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@ Forward Capacity Market
@ MIQP with partially known (closed-loop form) objective function
© Piecewise-linear approximation

@ Moreau-Yosida approximation to recover differentiability



Electricity Markets

Principle
- Independence between the grid manager (RTO) and the market
participants (companies producing power, retailers, ...)

- One regulator Federal Energy Regulatory Commission (FERC)

Regional Transmission Organization (RTO)
- Manages the network (transmission lines)
- Ensures that the demand is met
- Organise the auction processes

- an RTO has greater responsibility than an Independent System
Operator (ISO)




Electricity Markets: Timeline
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Current limitation: limited investments

Capacity shortage
- Few incentives to invest in new facilities or expand/maintain capacity
- Cannot force generators to invest
- There is a high initial investment cost

- Trivia: cannot produce more power than the available capacity

Main issues
- High electricity prices
- Volatility of prices
- Loss of reliability (increased risk of blackout)

- Inability to meet the (future) demand




ISONE’s response: Forward capacity

Forward Capacity Market (FCM)

- “Ensures that the New England power system will have sufficient
resources to meet the future demand for electricity”

- provides an incentive for companies to make investments

- the cost is supported by the consumers

Forward Capacity Auction (FCA)
- held annually 3 years in advance
- supply capacity in exchange for market-priced capacity payment

- formulated as an optimization problem




Benefits from an increase in capacity? 7

ISO’s perspective: ICR
- (N)ICR: (Net) Installed Capacity Requirement
- =~ lower bound on the required capacity to meet reliability standards

- criterion for ISONE: “interrupting non-interruptible load, on average,
no more than once every 10 years”

Consumer’s perspective: EENS minimization
- EENS: Expected Energy Not Served (MWh /year)
- estimate of the demand not met
- depends on the total capacity installed

- computed via Monte-Carlo simulation of scenarios of line and generator
failures
v




FCA optimization problem

Objective function has 2 terms:

T
cq +  PF-EENS(Qrcz,Qsys)
Cost of capacity Cost of lost load

PF penalty factor ($/MWh), ¢ cost vector, ¢ capacities, ¢; = 0 or ¢;
- Qsys =2 4 Qicz=)Y_ 4, JCTI

i€ 1eJ

solution of the optimization problem minimizes this total cost:

- cost supported by the consumers (ch)
- reliability cost

The penalty factor PF' is chosen by ISONE so that the generators
have a clear incentive to invest if the capacity is smaller than NICR

There is a import zone constraint (ICZ)




Price formation

Economic motivation: benefit associated with increased reliability
OEENS

price offered for a fixed Qgyg: — PF - ———
IQrcz

Economic motivation: Investment
promotion

- ISONE wants generators to invest
in their infrastructure

Price

- Cost is supported by the consumers

- No need to invest when there is
already enough capacity

Capacity



Working hypothesis

Assumptions on the EENS function
- EENS(Qgys,Qrcz) is a smooth convex function

- Cannot be represented as a quadratic function
_ OEENS(Qsys; Qrcz)
9Q1cz

is a concave function.

Desired properties of the approximate function
- amenable to efficient computation
- preserve the shape of the unknown function

- inherit smoothness property

High-level constraint
- Market participants have to agree on the process beforehand
- Optimization problem has to be solved in a few hours

- Computed price must decrease as the capacity (Qgy g increases




Stylised problem 11

Main optimization problem: MIQP

%ﬂyn f(x)+g(y) st (z,y) € Px;€{0,1},ieZ (1)

f is convex

- P is convex polyhedral

g is unknown: ¢(y) is computed by running a long simulation
- y is in a low dimensional space

This problem has to be solved to optimality and in a few hours

Outputs from MIQP (1)

- minimizer pair (z7,y")

- continuous gradient Vg(y™)




Proposed procedure 12

Construct the approximate function § (offline part)
- Convex function §(y) := max g,;(y) with g;(y) := aiTy +b;
(]
- Easy to work with (computationally) but no smoothness

- Find g via its epigraph by computing an inner approximation of epig

Solve optimization problem (FCA) (online part)
Compute (z*,4") solution to the MIQP

min - f(z) +4(y) st (z,y) € Pz €{0,1}iel (2)
Moreau-Yosida regularisation (online part)

- The subdifferential V§ is multivalued
- Compute a regularised gradient of § at the solution 3™ of (2)




Piecewise-Linear (PL) §: Procedure 13

Function construction: § := max; g;

@ Compute g(y;) for some y; € Y

@ Check the convexity assumption (via LP) on v; == (v;, 9(v;))

© Get the H-representation (Hz < b) from the V-representation (conv v;)
Q Extract epi g by removing the hyperplanes forming the “lid" of conv v,

© Recover the linear functions §; from H and b.




