Optimization of the sum of a convex surrogate and quadratic objective: Example from Electricity Markets

Olivier Huber

WID - University of Wisconsin-Madison

Joint work with: Michael Ferris and Lisa Tang

Collaboration: ISO New England

- Forward Capacity Market
- INIQP with partially known (closed-loop form) objective function
- O Piecewise-linear approximation
- Moreau-Yosida approximation to recover differentiability

Electricity Markets

Principle

- Independence between the grid manager (RTO) and the market participants (companies producing power, retailers, ...)
- One regulator Federal Energy Regulatory Commission (FERC)

Regional Transmission Organization (RTO)

- Manages the network (transmission lines)
- Ensures that the demand is met
- Organise the auction processes
- an RTO has greater responsibility than an Independent System Operator (ISO)

Electricity Markets: Timeline

Capacity shortage

- Few incentives to invest in new facilities or expand/maintain capacity
- Cannot force generators to invest
- There is a high initial investment cost
- Trivia: cannot produce more power than the available capacity

Main issues

- High electricity prices
- Volatility of prices
- Loss of reliability (increased risk of blackout)
- Inability to meet the (future) demand

Forward Capacity Market (FCM)

- "Ensures that the New England power system will have sufficient resources to meet the future demand for electricity"
- provides an incentive for companies to make investments
- the cost is supported by the consumers

Forward Capacity Auction (FCA)

- held annually 3 years in advance
- supply capacity in exchange for market-priced capacity payment
- formulated as an optimization problem

ISO's perspective: ICR

- (N)ICR: (Net) Installed Capacity Requirement
- pprox lower bound on the required capacity to meet reliability standards
- criterion for ISONE: "interrupting non-interruptible load, on average, no more than once every 10 years"

Consumer's perspective: EENS minimization

- EENS: Expected Energy Not Served (MWh/year)
- estimate of the demand not met
- depends on the total capacity installed
- computed via Monte-Carlo simulation of scenarios of line and generator failures

FCA optimization problem

- solution of the optimization problem minimizes this total cost:
 - cost supported by the consumers $(c^T q)$
 - reliability cost
- The penalty factor PF is chosen by ISONE so that the generators have a clear incentive to invest if the capacity is smaller than NICR
- There is a import zone constraint (ICZ)

Price formation

Working hypothesis

Assumptions on the EENS function

- $EENS(Q_{SYS}, Q_{ICZ})$ is a smooth convex function
- Cannot be represented as a quadratic function $\partial EENS(O_{GWG}, O_{VGZ})$
 - $\frac{\partial EENS(Q_{SYS},Q_{ICZ})}{\partial Q_{ICZ}}$ is a concave function.

Desired properties of the approximate function

- amenable to efficient computation
- preserve the shape of the unknown function
- inherit smoothness property

High-level constraint

- Market participants have to agree on the process beforehand
- Optimization problem has to be solved in a few hours
- Computed price must decrease as the capacity Q_{SYS} increases

Stylised problem

Main optimization problem: MIQP

 $\min_{x,y} \quad f(x) + g(y) \quad \text{s.t.} \quad (x,y) \in P, x_i \in \{0,1\}, i \in \mathcal{I}$ (1)

- f is convex
- P is convex polyhedral
- g is unknown: g(y) is computed by running a long simulation
- y is in a low dimensional space

This problem has to be solved to optimality and in a few hours

Outputs from MIQP (1)

- minimizer pair (x^*, y^*)
- continuous gradient $\nabla g(\boldsymbol{y}^*)$

Proposed procedure

Construct the approximate function \hat{g}

- Convex function $\hat{g}(y) \coloneqq \max_i \hat{g}_i(y)$ with $\hat{g}_i(y) \coloneqq a_i^T y + b_i$
- Easy to work with (computationally) but no smoothness
- Find \hat{g} via its epigraph by computing an inner approximation of $\operatorname{epi} g$

Solve optimization problem (FCA) (online part) Compute (x^*, y^*) solution to the MIQP min $f(x) + \hat{g}(y)$ s.t. $(x, y) \in P, x_i \in \{0, 1\}, i \in \mathcal{I}$ (2)

Moreau-Yosida regularisation

x, y

- The subdifferential $\nabla \hat{g}$ is multivalued
- Compute a regularised gradient of \hat{g} at the solution y^{\ast} of (2)

(offline part)

(online part)

Piecewise-Linear (PL) \hat{g} : **Procedure**

Function construction: $\hat{g} \coloneqq \max_i \hat{g}_i$

- Compute $g(y_i)$ for some $y_i \in Y$
- ② Check the convexity assumption (via LP) on $v_i\coloneqq(y_i,g(y_i))$
- **③** Get the *H*-representation $(Hx \leq b)$ from the *V*-representation $(\operatorname{conv} v_i)$
- **④** Extract $\operatorname{epi} \hat{g}$ by removing the hyperplanes forming the "lid" of $\operatorname{conv} v_i$
- Solution Recover the linear functions \hat{g}_i from H and b.

Piecewise-Linear (PL) \hat{g} : Procedure

Function construction: $\hat{g} \coloneqq \max_i \hat{g}_i$

- Compute $g(y_i)$ for some $y_i \in Y$
- ② Check the convexity assumption (via LP) on $v_i\coloneqq(y_i,g(y_i))$
- **③** Get the *H*-representation $(Hx \leq b)$ from the *V*-representation $(\operatorname{conv} v_i)$
- ${f O}$ Extract ${
 m epi}\,\hat{g}$ by removing the hyperplanes forming the "lid" of ${
 m conv}\,v_i$
- Solution Recover the linear functions \hat{g}_i from H and b.

