

- Market participants have to agree on the process beforehand
- Optimization problem has to be solved in a few hours
- Computed price must decrease as the capacity \(Q_{SYS} \) increases
Main optimization problem: MIQP

\[
\min_{x,y} \quad f(x) + g(y) \quad \text{s.t.} \quad (x, y) \in P, x_i \in \{0, 1\}, \ i \in \mathcal{I} \tag{1}
\]

- \(f \) is convex
- \(P \) is convex polyhedral
- \(g \) is unknown: \(g(y) \) is computed by running a long simulation
- \(y \) is in a low dimensional space

This problem has to be solved to optimality and in a few hours

Outputs from MIQP (1)

- minimizer pair \((x^*, y^*)\)
- continuous gradient \(\nabla g(y^*) \)
Proposed procedure

Construct the approximate function \hat{g} (offline part)

- Convex function $\hat{g}(y) := \max_i \hat{g}_i(y)$ with $\hat{g}_i(y) := a_i^T y + b_i$
- Easy to work with (computationally) but no smoothness
- Find \hat{g} via its epigraph by computing an inner approximation of $\text{epi } g$

Solve optimization problem (FCA) (online part)

Compute (x^*, y^*) solution to the MIQP

\[
\min_{x, y} f(x) + \hat{g}(y) \quad \text{s.t.} \quad (x, y) \in P, x_i \in \{0, 1\}, i \in \mathcal{I}
\]

Moreau-Yosida regularisation (online part)

- The subdifferential $\nabla \hat{g}$ is multivalued
- Compute a regularised gradient of \hat{g} at the solution y^* of (2)
Function construction: \(\hat{g} := \max_i \hat{g}_i \)

1. Compute \(g(y_i) \) for some \(y_i \in Y \)
2. Check the convexity assumption (via LP) on \(v_i := (y_i, g(y_i)) \)
3. Get the \(H \)-representation \((Hx \leq b) \) from the \(V \)-representation \((\text{conv \: } v_i) \)
4. Extract \(\text{epi} \: \hat{g} \) by removing the hyperplanes forming the “lid” of \(\text{conv} \: v_i \)
5. Recover the linear functions \(\hat{g}_i \) from \(H \) and \(b \).
Piecewise-Linear (PL) \hat{g}: Procedure

Function construction: $\hat{g} := \max_i \hat{g}_i$

1. Compute $g(y_i)$ for some $y_i \in Y$
2. Check the convexity assumption (via LP) on $v_i := (y_i, g(y_i))$
3. Get the H-representation ($Hx \leq b$) from the V-representation ($\text{conv} v_i$)
4. Extract $\text{epi} \hat{g}$ by removing the hyperplanes forming the “lid” of $\text{conv} v_i$
5. Recover the linear functions \hat{g}_i from H and b.

Hyperplane separation LP (Fukuda’s online FAQ)

$$
\begin{align*}
\max_{h \in \mathbb{R}^m, h_0 \in \mathbb{R}} & \quad h^T v_k - h_0 \\
\text{s.t.} & \quad h^T v_i - h_0 \leq 0 & \forall i \neq k \\
& \quad h^T v_k - h_0 \leq 1 & \text{(boundedness of the objective value)} \\
& \quad h^T \tilde{v}_k - h_0 \leq 0 & \tilde{v}_k := (y_k, 2g_{\text{max}}) \text{ and } g_{\text{max}} := \max_i g(y_i)
\end{align*}
$$
PL \hat{g} construction: Vertices
PL \hat{g} construction: $\text{conv } v_i$
PL \(\hat{g} \) construction: epi \(\hat{g} \)
Function “level”

With \(\hat{g} \) a convex function, its Moreau-Yosida approximation is defined as

\[
\tilde{g}(y) := \min_z \hat{g}(z) + \frac{1}{2\lambda} \| z - y \|^2
\]

- \(z^* \) unique solution to (3) is the proximal point
- \(\tilde{g} \) is at least \(C^1 \)
- \(\tilde{g} \) is also convex
- Proximal point algorithm: \(x^{k+1} \) is the proximal point

Operator (subgradient) “level”

The subdifferential \(\partial \hat{g} : \mathbb{R}^n \rightharpoonup \mathbb{R}^n \) is maximal monotone (\(\hat{g} \) is convex)