Piecewise-Linear (PL) §: Procedure 13

Function construction: § := max; g;

@ Compute g(y;) for some y; € Y

@ Check the convexity assumption (via LP) on v; == (v;, 9(v;))

© Get the H-representation (Hz < b) from the V-representation (conv v;)
Q Extract epi g by removing the hyperplanes forming the “lid" of conv v,

© Recover the linear functions §; from H and b.

Hyperplane separation LP (Fukuda's online FAQ)

max thk — hy
RER™ ! hoeR

st. hlu,—hg<0 Vi#k
o —hy < 1 (boundedness of the objective value)

T ~ ~
h U — hO <0 Vg, = (ylm 2gmax) and Imaz = mZan(y1>
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PL § construction: conv v; 15
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PL § construction: epig 16
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Moreau-Yosida approximation: Basics 17

Function “level”
With g a convex function, its Moreau-Yosida approximation is defined as

= . A

d(y) = min§(2) + 5511z — yll3 (3)

- 2" unique solution to (3) is the proximal point

g is at least o

g is also convex
k+

Proximal point algorithm: x Lis the proximal point

Operator (subgradient) “level”

The subdifferential 9g: R"™ = R" is maximal monotone (g is convex)
- The regularised gradient Vg is single-valued maximal monotone
- V= (M +(09) )
- Vily) = 3y = )




Moreau-Yosida approximation: lllustration
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A controls the
] “smoothness”

18



Moreau-Yosida approximation: influence of \

A few observations

The parameter A “controls” how far the proximal point will be from
the point of interest.

The gradient Vg is Lipschitz: ||Vg(yr) — g(y2)|| < )flﬂyl — Yal|-
Hence the smoothing effect grows with A.

g= mying(y) when A — oo

With large A, the shape of g is close to a quadratic

19

Too much information is lost with a large value of A

Price

Capacity



Normalised price evolution for different \ 20
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Moreau-Yosida approximation: Bregman distance 21

- a2 — y||5 can be seen as a penalisation term

- Use a different distance, which may change with y

Bregman distance

- h: D — R, strictly convex and c?
- Dy(z,y) = h(z) — h(y) — Vh(y)" (z — y) is a distance
Example: if h = || - ||3, then Dy (z,y) = 1|z — yl)3

With additional assumptions on D;,, the function defined as

g(y) = min j(z) + 3 Dy(2,y)

For proximal point algorithm with Bregman distances, see [Censor &
Zenios, 1992], [Eckstein 90's], [Eckstein & Silva], ...

— Give more flexibility, may better capture the shape of the function

— Quite adhoc and the problem is usually nonlinear



Moreau-Yosida approximation: proximal average 22

Proximal average: Homotopy between epigraphs

- Proximal average P(fy, f1, 1) is a continuous transformation between
2 convex functions fy and f;

- P(fo, f1,#)(2) = — min, —Mfo(z) - (1= M)fl(z) + in - 5U||§
- With fy(2) and f;(z) the Moreau envelopes with parameter A
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Averages of fo(z) = = + 2 and the quadratic function f;(z) = 2%
Arithmetic (left) and proximal (right). [Bauschke, Lucet, Trienis, 2007]



Moreau-Yosida approximation: proximal average 23

Motivations

- If we have an under estimator § and over estimator g, the function g is
“in between".

- Also use this information in the regularisation

Procedure

- g computed as before as a subset of epig

Compute g via an outer approximation of epi g: supporting
hyperplanes at vertices

Compute proximal average instead of the Moreau-Yosida approximation




Perspectives 24

Noisy evaluation of g

Function values g(y;) may be noisy but are completely trusted

May loose convexity, gives back wrong gradients

Noise effects are mostly local, except for points on the boundaries of Y

Idea: smoothing via local convex quadratic fit

Couple the MIQP and the Moreau-Yosida approximation

- Currently an MIQP is solved and then the regularised gradient is
computed

- The two could be merged (with classical Moreau-Yosida approximation)

v

Extension to other instances
- Apply this approach to other types of problem

- Use this penalty based method to get an approximated solution vs
solving exact problem




Conclusion 25

Context
- “Nice” (convex) optimization problem but with partially known
objective function
- Computationally effective and retain lots of features (convexity, shape)

v

Approach presented
- Use a convex piecewise-linear function § because it is convex and the
fitting is easy
- The differentiability property is obtained afterward via the
Moreau-Yosida approximation
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