Hyperplane separation LP (Fukuda's online FAQ)

$$\begin{split} \max_{h \in \mathbb{R}^{m+1}, h_0 \in \mathbb{R}} & h^T v_k - h_0 \\ \text{s.t.} & h^T v_i - h_0 \leq 0 \qquad \forall i \neq k \\ & h^T v_k - h_0 \leq 1 \qquad \text{(boundedness of the objective value)} \\ & h^T \tilde{v}_k - h_0 \leq 0 \qquad \tilde{v}_k \coloneqq (y_k, 2g_{max}) \text{ and } g_{max} \coloneqq \max_i g(y_i) \end{split}$$

PL \hat{g} construction: Vertices

PL \hat{g} construction: conv v_i

PL \hat{g} construction: epi \hat{g}

Moreau-Yosida approximation: Basics

Function "level"

With \hat{g} a convex function, its Moreau-Yosida approximation is defined as

$$\tilde{g}(y) \coloneqq \min_{z} \hat{g}(z) + \frac{1}{2\lambda} ||z - y||_{2}^{2}$$
(3)

- z^* unique solution to (3) is the *proximal point*
- \tilde{g} is at least C^1
- \tilde{g} is also convex
- Proximal point algorithm: \boldsymbol{x}^{k+1} is the proximal point

Operator (subgradient) "level"

The subdifferential $\partial \hat{g} \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is maximal monotone (\hat{g} is convex)

- The regularised gradient $\nabla \tilde{g}$ is single-valued maximal monotone

-
$$\nabla \tilde{g} \coloneqq (\lambda I + (\partial \hat{g})^{-1})^{-1}$$

-
$$\nabla \tilde{g}(y) = \frac{1}{\lambda}(y - z^*)$$

Moreau-Yosida approximation: Illustration

Moreau-Yosida approximation: influence of $\boldsymbol{\lambda}$

A few observations

- The parameter λ "controls" how far the proximal point will be from the point of interest.
- The gradient $\nabla \tilde{g}$ is Lipschitz: $\|\nabla \tilde{g}(y_1) \tilde{g}(y_2)\| \leq \lambda^{-1} \|y_1 y_2\|$. Hence the smoothing effect grows with λ .

-
$$ilde{g}\equiv\min_y\hat{g}(y)$$
 when $\lambda
ightarrow\infty$

- With large λ , the shape of $ilde{g}$ is close to a quadratic

- Too much information is lost with a large value of λ

Normalised price evolution for different λ

Moreau-Yosida approximation: Bregman distance 21

- $\frac{1}{2\lambda} \|z y\|_2^2$ can be seen as a penalisation term
- Use a different distance, which may change with \boldsymbol{y}

Bregman distance

- $h \colon D \to \mathbb{R}$, strictly convex and C^2
- $D_h(z,y) \coloneqq h(z) h(y) \nabla h(y)^T (z-y)$ is a distance
- Example: if $h = \frac{1}{2} \| \cdot \|_2^2$, then $D_h(z, y) = \frac{1}{2} \| z y \|_2^2$
- With additional assumptions on ${\cal D}_h$, the function defined as

$$\tilde{g}(y) \coloneqq \min_{z} \hat{g}(z) + \frac{1}{\lambda} D_h(z, y)$$

- For proximal point algorithm with Bregman distances, see [Censor & Zenios, 1992], [Eckstein 90's], [Eckstein & Silva], ...
- Give more flexibility, may better capture the shape of the function
- Quite adhoc and the problem is usually nonlinear

Moreau-Yosida approximation: proximal average 22

Proximal average: Homotopy between epigraphs

- Proximal average $\mathcal{P}(f_0,f_1,\mu)$ is a continuous transformation between 2 convex functions f_0 and f_1
- $\mathcal{P}(f_0, f_1, \mu)(x) \coloneqq -\min_z -\mu \tilde{f}_0(z) (1-\mu)\tilde{f}_1(z) + \frac{1}{2\lambda} ||z x||_2^2$
- With $ilde{f}_0(z)$ and $ilde{f}_1(z)$ the Moreau envelopes with parameter λ

Averages of $f_0(x) = x + 2$ and the quadratic function $f_1(x) = x^2$: Arithmetic (left) and proximal (right). [Bauschke, Lucet, Trienis, 2007]

Moreau-Yosida approximation: proximal average 23

Motivations

- If we have an under estimator \hat{g} and over estimator $\bar{g},$ the function g is "in between".
- Also use this information in the regularisation

Procedure

- \hat{g} computed as before as a subset of $\operatorname{epi} g$
- Compute \bar{g} via an outer approximation of ${\rm epi}\,g\!\!:$ supporting hyperplanes at vertices
- Compute proximal average instead of the Moreau-Yosida approximation

Perspectives

Noisy evaluation of g

- Function values $g(y_i)$ may be noisy but are completely trusted
- May loose convexity, gives back wrong gradients
- Noise effects are mostly local, except for points on the boundaries of \boldsymbol{Y}
- Idea: smoothing via local convex quadratic fit

Couple the MIQP and the Moreau-Yosida approximation

- Currently an MIQP is solved and then the regularised gradient is computed
- The two could be merged (with classical Moreau-Yosida approximation)

Extension to other instances

- Apply this approach to other types of problem
- Use this penalty based method to get an approximated solution vs solving exact problem

Conclusion

Context

- "Nice" (convex) optimization problem but with partially known objective function
- Computationally effective and retain lots of features (convexity, shape)

Approach presented

- Use a convex piecewise-linear function \hat{g} because it is convex and the fitting is easy
- The differentiability property is obtained afterward via the Moreau-Yosida approximation