- The regularised gradient \(\nabla \tilde{g} \) is single-valued maximal monotone
- \(\nabla \tilde{g} := (\lambda I + (\partial \hat{g})^{-1})^{-1} \)
- \(\nabla \tilde{g}(y) = \frac{1}{\lambda} (y - z^*) \)
Moreau-Yosida approximation: Illustration

\[\hat{g}^\lambda \text{ with } \lambda = 0 \]

\[\hat{g}^\lambda \text{ with } \lambda = 0.1 \]

\[\hat{g}^\lambda \text{ with } \lambda = 0.5 \]

\[\hat{g}^\lambda \text{ with } \lambda = 1 \]

Gradients evolution

λ controls the "smoothness"
A few observations

- The parameter \(\lambda \) “controls” how far the proximal point will be from the point of interest.

- The gradient \(\nabla \tilde{g} \) is Lipschitz: \(\| \nabla \tilde{g}(y_1) - \tilde{g}(y_2) \| \leq \lambda^{-1} \| y_1 - y_2 \| \). Hence the smoothing effect grows with \(\lambda \).

- \(\tilde{g} \equiv \min_y \hat{g}(y) \) when \(\lambda \to \infty \)

- With large \(\lambda \), the shape of \(\tilde{g} \) is close to a quadratic

- Too much information is lost with a large value of \(\lambda \)
Normalised price evolution for different λ
- $\frac{1}{2\lambda}\|z - y\|_2^2$ can be seen as a penalisation term
- Use a different distance, which may change with y

Bregman distance

- $h: D \rightarrow \mathbb{R}$, strictly convex and C^2
- $D_h(z, y) := h(z) - h(y) - \nabla h(y)^T(z - y)$ is a distance
- Example: if $h = \frac{1}{2}\|\cdot\|_2^2$, then $D_h(z, y) = \frac{1}{2}\|z - y\|_2^2$
- With additional assumptions on D_h, the function defined as

$$\tilde{g}(y) := \min_z \hat{g}(z) + \frac{1}{\lambda}D_h(z, y)$$

- For proximal point algorithm with Bregman distances, see [Censor & Zenios, 1992], [Eckstein 90’s], [Eckstein & Silva], ...

- Give more flexibility, may better capture the shape of the function
- Quite adhoc and the problem is usually nonlinear
Proximal average: Homotopy between epigraphs

- Proximal average $\mathcal{P}(f_0, f_1, \mu)$ is a continuous transformation between 2 convex functions f_0 and f_1

\[
\mathcal{P}(f_0, f_1, \mu)(x) := - \min_z -\mu \tilde{f}_0(z) - (1 - \mu) \tilde{f}_1(z) + \frac{1}{2\lambda} \|z - x\|_2^2
\]

- With $\tilde{f}_0(z)$ and $\tilde{f}_1(z)$ the Moreau envelopes with parameter λ

Averages of $f_0(x) = x + 2$ and the quadratic function $f_1(x) = x^2$: Arithmetic (left) and proximal (right). [Bauschke, Lucet, Trienis, 2007]
Motivations

- If we have an under estimator \hat{g} and over estimator \bar{g}, the function g is “in between”.
- Also use this information in the regularisation

Procedure

- \hat{g} computed as before as a subset of $\text{epi } g$
- Compute \bar{g} via an outer approximation of $\text{epi } g$: supporting hyperplanes at vertices
- Compute proximal average instead of the Moreau-Yosida approximation
Noisy evaluation of g
- Function values $g(y_i)$ may be noisy but are completely trusted
- May lose convexity, gives back wrong gradients
- Noise effects are mostly local, except for points on the boundaries of Y
- Idea: smoothing via local convex quadratic fit

Couple the MIQP and the Moreau-Yosida approximation
- Currently an MIQP is solved and then the regularised gradient is computed
- The two could be merged (with classical Moreau-Yosida approximation)

Extension to other instances
- Apply this approach to other types of problem
- Use this penalty based method to get an approximated solution vs solving exact problem
Conclusion

Context
- “Nice” (convex) optimization problem but with partially known objective function
- Computationally effective and retain lots of features (convexity, shape)

Approach presented
- Use a convex piecewise-linear function \hat{g} because it is convex and the fitting is easy
- The differentiability property is obtained afterward via the Moreau-Yosida approximation